JP5574731B2 - Ultrasonic flaw detection test method - Google Patents

Ultrasonic flaw detection test method Download PDF

Info

Publication number
JP5574731B2
JP5574731B2 JP2010024393A JP2010024393A JP5574731B2 JP 5574731 B2 JP5574731 B2 JP 5574731B2 JP 2010024393 A JP2010024393 A JP 2010024393A JP 2010024393 A JP2010024393 A JP 2010024393A JP 5574731 B2 JP5574731 B2 JP 5574731B2
Authority
JP
Japan
Prior art keywords
probe
flaw detection
ultrasonic
boundary portion
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010024393A
Other languages
Japanese (ja)
Other versions
JP2011163814A (en
Inventor
正義 中井
精一 川浪
是 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010024393A priority Critical patent/JP5574731B2/en
Publication of JP2011163814A publication Critical patent/JP2011163814A/en
Application granted granted Critical
Publication of JP5574731B2 publication Critical patent/JP5574731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波を利用して非破壊検査を行う超音波探傷試験法に関し、特に溶接箇所の熱影響部の欠陥を探傷するための超音波探傷試験方法に関する。   The present invention relates to an ultrasonic flaw detection test method that performs nondestructive inspection using ultrasonic waves, and more particularly to an ultrasonic flaw detection test method for flaw detection of a heat-affected zone at a welded portion.

火力プラント等の配管溶接部検査においては、非破壊検査として超音波探傷試験が実施され、当該試験により溶接箇所の境界部周囲に形成される熱影響部における欠陥を検出している。このような超音波探傷試験法としては、例えば回折波を利用したTOFD(Time of Fright Diffraction)法が知られている。具体的には、溶接箇所の幅方向一方側に送信用の探触子を配置するとともに、幅方向他方側に受信用の探触子を配置する。そして、送信用の探触子から被検体内部へ溶接箇所に向けて超音波を送信し、当該超音波が欠陥で回折されたものを受信用の探触子で受信することで、欠陥を検出している(例えば、特許文献1参照)。   In the inspection of pipe welds in thermal power plants and the like, an ultrasonic flaw detection test is performed as a nondestructive inspection, and defects in the heat affected zone formed around the boundary portion of the welded part are detected by the test. As such an ultrasonic flaw detection test method, for example, a TOFD (Time of Flight Diffraction) method using a diffracted wave is known. Specifically, a transmitting probe is arranged on one side in the width direction of the welded portion, and a receiving probe is arranged on the other side in the width direction. Then, an ultrasonic wave is transmitted from the transmitting probe to the inside of the subject toward the weld, and the ultrasonic wave diffracted by the defect is received by the receiving probe to detect the defect. (For example, refer to Patent Document 1).

また、他の方法としては、反射波を利用したタンデム法が知られている。具体的には、溶接箇所の幅方向片側に送信用の探触子及び受信用の探触子を配置する。そして、送信用の探触子から所定の角度で被検体の内部へ探傷面と対向する面に向けて超音波を送信し、当該面及び溶接箇所の境界部で反射したものを受信用の探触子で受信することで、欠陥を検出している(例えば、特許文献2参照)。   As another method, a tandem method using a reflected wave is known. Specifically, a transmitting probe and a receiving probe are arranged on one side in the width direction of the welded portion. Then, an ultrasonic wave is transmitted from the transmitting probe to the inside of the subject at a predetermined angle toward the surface facing the flaw detection surface, and the reflection reflected at the boundary between the surface and the welded portion is detected. The defect is detected by receiving with a toucher (for example, refer to Patent Document 2).

特許第4148959号公報Japanese Patent No. 4148959 特許第3739368号公報Japanese Patent No. 3739368

