JP2016090272A - Ultrasonic flaw detection method and ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Download PDF

Info

Publication number
JP2016090272A
JP2016090272A JP2014221434A JP2014221434A JP2016090272A JP 2016090272 A JP2016090272 A JP 2016090272A JP 2014221434 A JP2014221434 A JP 2014221434A JP 2014221434 A JP2014221434 A JP 2014221434A JP 2016090272 A JP2016090272 A JP 2016090272A
Authority
JP
Japan
Prior art keywords
defect
ultrasonic
height
flaw detection
ultrasonic beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014221434A
Other languages
Japanese (ja)
Inventor
祐気 永井
Yuki Nagai
祐気 永井
山口 雄一
Yuichi Yamaguchi
雄一 山口
宏明 畠中
Hiroaki Hatanaka
宏明 畠中
雄人 浅海
Yuto Asami
雄人 浅海
博勝 中川
Hirokatsu Nakagawa
博勝 中川
成就 横山
Shigenari Yokoyama
成就 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014221434A priority Critical patent/JP2016090272A/en
Publication of JP2016090272A publication Critical patent/JP2016090272A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus capable of measuring the property of a fault with high accuracy using a low-frequency ultrasonic wave even when a sample is a high attenuation material.SOLUTION: An ultrasonic beam is scanned to an interior of a test piece 20, echo heights of received waveforms related to a plurality of test holes h1 to h16 disposed side by side in the depth direction within the test piece are measured so as to create a threshold evaluation line Sa for determining whether or not a fault is present. Excitation timing of a plurality of oscillators 12a of a phased array probe 12 is deviated in a plane orthogonal to a weld line L along a weld zone W, and an ultrasonic beam B is sector-scanned so as to move a convergent point P. A received waveform of a reflection wave reflected by an interior of the weld zone W and returning is acquired for every scan angle, and a fault F is detected using the threshold evaluation line Sa for the echo height of each received waveform. When it is determined that the fault F is present within the weld zone W, a property of the fault F is detected using a fault height determination threshold Sb for the echo height of the received wave of the fault F.SELECTED DRAWING: Figure 4

Description

本発明は、被検体(被検部を含む)の内部における欠陥の有無を判定すると共に、被検体の深さ(厚さ)方向の欠陥高さを含む性状を評価するのに用いられる超音波探傷検査方法及び超音波探傷検査装置に関するものである。   The present invention determines whether or not there is a defect in a subject (including a portion to be examined), and uses ultrasonic waves to evaluate the properties including the height of the subject in the depth (thickness) direction. The present invention relates to a flaw detection inspection method and an ultrasonic flaw detection inspection apparatus.

非破壊検査の1つとして、超音波を用いた探傷検査が従来から行われている。この超音波探傷検査の1つに複数の振動子を有するフェーズドアレイ探触子を用いたフェーズドアレイ法がある。
このフェーズドアレイ法とは、被検体上にフェーズドアレイ探触子をセットし、このフェーズドアレイ探触子における複数の振動子の励振タイミングをずらすことで、被検体に設定した測定線と直交する面内で超音波ビームを例えばセクタ走査させ、この被検体に内在するきず等の欠陥で反射して戻る反射波を複数の振動子で受信して、前記被検体の内部における欠陥の有無を画像で評価する検査手法である。このような検査手法は、ボイラや原子力プラント等の構造物における溶接部の検査に広く利用されている(例えば、特許文献1参照)。
As one of the nondestructive inspections, a flaw detection inspection using ultrasonic waves has been conventionally performed. There is a phased array method using a phased array probe having a plurality of transducers as one of the ultrasonic flaw detection tests.
In this phased array method, a phased array probe is set on the subject, and the excitation timing of a plurality of transducers in the phased array probe is shifted, so that the surface orthogonal to the measurement line set on the subject is obtained. The ultrasonic beam is scanned in a sector, for example, and a reflected wave reflected by a defect such as a flaw existing in the subject is received by a plurality of transducers, and the presence or absence of a defect in the subject is imaged. This is an inspection method to be evaluated. Such inspection methods are widely used for inspection of welds in structures such as boilers and nuclear power plants (see, for example, Patent Document 1).

特開2007−309771号公報JP 2007-309771 A

ところで、上述したフェーズドアレイ法において、検査対象の被検体が超音波の高減衰材である場合には、ノイズの影響を少なく抑えるうえで、被検体に入射する超音波の周波数を低く設定する必要がある。   By the way, in the above-described phased array method, when the subject to be examined is a high-attenuation material for ultrasonic waves, it is necessary to set the frequency of the ultrasonic wave incident on the subject to be low in order to reduce the influence of noise. There is.

しかしながら、被検体に入射する超音波の周波数を低く設定すると、高減衰材である被検体内で減衰し難くなるものの、被検体に内在する欠陥からの反射波の時間分解能が低下して、欠陥の端部を把握することが困難になってしまう。
ここで、被検部が、例えば、圧力容器における溶接部である場合には、この溶接部に内在する欠陥が拡大する可能性を判断するうえで、欠陥の性状のうちの深さ方向の欠陥高さを認識することが特に求められるが、上記したように、欠陥の端部を把握することが困難であれば、当然欠陥の深さ方向の欠陥高さを認識することも困難であり、これを解決することが従来の課題となっていた。
However, if the frequency of the ultrasonic wave incident on the subject is set low, it will be difficult to attenuate within the subject which is a high attenuation material, but the time resolution of the reflected wave from the defect inherent in the subject will be reduced, and the defect will be It becomes difficult to grasp the end of the.
Here, in the case where the test part is a welded part in a pressure vessel, for example, in determining the possibility that a defect inherent in the welded part will expand, a defect in the depth direction among the properties of the defect Although it is particularly required to recognize the height, as described above, if it is difficult to grasp the edge of the defect, it is naturally difficult to recognize the defect height in the depth direction of the defect, It has been a conventional problem to solve this problem.

本発明は、上述した課題に着目してなされたものであり、低い周波数の超音波を用いた探傷検査を行うことができ、被検体が超音波の高減衰材であったとしても、欠陥の有無は勿論のこと、被検体に欠陥が内在している場合の深さ方向の欠陥高さを含む性状を精度よく測定することが可能な超音波探傷検査方法及び超音波探傷検査装置を提供することを目的としている。   The present invention has been made by paying attention to the above-described problems, and can perform a flaw detection inspection using low-frequency ultrasonic waves. Even if the subject is an ultrasonic high-attenuator, Provided are an ultrasonic flaw detection inspection method and an ultrasonic flaw inspection apparatus capable of accurately measuring properties including a defect height in a depth direction when a defect is present in a subject as well as the presence or absence of the defect. The purpose is that.

上記の目的を達成するべく、本発明の第1の態様は、複数の振動子を有するフェーズドアレイ探触子を用いて被検体(被検部を含む)の内部における欠陥の性状(欠陥の形状,欠陥高さ,欠陥長さ)を検出する超音波探傷検査方法であって、前記被検体と同じ材料から成る試験体を準備し、前記フェーズドアレイ探触子における前記複数の振動子の各励振タイミングをずらすことで前記試験体の内部に超音波ビームを走査させ、該走査で得られる前記試験体の内部に深さ方向に並ぶ複数の試験孔に係る各受信波形のエコー高さを測定して欠陥有無判定用の閾値評価線を作成する閾値評価線作成工程と、前記フェーズドアレイ探触子における前記複数の振動子の各励振タイミングをずらすことで前記被検体の内部に超音波ビームを走査させ、該走査で得られる受信波形のエコー高さに対して前記閾値評価線作成工程で作成された前記閾値評価線に基づく第1の閾値評価線により設定される欠陥有無判定閾値を用いて欠陥を検出する欠陥検出工程と、前記欠陥検出工程で検出された前記欠陥の前記受信波形のエコー高さに対して欠陥高さ判定閾値を用いて前記欠陥の性状を検出する欠陥性状検出工程と、を含む構成としている。
この場合、フェーズドアレイ探触子には、リニア型及びマトリクス型の双方を用いることができるが、マトリクス型のフェーズドアレイ探触子を用いることが望ましい。
In order to achieve the above object, according to a first aspect of the present invention, a defect property (defect shape) in a subject (including a test portion) using a phased array probe having a plurality of transducers is provided. , Defect height, defect length), a test body made of the same material as the subject is prepared, and each excitation of the plurality of vibrators in the phased array probe is prepared. The ultrasonic beam is scanned inside the specimen by shifting the timing, and the echo height of each received waveform related to the plurality of test holes arranged in the depth direction inside the specimen obtained by the scanning is measured. The threshold evaluation line creation step for creating a threshold evaluation line for determining the presence / absence of defects and scanning the ultrasonic beam inside the subject by shifting the excitation timing of the plurality of transducers in the phased array probe Let the A defect is detected using a defect presence / absence determination threshold set by a first threshold evaluation line based on the threshold evaluation line created in the threshold evaluation line creation step with respect to an echo height of a received waveform obtained by inspection. A defect detection step, and a defect property detection step of detecting the property of the defect using a defect height determination threshold with respect to an echo height of the received waveform of the defect detected in the defect detection step. It is said.
In this case, both a linear type and a matrix type can be used as the phased array probe, but it is desirable to use a matrix type phased array probe.