しかしながら、特許文献1のようなTOFD法では、送信用の探触子と受信用の探触子との間で、溶接箇所内部にブローホール等の欠陥が存在すると、当該溶接箇所内部の欠陥で回折したものも受信用の探触子で受信してしまうこととなり、熱影響部の欠陥だけを正確に識別することができなかった。また、TOFD法では、探傷面近傍の欠陥を検出することができないため、溶接箇所の厚さ方向全域を検査するためには、探傷面近傍について斜角探傷法など別の手法を組み合わせる必要があり、片側の熱影響部だけでも2回以上試験を実施する必要があった。さらに、溶接箇所の幅方向両側に探触子を配置する必要があるため、溶接箇所幅方向片側で平坦な探傷面が形成されていない場合には適用できないという問題があった。
一方、特許文献2のようなタンデム法では、溶接箇所幅方向片側で平坦な探傷面が形成されてさえいれば、超音波探傷試験を実施することができ、また、溶接箇所内部におけるブローホール等の欠陥を検出してしまうこともない。しかしながら、送信用の探触子から所定の角度で超音波を送信したとしても、溶接箇所の境界部におけるベベル角の大きさによって、探傷面と対向する面及び境界部で反射されて探傷面に戻ってくる時の位置が異なってしまう。このため、タンデム法では、送信用の探触子と受信用の探触子との相対位置を、境界部のベベル角に応じて設定し、また、検査中は互いの位置関係を正確に保っておく必要があった。
However, in the TOFD method as in Patent Document 1, if there is a defect such as a blow hole in the welded portion between the transmitting probe and the receiving probe, the defect in the welded portion Even the diffracted light is received by the receiving probe, and only the defect of the heat-affected zone cannot be accurately identified. Moreover, since the TOFD method cannot detect defects near the flaw detection surface, it is necessary to combine another method such as the oblique flaw detection method near the flaw detection surface in order to inspect the entire thickness direction of the welded portion. It was necessary to carry out the test twice or more only on the heat-affected zone on one side. Furthermore, since it is necessary to arrange probes on both sides in the width direction of the welded part, there is a problem that it cannot be applied when a flat flaw detection surface is not formed on one side in the welded part width direction.
On the other hand, in the tandem method as in Patent Document 2, an ultrasonic flaw detection test can be performed as long as a flat flaw detection surface is formed on one side in the width direction of the weld location. It will not detect any defects. However, even if ultrasonic waves are transmitted from the transmitting probe at a predetermined angle, depending on the size of the bevel angle at the boundary of the welded portion, the reflected light is reflected on the surface opposite to the flaw detection surface and on the flaw detection surface. The position when returning will be different. Therefore, in the tandem method, the relative position between the transmitting probe and the receiving probe is set according to the bevel angle of the boundary, and the mutual positional relationship is accurately maintained during the inspection. It was necessary to keep.

この発明は、上述した事情に鑑みてなされたものであって、最小限の装置構成で容易かつ正確に溶接箇所における境界部周囲に形成される熱影響部の欠陥を検出可能な超音波探傷試験方法を提供するものである。   The present invention has been made in view of the above-described circumstances, and is an ultrasonic flaw detection test capable of detecting defects in a heat affected zone formed around a boundary portion in a welding location easily and accurately with a minimum apparatus configuration. A method is provided.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明は、所定のベベル角をもって溶接された被検体における溶接箇所の境界部周囲に形成された熱影響部の欠陥を検出するための超音波探傷試験方法であって、複数の振動子で構成された探触子を前記被検体の探傷面における溶接箇所の片側に配置し、前記探触子から送信させて前記探傷面から前記被検体内部へと入射させる超音波の屈折角を、前記溶接箇所の前記境界部のベベル角の大きさに応じて、当該探触子の複数の前記振動子の少なくとも一部で受信するように調整する方法であり、前記探傷面から前記被検体内部へと、超音波を横波のモードの屈折波で入射させ、前記探傷面と対向する面で反射させて縦波のモードに変換させて、該縦波のモードで前記溶接箇所の前記片側の前記境界部で略垂直に反射させるように、前記屈折角を設定し、前記探触子で超音波を送受信させる第一の超音波送受信工程と、前記探傷面から前記被検体内部へと、超音波を入射させ、前記溶接箇所の前記片側と反対側の境界部で略垂直に反射させるように前記屈折角を設定し、前記探触子で超音波を送受信させる反対側の境界部を検査する工程とを備えることを特徴としている。
In order to solve the above problems, the present invention proposes the following means.
The present invention is an ultrasonic flaw detection test method for detecting defects in a heat-affected zone formed around a boundary portion of a welded part in a specimen welded with a predetermined bevel angle, and includes a plurality of vibrators said been probes arranged on one side of definitive welding point to inspection surface of the object, the refraction angle of the ultrasonic wave the is incident into the subject from the inspection surface while transmitted from the probe, the In accordance with the size of the bevel angle at the boundary of the welded portion, the probe is adjusted so that it is received by at least a part of the plurality of transducers from the flaw detection surface to the inside of the subject. And the ultrasonic wave is incident as a refracted wave in a transverse wave mode, is reflected by a surface facing the flaw detection surface, is converted into a longitudinal wave mode, and the boundary on the one side of the welding location is the longitudinal wave mode. The refraction angle so that the light is reflected substantially vertically A first ultrasonic transmission / reception step of setting and transmitting / receiving ultrasonic waves with the probe; and entering the ultrasonic wave from the flaw detection surface into the subject, and a boundary on the opposite side to the one side of the welding location And the step of setting the refraction angle so as to be reflected substantially vertically by the portion, and inspecting the boundary portion on the opposite side where ultrasonic waves are transmitted and received by the probe .