本発明の第2の態様において、前記欠陥検出工程及び前記欠陥性状検出工程では、前記被検体に設定した測定線と交差する面内で前記超音波ビームの伝搬方向を想定する方向に変える走査角度制御及び前記超音波ビームの集束点を想定する点に変える集束点制御により該超音波ビームを走査させ、前記超音波ビームの走査角度毎に、前記被検体内からの反射波を前記複数の振動子で受信して合成することで前記受信波形を取得して表示し、該走査で得られる受信波形からエコー高さを求め、前記欠陥性状検出工程は、前記欠陥検出工程で取得した前記超音波ビームの走査角度毎の前記受信波形のうちの前記欠陥高さ判定閾値を超えるエコー高さが表示された前記反射波の受信波形に対応する前記超音波ビームの走査角度及び前記欠陥からの反射波により得られる該欠陥までの距離に基づいて、前記欠陥の高さを検出する工程である構成としている。   In the second aspect of the present invention, in the defect detection step and the defect property detection step, a scanning angle that changes the propagation direction of the ultrasonic beam to a direction that assumes a propagation direction within a plane that intersects the measurement line set on the subject. The ultrasonic beam is scanned by the control and the focal point control for changing the focal point of the ultrasonic beam to an assumed point, and the reflected wave from the subject is oscillated at each scanning angle of the ultrasonic beam. The received waveform is acquired and displayed by synthesizing and received by a child, the echo height is obtained from the received waveform obtained by the scan, and the defect property detecting step includes the ultrasonic wave acquired in the defect detecting step. The scanning angle of the ultrasonic beam corresponding to the received waveform of the reflected wave on which the echo height exceeding the defect height judgment threshold of the received waveform for each beam scanning angle is displayed and the response from the defect. Based on the distance to the defect obtained by the waves, and constitutes that the step of detecting the height of the defect.

本発明の第3の態様において、前記欠陥高さ判定閾値は、前記閾値評価線作成工程で作成された前記閾値評価線に基づいて設定される構成としている。   In the third aspect of the present invention, the defect height determination threshold is set based on the threshold evaluation line created in the threshold evaluation line creation step.

本発明の第4の態様において、前記欠陥高さ判定閾値は、ドロップ法に基づいて設定される構成としている。   In the fourth aspect of the present invention, the defect height determination threshold is set based on a drop method.

本発明の第5の態様は、前記欠陥検出工程において、前記フェーズドアレイ探触子を前記測定線に沿ってステップを踏んで移動させる毎に、前記測定線と交差する面内における前記超音波ビームの走査を3次元的に行う構成としている。   According to a fifth aspect of the present invention, in the defect detection step, each time the phased array probe is moved stepwise along the measurement line, the ultrasonic beam in a plane that intersects the measurement line. Is configured to perform three-dimensional scanning.

本発明の第6の態様は、超音波を用いて被検体の内部における欠陥の性状を検出する超音波探傷検査装置であって、複数の振動子を具備して前記被検体の探傷面上にセットされ、該複数の振動子から超音波をそれぞれ発振すると共に、前記被検体内からの反射波を前記複数の振動子で受信するフェーズドアレイ探触子と、前記複数の振動子に各々の励振タイミングを互いにずらして超音波を発振させて超音波ビームを走査させると共に、前記複数の振動子が受信する前記被検体内からの反射波を合成して受信波形を取得するパルス送受信器と、前記被検体と同じ材料から成る試験体に対する前記フェーズドアレイ探触子による超音波ビームの走査で検出された前記試験体の内部に深さ方向に並ぶ複数の試験孔に係る各受信波形のエコー高さに基づいて欠陥有無判定閾値を予め設定して記憶し、前記超音波ビームの走査で得られる受信波形のエコー高さに対して前記欠陥有無判定閾値を用いて欠陥を検出すると共に、前記フェーズドアレイ探触子で取得した前記欠陥に係る前記受信波形のエコー高さに対して欠陥高さ判定閾値を用いて前記欠陥の性状を検出する演算部を備えている構成としている。   According to a sixth aspect of the present invention, there is provided an ultrasonic flaw detection inspection apparatus for detecting a property of a defect inside an object using an ultrasonic wave, comprising a plurality of transducers on a flaw detection surface of the object. A phased array probe configured to oscillate ultrasonic waves from the plurality of transducers and receive reflected waves from within the subject by the plurality of transducers; A pulse transmitter / receiver that oscillates an ultrasonic wave with a timing shifted from each other, scans an ultrasonic beam, and synthesizes reflected waves from within the subject received by the plurality of transducers to obtain a received waveform; and Echo height of each received waveform related to a plurality of test holes arranged in the depth direction inside the test body detected by scanning an ultrasonic beam by the phased array probe for the test body made of the same material as the subject In Then, a defect presence / absence determination threshold value is preset and stored, and a defect is detected using the defect presence / absence determination threshold value with respect to an echo height of a received waveform obtained by scanning with the ultrasonic beam, and the phased array search is performed. A configuration is provided that includes a calculation unit that detects a property of the defect using a defect height determination threshold with respect to an echo height of the received waveform related to the defect acquired by a touch element.

本発明に係る超音波探傷検査方法では、超音波ビームを走査させて検出された欠陥に係る受信波形のエコー高さに対して、欠陥高さ判定閾値を用いることで欠陥の性状を検出するようにしているので、欠陥からの反射波の分解能が低下する低い周波数の超音波を用いた探傷検査を行うことができ、したがって、被検体(被検部)が、例えば、オーステナイト系ステンレスや、Ni基合金や、これらの材料の各溶接部や、ゴムや、コンクリートや、鋳鋼材や、FRP等の超音波の高減衰材であったとしても、欠陥の有無の判定のみならず欠陥の高さを含む性状の測定が精度よく成されることとなる。   In the ultrasonic inspection method according to the present invention, the defect property is detected by using the defect height determination threshold for the echo height of the received waveform related to the defect detected by scanning the ultrasonic beam. Therefore, it is possible to perform flaw detection inspection using ultrasonic waves with a low frequency that reduces the resolution of reflected waves from the defect. Therefore, the specimen (test part) is, for example, austenitic stainless steel or Ni Even if it is a base alloy, each welded part of these materials, rubber, concrete, cast steel, ultrasonic high attenuation material such as FRP, not only the presence or absence of defects but also the height of the defects Therefore, the measurement of properties including can be performed with high accuracy.

本発明に係る超音波探傷検査方法及び超音波探傷検査装置によれば、被検体が高減衰材であったとしても、欠陥の有無は勿論のこと、被検体に欠陥が内在している場合の深さ方向の欠陥高さを含む性状を精度よく測定することが可能であるという優れた効果がもたらされる。   According to the ultrasonic inspection method and the ultrasonic inspection device according to the present invention, even when the subject is a high attenuation material, not only the presence of a defect but also the case where the defect is inherent in the subject. An excellent effect is obtained that it is possible to accurately measure the properties including the defect height in the depth direction.

本発明の一実施形態に係る超音波探傷検査装置の概略構成説明図である。1 is a schematic configuration explanatory diagram of an ultrasonic flaw detection inspection apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る超音波探傷検査方法で用いる超音波ビームの走査角度制御の原理説明図(a),(b)である。It is principle explanatory drawing (a), (b) of the scanning angle control of the ultrasonic beam used with the ultrasonic flaw detection inspection method concerning one Embodiment of this invention. 本発明の一実施形態に係る超音波探傷検査方法で用いる超音波ビームの集束点制御の原理説明図(a),(b)である。It is principle explanatory drawing (a), (b) of the focusing point control of the ultrasonic beam used with the ultrasonic flaw inspection method concerning one embodiment of the present invention. 本発明に係る超音波探傷検査方法の一実施要領を示すフローチャートである。It is a flowchart which shows one execution point of the ultrasonic flaw detection inspection method which concerns on this invention. フェーズドアレイ探触子により試験体に対して超音波探傷検査を実施している状況を示す動作説明図(a)及びこの超音波探傷検査で得られる試験体の内部の試験孔に係る受信波形のエコー高さに基づいて作成された欠陥有無判定用の閾値評価線を示すグラフ(b)である。Operation explanatory diagram (a) showing a situation in which ultrasonic testing is performed on the specimen by the phased array probe, and the received waveform of the test hole inside the specimen obtained by this ultrasonic testing It is a graph (b) which shows the threshold value evaluation line for defect presence determination produced based on echo height. フェーズドアレイ探触子により溶接部に対して超音波探傷検査を実施している状況を示す斜視説明図である。It is a perspective explanatory view showing the situation where an ultrasonic flaw inspection is carried out on a weld with a phased array probe. 溶接部に内在する欠陥からの反射波のうちの欠陥上部からの反射波の受信波形を示すグラフ(a),最大エコー高さの振幅がある反射波の受信波形を示すグラフ(b)及び欠陥下部からの反射波の受信波形を示すグラフ(c)である。Graph (a) showing received waveform of reflected wave from upper part of defect among reflected waves from defect inherent in welded part, graph (b) showing received waveform of reflected wave having amplitude of maximum echo height, and defect It is a graph (c) which shows the reception waveform of the reflected wave from the lower part. 超音波ビームの走査角度と欠陥からの受信波形におけるエコー高さとの関係及び超音波ビームの走査角度に基づいて欠陥高さを評価する欠陥高さ判定閾値の設定要領を示す説明図である。It is explanatory drawing which shows the setting point of the defect height determination threshold value which evaluates defect height based on the relationship between the scanning angle of an ultrasonic beam and the echo height in the received waveform from a defect, and the scanning angle of an ultrasonic beam. 超音波ビームの走査角度に基づいて欠陥高さを評価する欠陥高さ判定閾値の他の設定要領を示す説明図である。It is explanatory drawing which shows the other setting point of the defect height determination threshold value which evaluates defect height based on the scanning angle of an ultrasonic beam. 超音波探傷検査の結果を示す図6の方向Xからの走査画像説明図(a)及び図6の方向Yからの走査画像説明図(b)である。FIG. 7 is an explanatory diagram (a) of a scanning image from the direction X in FIG. 6 and an explanatory diagram (b) of a scanning image from the direction Y in FIG.

以下、本発明に係る超音波探傷検査方法及び超音波探傷検査装置を図面に基づいて説明する。
図1〜図10は、本発明に係る超音波探傷検査方法及び超音波探傷検査装置の一実施形態を示しており、この実施形態では、被検体(被検部)が高減衰材のNi基合金から成る溶接部である場合を例に挙げて説明する。
Hereinafter, an ultrasonic inspection method and an ultrasonic inspection device according to the present invention will be described with reference to the drawings.
1 to 10 show an embodiment of an ultrasonic flaw detection inspection method and an ultrasonic flaw detection inspection apparatus according to the present invention. In this embodiment, a subject (test portion) is a Ni-based material having a high attenuation material. A case where the weld portion is made of an alloy will be described as an example.

図1に示すように、この超音波探傷検査装置1は、減衰し難い縦波を用いて斜角探傷を行うものであって、超音波パルス信号を励振する機能及び受信機能を有するパルサーレシーバ(パルス送受信器)10と、斜角探触子であるフェーズドアレイ探触子12と、アナログ/デジタル変換器(以下、A/D変換器という)14と、演算部16と、モニタ18を備えており、パルサーレシーバ10には、後述する振動子12aのそれぞれに印加するパルス信号を所望のタイミングで発生させる遅延回路10a及び各振動子12からの受信信号を所望のタイミングで合成する同期回路10bが具備されている。   As shown in FIG. 1, this ultrasonic flaw detection apparatus 1 performs oblique angle flaw detection using longitudinal waves that are difficult to attenuate, and is a pulsar receiver having a function of exciting an ultrasonic pulse signal and a receiving function ( A pulse transmitter / receiver) 10, a phased array probe 12 which is an oblique probe, an analog / digital converter (hereinafter referred to as an A / D converter) 14, an arithmetic unit 16, and a monitor 18. The pulsar receiver 10 includes a delay circuit 10a that generates a pulse signal to be applied to each of the vibrators 12a, which will be described later, and a synchronization circuit 10b that synthesizes the reception signals from the vibrators 12 at the desired timing. It is equipped.

フェーズドアレイ探触子12は、複数の振動子12aを縦横にマトリクス状に配置して成るマトリクスアレイであり、パルサーレシーバ10で発生させたパルス信号による超音波を発振して溶接部Wに入射させると共に溶接部W内からの反射波を受信する。この際、溶接部Wが高減衰材のNi基合金から成ることから、この斜角探傷には、溶接部Wの内部で減衰しにくい低い周波数、例えば数百kHz〜数MHzの超音波が用いられる。   The phased array probe 12 is a matrix array in which a plurality of transducers 12a are arranged in a matrix in the vertical and horizontal directions. At the same time, a reflected wave from inside the weld W is received. At this time, since the welded portion W is made of a highly attenuated Ni-based alloy, an ultrasonic wave having a low frequency, for example, several hundred kHz to several MHz, which is difficult to attenuate inside the welded portion W is used for the oblique flaw detection. It is done.

フェーズドアレイ探触子12の各振動子12aで受信される反射波は、電気信号に変換され、電気信号に変換された反射波は、パルサーレシーバ10に同期して入力されて合成される。この合成されたアナログ信号は、A/D変換器14でデジタル信号に変換されて、演算部16で信号処理される。   The reflected wave received by each transducer 12a of the phased array probe 12 is converted into an electric signal, and the reflected wave converted into the electric signal is input to the pulsar receiver 10 and synthesized. The synthesized analog signal is converted into a digital signal by the A / D converter 14 and subjected to signal processing by the arithmetic unit 16.

演算部16は、閾値設定回路16a,エコー高さ判定回路16b,画像処理回路16c及び制御回路16dや図示しないROM、RAM等のメモリから構成されており、この演算部16では、これらの回路16a〜16dによって、後述する欠陥有無の判定及び欠陥高さの評価が成される。なお、演算部16は、欠陥有無の判定及び欠陥高さの評価以外の機能も有しているが、本実施形態では説明を省略する。   The calculation unit 16 includes a threshold setting circuit 16a, an echo height determination circuit 16b, an image processing circuit 16c, a control circuit 16d, and a memory such as a ROM and a RAM (not shown). In the calculation unit 16, these circuits 16a The determination of the presence / absence of a defect and the evaluation of the defect height, which will be described later, are made by ~ 16d. In addition, although the calculating part 16 also has functions other than determination of the presence or absence of a defect, and evaluation of defect height, description is abbreviate | omitted in this embodiment.