この方法によれば、探触子から送信させて前記探傷面から前記被検体内部へと入射させる超音波の屈折角を、前記溶接箇所の前記境界部のベベル角の大きさに応じて、当該探触子の複数の前記振動子の少なくとも一部で受信するように調整していることで、被検体の溶接箇所の幅方向片側からのみで、熱影響部における欠陥を検出することができる。また、境界部のベベル角に応じて、探触子から送信させて探傷面から被検体内部へと入射させる超音波の屈折角を調整して、複数の振動子を有する一つの探触子で送受信可能としていることで、複数の探触子を用いて互いの位置関係を調整する必要なく、容易かつ正確に、熱影響部における欠陥を検出する試験を実施することができる。   According to this method, the refraction angle of the ultrasonic wave transmitted from the probe and made incident on the inside of the subject from the flaw detection surface is determined according to the size of the bevel angle of the boundary portion of the welding location. By adjusting so as to be received by at least a part of the plurality of transducers of the probe, it is possible to detect a defect in the heat affected zone only from one side in the width direction of the welded portion of the subject. In addition, according to the bevel angle of the boundary, the refraction angle of the ultrasonic wave transmitted from the probe and incident from the flaw detection surface to the inside of the subject is adjusted, and one probe having a plurality of transducers is used. By enabling transmission / reception, it is possible to easily and accurately perform a test for detecting defects in the heat-affected zone without having to adjust the positional relationship between the probes using a plurality of probes.

さらに、第一の超音波送受信工程では、境界部で略垂直に反射させるように、屈折角を設定することで、探触子から送信された超音波は、境界部で反射した後に再びほぼ同じ経路をもって当該探触子に受信されることとなり、最小限の大きさの探触子で送受信を実施することができる。 Furthermore , in the first ultrasonic transmission / reception process, the refraction angle is set so that the reflection is performed substantially perpendicularly at the boundary, so that the ultrasonic wave transmitted from the probe is almost the same again after being reflected at the boundary. It is received by the probe along a route, and transmission / reception can be performed with a probe having a minimum size.

さらに、探触子から送信される超音波を小さな屈折角で横波のモードで探傷面から入射させることで、入射した屈折波は、探傷面と対向する面で、大きな反射角をもって縦波のモードで反射することとなる。このため、ベベル角の大きな境界部においても、探触子を溶接箇所から幅方向に離間させることなく超音波を垂直に反射させて、当該探触子で受信させることができる。 Furthermore , by making the ultrasonic wave transmitted from the probe incident from the flaw detection surface in a transverse wave mode with a small refraction angle, the incident refracted wave is a longitudinal wave mode with a large reflection angle on the surface facing the flaw detection surface. Will be reflected. For this reason, ultrasonic waves can be reflected vertically and received by the probe without separating the probe in the width direction from the welding location even at a boundary portion having a large bevel angle.

また、上記の超音波探傷試験方法において、前記探傷面から前記被検体内部へと入射する屈折波と同一のモードで前記探傷面と対向する面及び前記片側の前記境界部で反射させた反射波を受信するように、前記探触子で送受信させる第二の超音波送受信工程を備え、前記境界部のベベル角が前記被検体の厚さ方向に変化する場合に、前記ベベル角が相対的に大きい前記厚さ方向の範囲に対しては前記第一の超音波送受信工程を実施し、前記ベベル角が相対的に小さい前記厚さ方向の範囲に対しては前記第二の超音波送受信工程を実施することを特徴としている。
In the ultrasonic flaw detection test method described above, the reflected wave reflected by the surface facing the flaw detection surface and the boundary portion on one side in the same mode as the refracted wave incident from the flaw detection surface into the subject. A second ultrasonic transmission / reception step for transmitting / receiving with the probe, and when the bevel angle of the boundary changes in the thickness direction of the subject, the bevel angle is relatively The first ultrasonic transmission / reception step is performed for a large range in the thickness direction, and the second ultrasonic transmission / reception step is performed for the range in the thickness direction where the bevel angle is relatively small. It is characterized by implementation.

この方法によれば、ベベル角の大小により第一の超音波送受信工程と第二の超音波送受信工程を組み合わせることで、同一の探触子で、溶接箇所の幅方向に位置を変えることなく、被検体の厚さ方向全体にわたって熱影響部の欠陥の有無を検出することができる。   According to this method, by combining the first ultrasonic transmission / reception process and the second ultrasonic transmission / reception process by the size of the bevel angle, without changing the position in the width direction of the welding location with the same probe, The presence or absence of defects in the heat affected zone can be detected over the entire thickness direction of the subject.

本発明の超音波探傷試験方法によれば、容易かつ正確に溶接箇所における境界部周囲に形成される熱影響部の欠陥を検出することができる。   According to the ultrasonic flaw detection test method of the present invention, it is possible to easily and accurately detect defects in the heat affected zone formed around the boundary portion in the welded portion.