演算部16には出力装置としてモニタ18が接続されており、演算部16で反射波を処理して取得される受信波形の可視化画像を表示して、溶接部W内の欠陥Fの有無や、溶接部Wに欠陥Fが内在している場合の欠陥Fの位置及び欠陥高さ(溶接部Wの深さ方向の長さ)を含む性状等の欠陥情報を表示するようにしている。なお、図示はしないが、演算部16にキーボード等の入力装置が備えられていることは言うまでもない。   A monitor 18 is connected to the calculation unit 16 as an output device, displays a visualized image of the received waveform obtained by processing the reflected wave in the calculation unit 16, and the presence or absence of the defect F in the weld W, Defect information such as properties including the position of the defect F and the height of the defect (the length in the depth direction of the weld W) when the defect F is inherent in the weld W is displayed. Although not shown, it goes without saying that the computing unit 16 is provided with an input device such as a keyboard.

ここで、図2及び図3を用いて、演算部16の制御回路16dによる走査角度制御及び集束点制御について説明する。なお、図2及び図3では、説明を判り易くするために、フェーズドアレイ探触子12の各振動子12aから垂直に超音波を発振する状況を示している。   Here, the scanning angle control and the focusing point control by the control circuit 16d of the calculation unit 16 will be described with reference to FIGS. 2 and 3 show a situation in which ultrasonic waves are oscillated vertically from each transducer 12a of the phased array probe 12 for easy understanding.

図2(a)に示すように、パルサーレシーバ10の遅延回路10aにより、フェーズドアレイ探触子12の互に隣接する振動子12aの励振タイミングを図示左側から右側にかけてΔt1ずつ遅れるようにコントロールすると、図2(b)に示すように、超音波ビームBの伝搬方向T1は母材2の探傷面2aに対して傾く。この隣接する振動子12aの励振タイミングをΔt1ずつ遅らせて超音波ビームBの伝搬方向T1を想定する方向(所望の方向)に変える制御が走査角度制御、いわゆるステアリング制御である。この際、遅延時間をΔt1からΔtnまで段階的に変化させると、すなわち、超音波ビームBの伝搬方向をT1からTnまで想定する方向に段階的に変化させると、セクタ走査が成されることとなる。 As shown in FIG. 2A, when the delay circuit 10a of the pulsar receiver 10 controls the excitation timing of the transducers 12a adjacent to each other of the phased array probe 12 to be delayed by Δt 1 from the left side to the right side in the figure. As shown in FIG. 2B, the propagation direction T 1 of the ultrasonic beam B is inclined with respect to the flaw detection surface 2 a of the base material 2. Control for delaying the excitation timing of the adjacent transducer 12a by Δt 1 and changing the propagation direction T 1 of the ultrasonic beam B to the assumed direction (desired direction) is scanning angle control, so-called steering control. At this time, if the delay time is changed stepwise from Δt 1 to Δtn, that is, if the propagation direction of the ultrasonic beam B is changed stepwise from T 1 to Tn in the assumed direction, sector scanning is performed. It will be.

一方、図3(a)に示すように、パルサーレシーバ10の遅延回路10aにより、フェーズドアレイ探触子12の互に隣接する振動子12aの励振タイミングを図示両端部側で早く中央で遅くなるようにコントロールすると、図3(b)に示すように、各振動子12aからの超音波の位相が集束点Pで揃う、すなわち、超音波のエネルギーが集中する集束点Pで超音波ビームBが集束する。この超音波ビームBを想定する(所望の)集束点Pで集束させる制御が集束点制御、いわゆるフォーカシング制御であり、振動子12aの励振タイミングを任意に設定することで、集束点Pまでの距離を変えることができ、想定する集束点Pを矢印に示すように左右に振ることで、セクタ走査を行わせることができる。   On the other hand, as shown in FIG. 3 (a), the delay circuit 10a of the pulsar receiver 10 causes the excitation timing of the transducers 12a adjacent to each other of the phased array probe 12 to be delayed earlier in the center at both ends of the figure. 3B, as shown in FIG. 3B, the phase of the ultrasonic wave from each transducer 12a is aligned at the focal point P, that is, the ultrasonic beam B is focused at the focal point P where the ultrasonic energy is concentrated. To do. The control for focusing the ultrasonic beam B at a (desired) focusing point P is focusing point control, so-called focusing control, and the distance to the focusing point P can be set by arbitrarily setting the excitation timing of the vibrator 12a. By changing the assumed focusing point P to the left and right as shown by the arrows, sector scanning can be performed.

超音波ビームBの伝搬方向を想定する方向(所望の方向)に変えたり想定する集束点Pまでの距離を変更したりするための遅延時間の設定値は、フォーカルローと呼ばれており、この実施形態では、上記した走査角度制御及び集束点制御に基づいて超音波ビームBを走査させるべく、フォーカルローを設定している。
つまり、このフォーカルローにより、パルサーレシーバ10の遅延回路10aにおけるパルス信号の遅延タイミング及び同期回路10bにおける受信信号の同期タイミングが設定される。
The set value of the delay time for changing the propagation direction of the ultrasonic beam B to an assumed direction (desired direction) or changing the assumed distance to the focal point P is called a focal law. In the embodiment, the focal law is set to scan the ultrasonic beam B based on the above-described scanning angle control and focusing point control.
That is, the focal low sets the delay timing of the pulse signal in the delay circuit 10a of the pulsar receiver 10 and the synchronization timing of the reception signal in the synchronization circuit 10b.

次に、上記した超音波探傷検査装置1を用いた本発明の一実施形態に係る超音波探傷検査方法の実施要領を説明する。なお、図4の超音波探傷検査の工程を示すフローチャートにおけるステップS2以外の各ステップの処理は、演算部16の各回路16a〜16dによって行われる。   Next, the point of implementation of the ultrasonic flaw detection method according to one embodiment of the present invention using the ultrasonic flaw detection apparatus 1 described above will be described. In addition, the process of each step other than step S2 in the flowchart which shows the process of the ultrasonic flaw inspection of FIG. 4 is performed by each circuit 16a-16d of the calculating part 16. FIG.

ここで、フェーズドアレイ探触子12で超音波探傷検査を行う場合、フェーズドアレイ探触子12を任意の位置に止めた状態で被検体である溶接部Wの内部において超音波ビームBの集束点Pを深さ(厚さ)方向に移動させるので、フェーズドアレイ探触子12の形状や集束点Pの深さ方向の深浅によって集束性が変化する。   Here, when performing an ultrasonic flaw inspection with the phased array probe 12, the focal point of the ultrasonic beam B inside the welded portion W as a subject with the phased array probe 12 stopped at an arbitrary position. Since P is moved in the depth (thickness) direction, the focusability changes depending on the shape of the phased array probe 12 and the depth of the focus point P in the depth direction.

具体的には、超音波ビームBをセクタ走査して溶接部Wの内部の浅い位置に集束点Pを移動させる場合には、超音波ビームBを鉛直方向に対して大きい角度で振る必要があるので、集束性が低下して測定されるエコー高さが低くなり、一方、超音波ビームBをセクタ走査して溶接部Wの内部の深い位置に集束点Pを移動させる場合には、超音波の広がりや減衰の影響でやはりエコー高さが低くなる。   Specifically, when the ultrasonic beam B is sector-scanned and the focusing point P is moved to a shallow position inside the weld W, the ultrasonic beam B needs to be shaken at a large angle with respect to the vertical direction. Therefore, the echo height measured by lowering the focusing property is lowered. On the other hand, when the ultrasonic beam B is sector-scanned and the focusing point P is moved to a deep position inside the welded portion W, the ultrasonic wave is used. The echo height is still lowered due to the spread and attenuation.

このように、フェーズドアレイ探触子12を任意の位置に止めて溶接部Wの内部で超音波ビームBを走査させる場合には、集束点Pの深さ方向の深浅に応じてエコー高さが変化することを把握する必要があるので、図4に示すように、ステップS1において、被検体である溶接部Wと同じ材料で、且つ、所定位置に欠陥としての大きさ及び形状が既知の試験孔(この実施形態ではφ3mm程度の円孔)h1〜h16を備えた試験体20に対して超音波探傷検査を実施する。   As described above, when the phased array probe 12 is stopped at an arbitrary position and the ultrasonic beam B is scanned inside the welded portion W, the echo height depends on the depth of the focal point P in the depth direction. Since it is necessary to grasp the change, as shown in FIG. 4, in step S1, the test is made of the same material as that of the welded portion W that is the subject and has a known size and shape as a defect at a predetermined position. An ultrasonic flaw detection inspection is performed on the specimen 20 provided with holes (circular holes of about φ3 mm in this embodiment) h1 to h16.