本発明の実施形態の超音波探傷試験で使用される超音波探傷システムの一例を示す概要図である。It is a schematic diagram showing an example of an ultrasonic inspection system used in an ultrasonic inspection test of an embodiment of the present invention. 本発明の実施形態の超音波探傷試験方法で送信される超音波の挙動を説明するための断面図である。It is sectional drawing for demonstrating the behavior of the ultrasonic wave transmitted with the ultrasonic flaw detection test method of embodiment of this invention. 本発明の実施形態の超音波探傷試験方法において、タンデムスキャン実施工程を説明する断面図である。It is sectional drawing explaining the tandem scanning implementation process in the ultrasonic testing method of embodiment of this invention. 本発明の実施形態の超音波探傷試験方法において、リニアスキャン実施工程を説明する断面図である。It is sectional drawing explaining the linear scan implementation process in the ultrasonic flaw detection test method of embodiment of this invention. 実施例の超音波探傷試験方法において、タンデムスキャン実施工程を説明する断面図である。It is sectional drawing explaining the tandem scan implementation process in the ultrasonic flaw detection test method of an Example. 実施例の超音波探傷試験方法において、リニアスキャン実施工程を説明する断面図である。It is sectional drawing explaining the linear scan implementation process in the ultrasonic flaw detection test method of an Example. 実施例の超音波探傷試験方法において、同一モードで裏面反射させて境界部に垂直反射させる場合を説明する断面図である。It is sectional drawing explaining the case where the back surface reflection is carried out in the same mode, and it is made to reflect perpendicularly to a boundary part in the ultrasonic testing method of an Example. 本発明の実施形態の超音波探傷試験方法において、境界部全体が大きなベベル角を有する場合を説明する断面図である。It is sectional drawing explaining the case where the whole boundary part has a big bevel angle | corner in the ultrasonic testing method of embodiment of this invention. 本発明の実施形態の超音波探傷試験方法において、境界部全体が小さなベベル角を有する場合を説明する断面図である。It is sectional drawing explaining the case where the whole boundary part has a small bevel angle | corner in the ultrasonic testing method of embodiment of this invention. 本発明の実施形態の超音波探傷試験方法において、探触子が配置された側と反対側の境界部を試験する場合を説明する断面図である。It is sectional drawing explaining the case where the boundary part on the opposite side to the side by which the probe is arrange | positioned is tested in the ultrasonic testing method of embodiment of this invention.

本発明の実施形態を図1から図10に基づいて説明する。
図1は、本実施形態の超音波探傷試験に利用する超音波探傷システムの一例を示している。図1及び図2に示すように、超音波探傷システム100は、二つの探触子110(110A、110B)と、二つの探触子110から送信される超音波の制御、及び受信される超音波の解析を行う信号処理装置120とを備える。信号処理装置120は、情報を入力するためのボタンやノブ等の入力手段121と、情報を出力するためのディスプレイ等の出力手段122とを有する。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows an example of an ultrasonic flaw detection system used for the ultrasonic flaw detection test of the present embodiment. As shown in FIGS. 1 and 2, the ultrasonic flaw detection system 100 includes two probes 110 (110A and 110B), control of ultrasonic waves transmitted from the two probes 110, and received ultrasonic waves. And a signal processing device 120 for analyzing sound waves. The signal processing device 120 includes input means 121 such as buttons and knobs for inputting information, and output means 122 such as a display for outputting information.

また、探触子110は、複数の振動子113が配列した送受信面111aを具備して超音波を送受信可能なフェーズドアレイを構成する探触子本体111と、探触子本体111を傾斜して探傷面201上に取り付けるウェッジ112とを有する。探触子本体111を構成する複数の振動子113は、圧電素子からなり、それぞれが信号処理装置120からの電気信号に入力に基づいて、各々独立して振動して超音波を発振し、また、受信することが可能となっている。このため、探触子本体111は、信号処理装置120の制御のもと、複数の振動子113の全部または一部から、所望の角度で超音波を送信させることが可能であるとともに、複数の振動子113の全部または一部で入力される超音波を受信し、電気信号として信号処理装置120へ出力することが可能となっている。   In addition, the probe 110 includes a transmission / reception surface 111a in which a plurality of transducers 113 are arranged, and a probe main body 111 that constitutes a phased array capable of transmitting and receiving ultrasonic waves, and the probe main body 111 is inclined. And a wedge 112 mounted on the flaw detection surface 201. The plurality of transducers 113 constituting the probe body 111 are composed of piezoelectric elements, and each oscillates independently and oscillates an ultrasonic wave based on an electric signal input from the signal processing device 120. It is possible to receive. Therefore, the probe body 111 can transmit ultrasonic waves at a desired angle from all or a part of the plurality of transducers 113 under the control of the signal processing device 120, and It is possible to receive ultrasonic waves input from all or part of the transducer 113 and output the ultrasonic signals to the signal processing device 120 as electrical signals.