すなわち、図5(a)に示すように、フェーズドアレイ探触子12を試験体20における探傷面20a上にセットして斜角探傷を開始し、超音波ビームB(図5(a)ではビーム中心線BLを示す)を所定の角度ステップでセクタ走査させる。   That is, as shown in FIG. 5A, the phased array probe 12 is set on the flaw detection surface 20a of the test body 20 to start the oblique flaw detection, and the ultrasonic beam B (the beam in FIG. A sector scan is performed at a predetermined angle step.

この超音波ビームBのセクタ走査範囲内において、試験体20の内部に深さ方向に等間隔(図示例では5mm間隔)で並んで配置されている試験孔h1〜h16で反射して戻る各反射波を複数の振動子12aで受信して合成することで受信波形をそれぞれ取得する。   Within the sector scanning range of the ultrasonic beam B, each reflection reflected and returned by the test holes h1 to h16 arranged at equal intervals in the depth direction inside the test body 20 (5 mm intervals in the illustrated example). Received waveforms are acquired by receiving and synthesizing the waves by the plurality of transducers 12a.

この超音波ビームBのセクタ走査で得た試験孔h1〜h16の各受信波形のエコー高さを測定して、図5(b)のグラフに示すように、欠陥有無判定用の閾値評価線Saを作成する(閾値評価線作成工程)。なお、図5(b)のグラフにおいて、横軸が深さ(mm)であり、縦軸がエコー高さ(%)である。   The echo height of each received waveform of the test holes h1 to h16 obtained by sector scanning of the ultrasonic beam B is measured, and as shown in the graph of FIG. 5B, a threshold evaluation line Sa for determining the presence or absence of defects. (Threshold evaluation line creation step). In the graph of FIG. 5B, the horizontal axis is the depth (mm), and the vertical axis is the echo height (%).

この際、上述したように、試験体20の浅い位置にある試験孔h1〜h5の各受信波形のエコー高さや、試験体20の深い位置にある試験孔h13〜h16の各受信波形のエコー高さは、試験体20の深さ方向中央にある試験孔h6〜h12の各受信波形のエコー高さと比べていずれも低くなり、したがって、閾値評価線Saは山形になる。   At this time, as described above, the echo heights of the reception waveforms of the test holes h1 to h5 at the shallow position of the test body 20 and the echo heights of the reception waveforms of the test holes h13 to h16 at the deep position of the test body 20 are used. The height is lower than the echo height of each received waveform in the test holes h6 to h12 in the center of the test body 20 in the depth direction, and therefore the threshold evaluation line Sa has a mountain shape.

そして、この山形の閾値評価線Saに基づく第1の閾値評価線(この実施形態では閾値評価線Sa)を用いることで、溶接部Wの内部の深さに応じた欠陥有無判定閾値を設定することができる。なお、第1の閾値評価線とは、閾値評価線Saのエコー高さレベルの何割かに設定される線であり、この実施形態のように、閾値評価線Sa自体が第1の閾値評価線となる場合もある。   Then, by using the first threshold evaluation line (threshold evaluation line Sa in this embodiment) based on the mountain-shaped threshold evaluation line Sa, a defect presence / absence determination threshold corresponding to the depth inside the welded portion W is set. be able to. Note that the first threshold evaluation line is a line set to some percent of the echo height level of the threshold evaluation line Sa, and the threshold evaluation line Sa itself is the first threshold evaluation line as in this embodiment. It may become.

このようにして、山形の閾値評価線Saを作成した後、ステップS2において、被検体である溶接部Wに対して超音波探傷検査を実施する。すなわち、図6に示すように、フェーズドアレイ探触子12を溶接部W近傍の母材2における探傷面2a上にセットする。この際、図示しないグリセリンペーストやマシン油等の接触媒質を探傷面2aに塗布してフェーズドアレイ探触子12と探傷面2aとの間に空気層ができるのを回避する。   In this way, after the mountain-shaped threshold evaluation line Sa is created, in step S2, an ultrasonic flaw inspection is performed on the welded portion W that is the subject. That is, as shown in FIG. 6, the phased array probe 12 is set on the flaw detection surface 2 a in the base material 2 near the welded portion W. At this time, a contact medium such as glycerin paste or machine oil (not shown) is applied to the flaw detection surface 2a to avoid the formation of an air layer between the phased array probe 12 and the flaw detection surface 2a.

この状態で斜角探傷を開始し、溶接部Wに沿う溶接線(測定線)Lと直交する面内において、予め設定したフォーカルローにしたがってフェーズドアレイ探触子12の互に隣接する振動子12aの各励振タイミングをずらして、集束点Pを溶接部Wの深さ(厚さ)方向に移動させるべく超音波ビームB(図6においてもビーム中心線BLを示す)を所定の角度ステップで3次元的にセクタ走査させる。
この超音波ビームBの3次元的なセクタ走査は、フェーズドアレイ探触子12を溶接線Lに沿って一定の間隔でステップを刻んで移動させる毎に実施する。
In this state, oblique flaw detection is started, and in a plane orthogonal to the weld line (measurement line) L along the weld W, the transducers 12a adjacent to each other of the phased array probe 12 according to a preset focal law. In order to move the focusing point P in the depth (thickness) direction of the weld W, the ultrasonic beam B (shown by the beam center line BL in FIG. 6) is shifted by 3 at a predetermined angle step. Sectorally scans in dimension.
This three-dimensional sector scan of the ultrasonic beam B is performed every time the phased array probe 12 is moved along the weld line L at regular intervals.

そして、この超音波ビームBのセクタ走査範囲内における角度ステップ(走査角度)毎に、溶接部W内で反射して戻る反射波を複数の振動子12aで受信して合成することで受信波形をそれぞれ取得する。   Then, for each angle step (scanning angle) within the sector scanning range of the ultrasonic beam B, the reflected wave reflected and returned in the welded portion W is received and synthesized by the plurality of transducers 12a, and the received waveform is synthesized. Get each.

上記超音波ビームBのセクタ走査で取得した反射波の受信波形中に閾値評価線Sa(溶接部Wの内部の深さに応じた欠陥有無判定閾値)を超えるエコー高さがある場合には、ステップS3において、走査範囲内に欠陥F有と判定し、一方、反射波の受信波形中に閾値評価線Saを超えるエコー高さがない場合には、このポイントでの超音波探傷検査を終了して、次のポイントにフェーズドアレイ探触子12を溶接線Lに沿って移動させる(欠陥検出工程)。   When there is an echo height exceeding the threshold evaluation line Sa (defect presence / absence determination threshold according to the depth inside the welded portion W) in the received waveform of the reflected wave acquired by sector scanning of the ultrasonic beam B, In step S3, it is determined that there is a defect F within the scanning range. On the other hand, if there is no echo height exceeding the threshold evaluation line Sa in the received waveform of the reflected wave, the ultrasonic flaw inspection at this point is terminated. Then, the phased array probe 12 is moved along the weld line L to the next point (defect detection step).

ステップS3において、走査範囲内に欠陥F有と判定した場合には、ステップS4において、角度ステップ毎の受信波形から欠陥有無判定閾値を超える振幅のエコー高さを測定する。   If it is determined in step S3 that there is a defect F within the scanning range, the echo height having an amplitude exceeding the defect presence / absence determination threshold is measured from the received waveform for each angle step in step S4.