ウェッジ112は、探傷面201に密着して取り付けられる接触面112aを有するとともに、探触子本体111における超音波の送受信が行われる送受信面111aが密着して取り付けられる取付面112bを具備する。このため、探触子本体111の送受信面111aから、送受信面111aに交差する方向に縦波のモードで送信される超音波は、探傷面201に対して傾斜した方向にウェッジ112の内部を伝播し、探傷面201においてウェッジ112及び被検体200の材質に応じた屈折角で屈折して、探傷面201から被検体200内部へと入射される。   The wedge 112 includes a contact surface 112a that is attached in close contact with the flaw detection surface 201, and an attachment surface 112b that is attached in close contact with the transmission / reception surface 111a that transmits and receives ultrasonic waves in the probe body 111. For this reason, the ultrasonic wave transmitted in the longitudinal wave mode from the transmission / reception surface 111a of the probe main body 111 in the direction intersecting the transmission / reception surface 111a propagates inside the wedge 112 in a direction inclined with respect to the flaw detection surface 201. Then, the light is refracted at the refraction angle corresponding to the material of the wedge 112 and the subject 200 on the flaw detection surface 201 and is incident on the inside of the subject 200 from the flaw detection surface 201.

ここで、探傷面201に垂直な軸線Lに対して、探触子本体111から探傷面201に入射する超音波S1の入射角をθ、探傷面201で屈折して被検体200内部へと伝播する屈折波Sの屈折角をθとし、また、ウェッジ112における音速をV、被検体200における音速をVとすると、以下の関係式が成立する。 Here, with respect to the axis L perpendicular to the flaw detection surface 201, the incident angle of the ultrasonic wave S1 incident on the flaw detection surface 201 from the probe main body 111 is θ 0 , and is refracted by the flaw detection surface 201 to enter the subject 200. When the refraction angle of the propagating refracted wave S 1 is θ 1 , the sound speed at the wedge 112 is V 0 , and the sound speed at the subject 200 is V 1 , the following relational expression is established.

Figure 0005574731
Figure 0005574731

ここで、探触子110の各振動子113から発振されウェッジ112内を伝播する超音波Sは、縦波のモードであり、Vには縦波のモードにおける音速が入力される。<数1<から、所望のモード(例、鋼の場合Vが縦波の場合5900m/S、横波の場合3200m/S)でフェーズドアレイの制御中心角となる屈折角θとなる入射角θを決定することができる。 Here, the ultrasonic wave S 1 that is oscillated from each transducer 113 of the probe 110 and propagates through the wedge 112 is a longitudinal wave mode, and the velocity of sound in the longitudinal wave mode is input to V 0 . From <Equation 1 <, the incident angle is the refraction angle θ 1 that is the control center angle of the phased array in the desired mode (eg, 5900 m / S for steel when V 1 is longitudinal wave, 3200 m / S for transverse wave) θ 0 can be determined.

また、屈折角θで被検体200の内部を伝播する屈折波Sは、溶接箇所の境界部や探傷面201と反対側の裏面202で反射する。なお、以下では説明を容易なものとするために、探傷面201と裏面202は平行であるものとし、裏面202での入射角が探傷面201での屈折角θと等しいものとして説明するが、裏面202が探傷面201と平行でない場合には、以下のθを裏面202に垂直な軸に対する角度に置き換えれば良い。そして、横波のモードで裏面202に入射する場合、入射角θが被検体200の材質によって決定される第2の臨界角θc2より大きい場合には、反射角θが入射角θ1と同じ大きさで同一モードとなる横波のモードだけの反射波Sで反射することとなる。また、入射角θが第2の臨界角θc2以下である場合には、横波のモードで反射するとともに、<数2>を満たす反射角θで縦波のモードの反射波Sで反射することとなる。ここで、縦波のモードでの音速V1Lは、横波のモードでの音速V1Sよりも大きいため、入射角に対して反射角が音速比V1L/V1Sに対応する比率だけ大きくなる。 Further, the refracted wave S 1 propagating through the subject 200 at the refraction angle θ 1 is reflected by the boundary portion of the welded part and the back surface 202 opposite to the flaw detection surface 201. In the following description, the flaw detection surface 201 and the back surface 202 are assumed to be parallel, and the incident angle on the back surface 202 is assumed to be equal to the refraction angle θ 1 on the flaw detection surface 201 for ease of explanation. , when the back surface 202 is not parallel to the Sagukizumen 201 may be replaced with the theta 1 below at an angle relative to an axis perpendicular to the rear surface 202. When the incident light is incident on the back surface 202 in the transverse wave mode, when the incident angle θ 1 is larger than the second critical angle θ c2 determined by the material of the subject 200, the reflection angle θ 2 is the same as the incident angle θ1. so that the reflected by the reflection wave S 2 only mode transverse wave having the same mode size. When the incident angle θ 1 is equal to or smaller than the second critical angle θ c2 , the light is reflected in the transverse wave mode, and the reflected wave S 3 in the longitudinal wave mode is reflected at the reflection angle θ 3 satisfying <Equation 2>. It will be reflected. Here, since the sound velocity V 1L in the longitudinal wave mode is larger than the sound velocity V 1S in the transverse wave mode, the reflection angle becomes larger than the incident angle by a ratio corresponding to the sound velocity ratio V 1L / V 1S .

Figure 0005574731
Figure 0005574731

縦波のモードで裏面202に入射する場合も同様であり、第2の臨界角θc2と対応する角度を臨界角として、当該臨界角未満である場合には入射角と同じ大きさの反射角で同一モードとなる縦波のモードで反射するとともに、<数2>を満たす反射角で横波のモードでも反射し、また、当該第2の臨界角θc2以上である場合には<数2>を満たす反射角で横波のモードだけで反射することになる。 The same applies to the case where the light beam is incident on the back surface 202 in the longitudinal wave mode. The angle corresponding to the second critical angle θ c2 is defined as a critical angle. And in the longitudinal wave mode, which is the same mode, and also in the transverse wave mode with a reflection angle satisfying <Equation 2>, and when it is equal to or larger than the second critical angle [theta] c2 , <Equation 2>. Reflection is performed only in the transverse wave mode at a reflection angle satisfying the above.

そして、本実施形態では、<数1>及び<数2>の関係式に基づいて、探触子本体111から送信され探傷面201から被検体200内部へと伝播する屈折波Sが溶接箇所の境界部で反射した反射波を、同じ探触子110で受信可能とするような屈折角θを求め、当該屈折角θとなるような入射角θとなるように探触子本体111の振動子113から超音波を送信させる。そして、本実施形態の超音波探傷試験方法は、検査対象となる被検体200の溶接箇所において、境界部周囲に形成される熱影響部の欠陥を検出するためのもので、境界部のベベル角に応じて屈折角θを変化させることに特徴がある。 In this embodiment, the refracted wave S 1 transmitted from the probe main body 111 and propagating from the flaw detection surface 201 to the inside of the subject 200 is welded based on the relational expressions of <Equation 1> and <Equation 2>. The refraction angle θ 1 is obtained so that the reflected wave reflected by the boundary portion of the probe can be received by the same probe 110, and the probe main body is set so that the incident angle θ 0 becomes the refraction angle θ 1. Ultrasound is transmitted from the vibrator 113. The ultrasonic flaw detection test method of the present embodiment is for detecting defects in the heat affected zone formed around the boundary at the welded portion of the subject 200 to be inspected. it is characterized by changing the refractive angle theta 1 depending on.

次に、被検体200の溶接箇所203の境界部周囲の熱影響部の欠陥を検出方法について具体的に説明する。図1に示すように、被検体200は、2つの同一材料からなる板状部材200A、200Bを突き合わせ溶接して構成されたものである。ここで、各板状部材200A、200Bは、それぞれ厚さ方向に二つの異なるベベル角φ1、φ2を有する開先形状を有しており、表面(探傷面201)に対する角度であるベベル角φ1、φ2は、表面側の第一の境界部204の方が裏面202側の第二の境界部205よりも小さな角度に設定されている。そして、このような被検体200に対して以下のように第一の境界部204及び第二の境界部205の周囲に形成された熱影響部206の欠陥の検出を実施する。   Next, a method for detecting defects in the heat affected zone around the boundary of the welded portion 203 of the subject 200 will be specifically described. As shown in FIG. 1, the subject 200 is configured by butt welding two plate-like members 200A and 200B made of the same material. Here, each of the plate-like members 200A and 200B has a groove shape having two different bevel angles φ1 and φ2 in the thickness direction, and a bevel angle φ1, which is an angle with respect to the surface (the flaw detection surface 201), φ2 is set at a smaller angle at the first boundary portion 204 on the front surface side than at the second boundary portion 205 on the rear surface 202 side. And the defect of the heat affected zone 206 formed in the circumference | surroundings of the 1st boundary part 204 and the 2nd boundary part 205 is implemented with respect to such a test object 200 as follows.

まず、図1に示すように、探触子配置工程として、2つの探触子110を溶接箇所203の幅方向両側に配置する。次に、図3に示すように、タンデムスキャン実施工程(第二の超音波送受信工程)として、第一の境界部204についてその周囲の熱影響部206の欠陥の検出を行う。なお、図3では、図1及び図2に示される探触子本体111及びウェッジ112で構成される探触子110を簡略化して表示しており、ウェッジ112における接触面112aの範囲のみを表示している。以下、図4〜図10でも同様である。すなわち、図3に示すように、それぞれの探触子110において、溶接箇所203から離間した範囲Aと対応する複数の振動子113から超音波を送信させ、被検体200内部を伝播させて裏面202で反射させた後、第一の境界部204で反射させて、再び同じ探触子110の溶接箇所203に近接した範囲Bと対応する複数の振動子113で受信させるように、探傷面201から被検体200内部を伝播する屈折波Sの屈折角を設定する。 First, as shown in FIG. 1, as a probe placement step, two probes 110 are placed on both sides of the welded portion 203 in the width direction. Next, as shown in FIG. 3, as a tandem scan execution step (second ultrasonic transmission / reception step), a defect in the heat affected zone 206 around the first boundary portion 204 is detected. In FIG. 3, the probe 110 composed of the probe main body 111 and the wedge 112 shown in FIGS. 1 and 2 is shown in a simplified manner, and only the range of the contact surface 112a in the wedge 112 is displayed. doing. The same applies to FIGS. 4 to 10 below. That is, as shown in FIG. 3, in each probe 110, ultrasonic waves are transmitted from a plurality of transducers 113 corresponding to the range A separated from the welding location 203, and propagated through the subject 200 to be transmitted to the back surface 202. From the flaw detection surface 201 so as to be reflected by the first boundary portion 204 and received by the plurality of transducers 113 corresponding to the range B close to the welding spot 203 of the same probe 110 again. setting the angle of refraction refracted waves S 1 propagating inside the object 200.