ここで、図7(a)〜(c)は、いずれも超音波ビームBの走査範囲内で検出した欠陥Fからの反射波の受信波形であって、図6に示す欠陥Fの上部での受信波形,欠陥Fの中央部での受信波形及び欠陥Fの下部での受信波形をそれぞれ示しており、縦軸がエコー高さ(振幅;%)、横軸が時間(μs)を示している。ステップS5において、図7(a)〜(c)に示す受信波形でそれぞれ測定されたエコー高さEu,Ep,Edが、図8に示すように、欠陥高さ判定閾値Sbを超える場合には、エコー高さEu,Ep,Edが示されている各受信波形に対応する走査範囲(図8の一点鎖線及び二点鎖線で挟まれた範囲)を求める。   Here, FIGS. 7A to 7C are all received waveforms of reflected waves from the defect F detected within the scanning range of the ultrasonic beam B, and are the upper part of the defect F shown in FIG. The received waveform, the received waveform at the center of the defect F, and the received waveform at the lower part of the defect F are shown, the vertical axis shows the echo height (amplitude;%), and the horizontal axis shows the time (μs). . In step S5, when the echo heights Eu, Ep, Ed respectively measured with the received waveforms shown in FIGS. 7A to 7C exceed the defect height determination threshold Sb as shown in FIG. Then, the scanning range corresponding to each received waveform in which the echo heights Eu, Ep, Ed are shown (the range sandwiched between the alternate long and short dashed lines in FIG. 8) is obtained.

この際、欠陥高さ判定閾値Sbは、閾値評価線作成工程で作成された閾値評価線Saに基づいて設定され、この実施形態では、図5(b)に示す閾値評価線Saのエコー高さレベルを半分にした第2の閾値評価線Sc(=Sa/2)に基づいて設定されている。
なお、この欠陥高さ判定閾値Sbは、受信波形における振幅の最大エコー高さEpの何割かの値を欠陥高さ判定閾値Sbとするドロップ法に基づいて設定してもよく、例えば、図9に示すように、最大エコー高さEpの1/2の値を欠陥高さ判定閾値Sbとする6dBドロップ法に基づいて設定してもよい。
At this time, the defect height determination threshold Sb is set based on the threshold evaluation line Sa created in the threshold evaluation line creation step, and in this embodiment, the echo height of the threshold evaluation line Sa shown in FIG. It is set based on the second threshold evaluation line Sc (= Sa / 2) with the level halved.
Note that the defect height determination threshold Sb may be set based on a drop method in which some value of the maximum echo height Ep of the amplitude in the received waveform is the defect height determination threshold Sb. For example, FIG. As shown in FIG. 5, the value may be set based on a 6 dB drop method in which a value that is 1/2 of the maximum echo height Ep is used as the defect height determination threshold value Sb.

そして、ステップS6において、図10(a)における図6の方向Xからの走査画像に示すように、超音波ビームB(BL)のエコー高さEdに対応する走査角度θ2及び欠陥Fからの反射波により得られる欠陥Fの下部までの距離vt2により欠陥Fの下部の深さ方向位置(vt2・cosθ2)が算出される。
また、超音波ビームB(BL)のエコー高さEuに対応する走査角度θ1及び欠陥Fからの反射波により得られる欠陥Fの上部までの距離vt1により欠陥Fの上部の深さ方向位置(vt1・cosθ1)が算出される。
そして、欠陥Fの下部の深さ方向位置(vt2・cosθ2)から上部の深さ方向位置(vt1・cosθ1)を減ずることで欠陥高さFhが表示される。
In step S6, the scanning angle θ 2 corresponding to the echo height Ed of the ultrasonic beam B (BL) and the defect F are detected as shown in the scanning image from the direction X in FIG. The depth direction position (vt 2 · cos θ 2 ) of the lower portion of the defect F is calculated from the distance vt 2 to the lower portion of the defect F obtained by the reflected wave.
Further, the position in the depth direction of the upper part of the defect F is determined by the scanning angle θ 1 corresponding to the echo height Eu of the ultrasonic beam B (BL) and the distance vt 1 to the upper part of the defect F obtained by the reflected wave from the defect F. (Vt 1 · cos θ 1 ) is calculated.
The defect height Fh is displayed by subtracting the upper depth direction position (vt 1 · cos θ 1 ) from the lower depth position (vt 2 · cos θ 2 ) of the defect F.

上記超音波ビームBの3次元的なセクタ走査を溶接線Lに沿って一定の間隔でステップを刻んで実施すると、欠陥Fの全容を把握し得ることとなり、図10(b)における図6の方向Yからの走査画像では、溶接線Lと交差する各断面で実施した3次元的なセクタ走査の結果を積算することで得られる精度の高い欠陥長さFlが表示される(欠陥性状検出工程)。   When the three-dimensional sector scanning of the ultrasonic beam B is carried out at regular intervals along the welding line L, the entire defect F can be grasped, and FIG. 6B in FIG. In the scanned image from the direction Y, a highly accurate defect length Fl obtained by integrating the results of three-dimensional sector scanning performed on each cross section intersecting with the weld line L is displayed (defect property detection step). ).

このように、本実施形態に係る超音波探傷検査方法及び超音波探傷検査装置1では、溶接部Wの内部において超音波ビームBの集束点Pを深さ(厚さ)方向に移動させるのに先立って、フェーズドアレイ探触子12の形状や集束点Pの深さ方向の深浅によって集束性が変化することを把握するべく、欠陥有無判定用の閾値評価線Saを作成するようにしているので、溶接部Wの内部の深さに応じた欠陥有無判定閾値を設定し得ることとなり、その結果、欠陥Fの有無の判定が精度よく成されることとなる。   As described above, in the ultrasonic flaw detection inspection method and the ultrasonic flaw detection inspection apparatus 1 according to the present embodiment, the focal point P of the ultrasonic beam B is moved in the depth (thickness) direction inside the welded portion W. In advance, the threshold evaluation line Sa for determining the presence / absence of a defect is prepared in order to grasp that the focusing property changes depending on the shape of the phased array probe 12 and the depth of the focusing point P in the depth direction. Then, the defect presence / absence determination threshold value can be set according to the depth inside the welded portion W, and as a result, the presence / absence of the defect F can be accurately determined.

また、溶接部Wに欠陥Fが内在する場合において、超音波ビームBを走査させて得られた欠陥Fに係る受信波形のエコー高さに対して、溶接部Wの深さ情報である上記閾値評価線Saに基づいて設定される欠陥高さ判定閾値Sbを用いることで欠陥の性状を検出するようにしている。   In addition, when the defect F is inherent in the welded portion W, the threshold value that is the depth information of the welded portion W with respect to the echo height of the received waveform related to the defect F obtained by scanning the ultrasonic beam B The property of the defect is detected by using the defect height determination threshold value Sb set based on the evaluation line Sa.

つまり、欠陥Fからの反射波の分解能が低下する低い周波数の超音波を用いた探傷検査を行い得ることとなり、その結果、本実施形態のように、溶接部2が高減衰材であるNi基合金から成っていたとしても、欠陥Fの有無の判定のみならず欠陥高さFhを含む性状の測定が精度よく成されることとなる。   That is, a flaw detection inspection using an ultrasonic wave with a low frequency that reduces the resolution of the reflected wave from the defect F can be performed. As a result, as in this embodiment, the weld 2 is a Ni-based material that is a high attenuation material. Even if it is made of an alloy, not only the determination of the presence or absence of the defect F but also the measurement of properties including the defect height Fh can be performed with high accuracy.

また、本実施形態に係る超音波探傷検査方法では、フェーズドアレイ探触子12の互に隣接する振動子12aの励振タイミングをずらして、集束点Pを想定した深さ(厚さ)方向に移動させるべく超音波ビームBを所定の角度ステップでセクタ走査させるようにしているので、すなわち、超音波のエネルギーが集中する集束点Pを想定した方向に走査するようにしているので、欠陥Fの検出性が向上すると共に、欠陥高さFhを含む性状の測定がより高精度で成されることとなる。   In the ultrasonic flaw detection method according to this embodiment, the excitation timing of the transducers 12a adjacent to each other of the phased array probe 12 is shifted and moved in the depth (thickness) direction assuming the focal point P. Since the ultrasonic beam B is sector-scanned at a predetermined angle step in order to perform the detection, that is, the focal point P where the ultrasonic energy is concentrated is scanned in the assumed direction. As a result, the properties including the defect height Fh can be measured with higher accuracy.