次に、リニアスキャン実施工程(第一の超音波送受信工程)として、第二の境界部205についてその周囲の熱影響部206の欠陥の検出を行う。すなわち、図4に示すように、それぞれの探触子110において、探触子110の全部または一部の振動子113から超音波を送信させ、被検体200内部に横波のモードで伝播させ、裏面202で縦波のモードで反射させて、第二の境界部205で垂直に反射させるように、屈折角を設定する。
すなわち、第二の境界部205のベベル角φから、裏面202での反射角θを求める。次に、反射角θ及び<数2>から、裏面202での入射角θ、すなわち屈折角θを求めることができる。このため、当該屈折角θとなるように範囲Cと対応する振動子113で超音波を送信させることで、同範囲Cにおいて第二の境界部205からの反射波を受信することができる。
Next, as a linear scan execution process (first ultrasonic transmission / reception process), a defect of the heat affected zone 206 around the second boundary 205 is detected. That is, as shown in FIG. 4, in each probe 110, ultrasonic waves are transmitted from all or a part of the transducers 113 of the probe 110 and propagated in a transverse wave mode inside the subject 200, and the back surface. The refraction angle is set so that the light is reflected in the longitudinal wave mode at 202 and is reflected vertically at the second boundary portion 205.
That is, the reflection angle θ 3 on the back surface 202 is obtained from the bevel angle φ 2 of the second boundary portion 205. Next, from the reflection angle θ 3 and <Equation 2>, the incident angle θ 1 on the back surface 202, that is, the refraction angle θ 1 can be obtained. For this reason, the ultrasonic wave is transmitted by the transducer 113 corresponding to the range C so that the refraction angle θ 1 is obtained, so that the reflected wave from the second boundary portion 205 can be received in the same range C.

以下、本実施形態の実施例について説明する。
図5から図7に示すように、厚さが50mmの2つの板状部材200A、200Bを、表面から深さ30mmまで第一の境界部204として、ベベル角φを5度に設定するとともに、残りの裏面202までを第二の境界部205としてベベル角φを20度に設定して、両者を溶接して構成した被検体200の熱影響部206を検査する場合を例としている。
Hereinafter, examples of the present embodiment will be described.
As shown in FIGS. 5 to 7, two plate-like members 200A and 200B having a thickness of 50 mm are used as the first boundary portion 204 from the surface to a depth of 30 mm, and the bevel angle φ 1 is set to 5 degrees. , until the rest of the back surface 202 to set the bevel angle phi 2 to 20 degrees as a second boundary 205, as an example the case of inspecting a heat affected zone 206 of the subject 200 constructed by welding the two.

そして、図5に示すように、屈折角θを35度として第一の境界部204にタンデムスキャン実施工程を実施すると、幾何学的条件により送信用の振動子113としては、第一の境界部204上端から65.8mmまで必要となり、当該送信用の振動子113よりも溶接箇所203側を受信用の振動子113として、第一の境界部204で反射して探傷面201に垂直な軸Lに対して45度で入射する超音波を受信することができる。 Then, as shown in FIG. 5, when the tandem scan execution step is performed on the first boundary portion 204 with the refraction angle θ 1 being 35 degrees, the first boundary 204 is used as the transmission transducer 113 due to geometric conditions. An axis perpendicular to the flaw detection surface 201 is reflected from the first boundary portion 204 with the welded portion 203 side of the transmission vibrator 113 as a reception vibrator 113 from the upper end of the section 204 to 65.8 mm. An ultrasonic wave incident at 45 degrees with respect to L can be received.

リニアスキャン実施工程では、第二の境界部205のベベル角φが20度であるから、裏面202における反射角θは70度に設定される。このため、モード変換波を利用する場合には<数2>から屈折角(入射角)θを逆算すると、30度となる。すると、図6に示すように、幾何学的条件により、第一の境界部204上端から83.2mmまで必要となる。すなわち、探傷面201において第一の境界部204上端から83.2mmの範囲で送信または受信を実施可能な大きさの探触子110を用いることで、一つの探触子110で上記被検体200に対して、タンデムスキャン実施工程及びリニアスキャン実施工程を、溶接箇所203の幅方向に移動させることなく実施することができる。 In the linear scan execution step, the bevel angle φ 2 of the second boundary portion 205 is 20 degrees, so the reflection angle θ 2 on the back surface 202 is set to 70 degrees. For this reason, when a mode conversion wave is used, the refraction angle (incident angle) θ 1 is calculated backward from <Equation 2> to be 30 degrees. Then, as shown in FIG. 6, 83.2 mm from the upper end of the first boundary portion 204 is required due to geometric conditions. That is, by using the probe 110 having a size capable of performing transmission or reception within a range of 83.2 mm from the upper end of the first boundary 204 on the flaw detection surface 201, the probe 200 can be used with the single probe 110. On the other hand, the tandem scan execution step and the linear scan execution step can be performed without moving in the width direction of the welded portion 203.