さらに、本実施形態に係る超音波探傷検査方法において、フェーズドアレイ探触子12を溶接線Lに沿って一定の間隔でステップを刻んで移動させる毎に、溶接線Lと直交する面内において超音波ビームBの走査を3次元的に実施するようにしているので、欠陥Fの性状の測定がより一層精度よく成されることとなる。   Furthermore, in the ultrasonic inspection method according to the present embodiment, every time the phased array probe 12 is moved along the weld line L at a predetermined interval, the ultrasonic inspection is performed in a plane perpendicular to the weld line L. Since the scanning of the sound beam B is performed three-dimensionally, the property of the defect F can be measured with higher accuracy.

さらにまた、本実施形態に係る超音波探傷検査方法において、欠陥高さ判定閾値Sbを例えば、6dBドロップ法に基づいて設定するように成すと、欠陥Fの性状の測定が短時間で成されることとなる。   Furthermore, in the ultrasonic inspection method according to the present embodiment, when the defect height determination threshold value Sb is set based on, for example, the 6 dB drop method, the property of the defect F can be measured in a short time. It will be.

上記実施形態では、図4に示すフローチャートにおいて、ステップS3で溶接部W内に欠陥F有と判定した場合に、ステップS4で角度ステップ毎の受信波形からエコー高さをそれぞれ測定するようにしているが、ステップS3で溶接部W内に欠陥F有と判定した際に、欠陥Fが有る範囲を再度走査(ゾーンフォーカス)するようにしてもよい。   In the above embodiment, in the flowchart shown in FIG. 4, when it is determined in step S3 that there is a defect F in the welded portion W, the echo height is measured from the received waveform for each angle step in step S4. However, when it is determined in step S3 that there is a defect F in the welded portion W, the range in which the defect F is present may be scanned again (zone focus).

また、上記実施形態では、本発明に係る超音波探傷検査方法及び超音波探傷検査装置を高減衰材であるNi基合金から成る溶接部2の欠陥検出に用いた場合を示したが、例えば、ゴム等の弾性体やプラント等の大型構造物の欠陥検出に用いてもよい。   In the above embodiment, the ultrasonic flaw detection inspection method and the ultrasonic flaw detection inspection apparatus according to the present invention are used to detect defects in the welded portion 2 made of a Ni-based alloy that is a high attenuation material. You may use for the defect detection of large structures, such as elastic bodies, such as rubber | gum, and a plant.

本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1 超音波探傷検査装置
2a 探傷面
10 パルサーレシーバ(パルス送受信器)
12 フェーズドアレイ探触子
12a 振動子
16 演算部
20 試験体
20a 探傷面
B 超音波ビーム
Ed,Ep,Eu エコー高さ
F 欠陥
Fh 欠陥高さ
Fl 欠陥長さ
h1〜h16 試験孔
L 溶接線(測定線)
P 集束点
Sa 欠陥有無判定用の閾値評価線(第1の閾値評価線)
Sb 欠陥高さ判定閾値
Sc 閾値評価線Saのエコー高さレベルを半分にした第2の閾値評価線
W 溶接部(被検体)
DESCRIPTION OF SYMBOLS 1 Ultrasonic flaw detector 2a Flaw detection surface 10 Pulsar receiver (pulse transmitter / receiver)
12 Phased Array Probe 12a Transducer 16 Calculation Unit 20 Specimen 20a Test Surface B Ultrasonic Beam Ed, Ep, Eu Echo Height F Defect Fh Defect Height Fl Defect Length h1 to h16 Test Hole L Weld Line (Measurement line)
P Focus point Sa Threshold evaluation line for determining the presence or absence of defects (first threshold evaluation line)
Sb Defect height determination threshold Sc Second threshold evaluation line W in which the echo height level of the threshold evaluation line Sa is halved Welded portion (subject)

Claims (6)

複数の振動子を有するフェーズドアレイ探触子を用いて被検体の内部における欠陥の性状を検出する超音波探傷検査方法であって、
前記被検体と同じ材料から成る試験体を準備し、前記フェーズドアレイ探触子における前記複数の振動子の各励振タイミングをずらすことで前記試験体の内部に超音波ビームを走査させ、該走査で得られる前記試験体の内部に深さ方向に並ぶ複数の試験孔に係る各受信波形のエコー高さを測定して欠陥有無判定用の閾値評価線を作成する閾値評価線作成工程と、
前記フェーズドアレイ探触子における前記複数の振動子の各励振タイミングをずらすことで前記被検体の内部に超音波ビームを走査させ、該走査で得られる受信波形のエコー高さに対して前記閾値評価線作成工程で作成された前記閾値評価線に基づく第1の閾値評価線により設定される欠陥有無判定閾値を用いて欠陥を検出する欠陥検出工程と、
前記欠陥検出工程で検出された前記欠陥の前記受信波形のエコー高さに対して欠陥高さ判定閾値を用いて前記欠陥の性状を検出する欠陥性状検出工程と、
を含む超音波探傷検査方法。
An ultrasonic flaw detection method for detecting the nature of a defect inside a subject using a phased array probe having a plurality of transducers,
A test body made of the same material as the subject is prepared, and an ultrasonic beam is scanned inside the test body by shifting each excitation timing of the plurality of transducers in the phased array probe. A threshold evaluation line creating step for creating a threshold evaluation line for determining the presence / absence of a defect by measuring the echo height of each received waveform related to a plurality of test holes arranged in the depth direction inside the obtained test body,
By shifting the excitation timing of the plurality of transducers in the phased array probe, an ultrasonic beam is scanned inside the subject, and the threshold evaluation is performed on the echo height of the received waveform obtained by the scanning. A defect detection step of detecting a defect using a defect presence / absence determination threshold set by a first threshold evaluation line based on the threshold evaluation line created in the line creation step;
A defect property detection step of detecting the property of the defect using a defect height determination threshold with respect to an echo height of the received waveform of the defect detected in the defect detection step;
Ultrasonic flaw detection method including:
前記欠陥検出工程及び前記欠陥性状検出工程では、前記被検体に設定した測定線と交差する面内で前記超音波ビームの伝搬方向を想定する方向に変える走査角度制御及び前記超音波ビームの集束点を想定する点に変える集束点制御により該超音波ビームを走査させ、前記超音波ビームの走査角度毎に、前記被検体内からの反射波を前記複数の振動子で受信して合成することで前記受信波形を取得して表示し、該走査で得られる受信波形からエコー高さを求め、
前記欠陥性状検出工程は、前記欠陥検出工程で取得した前記超音波ビームの走査角度毎の前記受信波形のうちの前記欠陥高さ判定閾値を超えるエコー高さが表示された前記反射波の受信波形に対応する前記超音波ビームの走査角度及び前記欠陥からの反射波により得られる該欠陥までの距離に基づいて、前記欠陥の高さを検出する工程である請求項1に記載の超音波探傷検査方法。
In the defect detection step and the defect property detection step, scanning angle control for changing the propagation direction of the ultrasonic beam to a direction that assumes a direction intersecting a measurement line set on the subject and a focal point of the ultrasonic beam The ultrasonic beam is scanned by focusing point control to change the point to an assumed point, and the reflected waves from within the subject are received and synthesized by the plurality of transducers for each scanning angle of the ultrasonic beam. Obtain and display the received waveform, obtain the echo height from the received waveform obtained by the scan,
In the defect property detection step, the received waveform of the reflected wave in which an echo height exceeding the defect height determination threshold is displayed among the received waveforms for each scanning angle of the ultrasonic beam acquired in the defect detection step. 2. The ultrasonic inspection according to claim 1, wherein the defect detection step is a step of detecting a height of the defect based on a scanning angle of the ultrasonic beam corresponding to the distance and a distance to the defect obtained by a reflected wave from the defect. Method.
前記欠陥高さ判定閾値は、前記閾値評価線作成工程で作成された前記閾値評価線に基づいて設定される請求項1又は2に記載の超音波探傷検査方法。   The ultrasonic flaw detection inspection method according to claim 1, wherein the defect height determination threshold is set based on the threshold evaluation line created in the threshold evaluation line creation step. 前記欠陥高さ判定閾値は、ドロップ法に基づいて設定される請求項1又は2に記載の超音波探傷検査方法。   The ultrasonic flaw detection inspection method according to claim 1, wherein the defect height determination threshold is set based on a drop method. 前記欠陥検出工程において、前記フェーズドアレイ探触子を前記測定線に沿ってステップを踏んで移動させる毎に、前記測定線と交差する面内における前記超音波ビームの走査を3次元的に行う請求項2〜4のいずれか一つの項に記載の超音波探傷検査方法。   In the defect detection step, each time the phased array probe is moved stepwise along the measurement line, the ultrasonic beam is scanned three-dimensionally in a plane intersecting the measurement line. Item 5. The ultrasonic flaw detection inspection method according to any one of Items 2 to 4. 超音波を用いて被検体の内部における欠陥の性状を検出する超音波探傷検査装置であって、
複数の振動子を具備して前記被検体の探傷面上にセットされ、該複数の振動子から超音波をそれぞれ発振すると共に、前記被検体内からの反射波を前記複数の振動子で受信するフェーズドアレイ探触子と、
前記複数の振動子に各々の励振タイミングを互いにずらして超音波を発振させて超音波ビームを走査させると共に、前記複数の振動子が受信する前記被検体内からの反射波を合成して受信波形を取得するパルス送受信器と、
前記被検体と同じ材料から成る試験体に対する前記フェーズドアレイ探触子による超音波ビームの走査で検出された前記試験体の内部に深さ方向に並ぶ複数の試験孔に係る各受信波形のエコー高さに基づいて欠陥有無判定閾値を予め設定して記憶し、前記超音波ビームの走査で得られる受信波形のエコー高さに対して前記欠陥有無判定閾値を用いて欠陥を検出すると共に、前記フェーズドアレイ探触子で取得した前記欠陥に係る前記受信波形のエコー高さに対して欠陥高さ判定閾値を用いて前記欠陥の性状を検出する演算部を備えている超音波探傷検査装置。
An ultrasonic flaw detection apparatus that detects the nature of defects inside a subject using ultrasonic waves,
Provided with a plurality of transducers and set on the flaw detection surface of the subject, oscillate ultrasonic waves from the plurality of transducers, and receive reflected waves from within the subject by the plurality of transducers A phased array probe,
The plurality of vibrators oscillate ultrasonic waves with their respective excitation timings shifted from each other, scan the ultrasonic beam, and synthesize a reflected wave from within the subject received by the plurality of vibrators to receive a waveform. A pulse transceiver to obtain,
Echo height of each received waveform related to a plurality of test holes arranged in the depth direction inside the test body detected by scanning an ultrasonic beam by the phased array probe with respect to the test body made of the same material as the subject A defect presence / absence determination threshold value is set and stored in advance, and a defect is detected using the defect presence / absence determination threshold value with respect to an echo height of a received waveform obtained by scanning the ultrasonic beam, and the phased An ultrasonic flaw detection inspection apparatus comprising: a calculation unit that detects a property of the defect using a defect height determination threshold with respect to an echo height of the received waveform related to the defect acquired by the array probe.
JP2014221434A 2014-10-30 2014-10-30 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Pending JP2016090272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014221434A JP2016090272A (en) 2014-10-30 2014-10-30 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014221434A JP2016090272A (en) 2014-10-30 2014-10-30 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Publications (1)

Publication Number Publication Date
JP2016090272A true JP2016090272A (en) 2016-05-23

Family

ID=56018249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221434A Pending JP2016090272A (en) 2014-10-30 2014-10-30 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP2016090272A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059800A (en) * 2016-10-05 2018-04-12 株式会社Ihi Flexible probe sensitivity calibration method, and ultrasonic wave flaw detection-purpose reference test piece as well as ultrasonic wave flaw detection method
JP2019078558A (en) * 2017-10-20 2019-05-23 株式会社Ihi Reference test piece and supersonic phased array flaw testing method
CN112700438A (en) * 2021-01-14 2021-04-23 成都铁安科技有限责任公司 Ultrasonic damage judging method and system for inlaid part of train axle
JP2021139642A (en) * 2020-03-02 2021-09-16 株式会社日立製作所 Ultrasonic inspection device for welded portion
CN114280164A (en) * 2021-11-15 2022-04-05 南京迪威尔高端制造股份有限公司 Overlaying layer ultrasonic detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274557A (en) * 2004-02-23 2005-10-06 Hitachi Ltd Ultrasonic flaw detecting method and device
JP2007315820A (en) * 2006-05-23 2007-12-06 Central Res Inst Of Electric Power Ind Ultrasonic flaw inspection device and ultrasonic flaw inspection program
US20100242613A1 (en) * 2009-03-25 2010-09-30 Simard Christian Method and system for transducer element fault detection for phased array ultrasonic instruments
JP2010266416A (en) * 2009-05-18 2010-11-25 Central Res Inst Of Electric Power Ind Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JP2012242306A (en) * 2011-05-23 2012-12-10 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic test equipment
JP2013088240A (en) * 2011-10-17 2013-05-13 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
WO2013114545A1 (en) * 2012-01-30 2013-08-08 株式会社日立エンジニアリング・アンド・サービス Method for ultrasonic flaw detection and ultrasonic flaw-detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274557A (en) * 2004-02-23 2005-10-06 Hitachi Ltd Ultrasonic flaw detecting method and device
JP2007315820A (en) * 2006-05-23 2007-12-06 Central Res Inst Of Electric Power Ind Ultrasonic flaw inspection device and ultrasonic flaw inspection program
US20100242613A1 (en) * 2009-03-25 2010-09-30 Simard Christian Method and system for transducer element fault detection for phased array ultrasonic instruments
JP2010266416A (en) * 2009-05-18 2010-11-25 Central Res Inst Of Electric Power Ind Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JP2012242306A (en) * 2011-05-23 2012-12-10 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic test equipment
JP2013088240A (en) * 2011-10-17 2013-05-13 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
WO2013114545A1 (en) * 2012-01-30 2013-08-08 株式会社日立エンジニアリング・アンド・サービス Method for ultrasonic flaw detection and ultrasonic flaw-detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059800A (en) * 2016-10-05 2018-04-12 株式会社Ihi Flexible probe sensitivity calibration method, and ultrasonic wave flaw detection-purpose reference test piece as well as ultrasonic wave flaw detection method
JP2019078558A (en) * 2017-10-20 2019-05-23 株式会社Ihi Reference test piece and supersonic phased array flaw testing method
JP2021139642A (en) * 2020-03-02 2021-09-16 株式会社日立製作所 Ultrasonic inspection device for welded portion
CN112700438A (en) * 2021-01-14 2021-04-23 成都铁安科技有限责任公司 Ultrasonic damage judging method and system for inlaid part of train axle
CN114280164A (en) * 2021-11-15 2022-04-05 南京迪威尔高端制造股份有限公司 Overlaying layer ultrasonic detection method
CN114280164B (en) * 2021-11-15 2024-04-09 南京迪威尔高端制造股份有限公司 Ultrasonic detection method for build-up welding layer

Similar Documents

Publication Publication Date Title
KR101134431B1 (en) Ultrasonic scanning device and method
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
CN105021142B (en) The measuring method and equipment therefor of a kind of laser lap weld width
JP2016090272A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
WO2009104811A9 (en) Ultrasonic measurement device and ultrasonic measurement method
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
KR101698746B1 (en) Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JP2013019715A (en) Ultrasonic inspection method and ultrasonic inspection device
JP2008232627A (en) Ultrasonic flaw inspection device and method
JP2014077708A (en) Inspection device and inspection method
JP6479478B2 (en) Ultrasonic flaw detection method
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5854141B2 (en) Ultrasonic measurement method and ultrasonic measurement apparatus
JP2011122827A (en) Array probe measuring method and array probe measuring instrument
JP6061077B2 (en) Ultrasonic flaw detection method and apparatus
JP5575157B2 (en) Ultrasonic flaw detector, method and program
JP3732491B2 (en) Ultrasonic flaw detection method and apparatus using longitudinal wave and transverse wave diffracted wave
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
RU2395802C1 (en) Method of ultrasound control over butt-welded seams
JP2019113320A (en) Flaw detection range determination method of ultrasonic flaw detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190724