一方、横波のモードで裏面202で反射させて第二の境界部205に垂直に入射し、その反射波を測定する場合には、図7に示すように、第一の境界部204の上端から192.8mmの範囲で探触子110によって送信または受信することで同様の測定が可能であるが、タンデムスキャン実施工程を同じ位置で実施可能とするには、探触子110の大きさが192.8mmと大きくなってしまう。
以上のように、モード変換を利用することにより、単独のモードの超音波のみを利用する場合と比較して、タンデムスキャン実施工程を同じ位置で実施可能としつつ、探触子110の大きさを192.8mmから83.2mmへと2分1以下にまで小型化することができる。
On the other hand, when the reflected wave is reflected by the back surface 202 in the transverse wave mode and enters the second boundary portion 205 perpendicularly and the reflected wave is measured, as shown in FIG. The same measurement can be performed by transmitting or receiving by the probe 110 in a range of 192.8 mm. However, in order to perform the tandem scan execution process at the same position, the size of the probe 110 is 192. It will be as large as .8mm.
As described above, by using the mode conversion, the size of the probe 110 can be increased while the tandem scan execution process can be performed at the same position as compared with the case where only the ultrasonic wave of the single mode is used. From 192.8 mm to 83.2 mm, the size can be reduced to less than 1/2.

なお、上記においては、二つの大きさの異なるベベル角φ、φに設定された第一の境界部204及び第二の境界部205を有する溶接箇所203について検査するものとしたが、これに限るものではなく、単一のベベル角φを有する溶接箇所203について適用するものとしても良い。
この場合には、ベベル角φが大きい場合には、図8に示すように境界部全体にわたってリニアスキャン実施工程を実施する。また、ベベル角φが小さい場合には、図9に示すように示すように境界部全体にわたってタンデムスキャン実施工程を実施することで、最小限の大きさの探触子110で、境界部全体にわたって探触子110の位置をずらすことなく一度に欠陥の検出を行うことができる。
In the above description, the welding location 203 having the first boundary portion 204 and the second boundary portion 205 set to two different bevel angles φ 1 and φ 2 is inspected. However, the present invention is not limited to this, and the present invention may be applied to a welding spot 203 having a single bevel angle φ.
In this case, when the bevel angle φ is large, a linear scan execution step is performed over the entire boundary as shown in FIG. Further, when the bevel angle φ is small, the tandem scan execution process is performed over the entire boundary portion as shown in FIG. 9, so that the probe 110 with the minimum size can be used over the entire boundary portion. It is possible to detect a defect at a time without shifting the position of the probe 110.

また、上記においては、溶接箇所203幅方向両側に探触子110を配置して、一方の探触子110Aで一方側の境界部周囲の熱影響部206を検査し、他方の探触子110Bで他方側の境界部周囲の熱影響部206を検査するものとしたが、溶接箇所203の片側のみに一つの探触子110を配置して、当該探触子110により両側の熱影響部206を検査するものとしても良い。
すなわち、まず、探触子110が配置された側の片側の熱影響部206について、図3及び図4に基づいて説明した測定方法同様に第一の境界部204及び第二の境界部205のベベル角φ、φに応じて屈折角を設定し、タンデムスキャン実施工程及びリニアスキャン実施工程を実施する。
Further, in the above, the probes 110 are arranged on both sides in the width direction of the welded part 203, the heat affected zone 206 around the boundary portion on one side is inspected with one probe 110A, and the other probe 110B is inspected. In this case, the heat affected zone 206 around the boundary portion on the other side is inspected. However, one probe 110 is arranged only on one side of the welded portion 203, and the heat affected zone 206 on both sides is arranged by the probe 110. It is good also as what inspects.
That is, first, with respect to the heat affected zone 206 on one side where the probe 110 is arranged, the first boundary portion 204 and the second boundary portion 205 are similar to the measurement method described with reference to FIGS. A refraction angle is set according to the bevel angles φ 1 and φ 2 , and a tandem scan execution process and a linear scan execution process are performed.

次に、図10に示すように、探触子110が配置された側と反対側の第一の境界部204及び第二の境界部205のそれぞれについて、そのベベル角φ1、φ2に応じて垂直に反射させるように、屈折角θ1を設定する。これにより、第一の境界部204及び第二の境界部205で反射された反射波は、入射波と同じ経路で各振動子113に受信され、欠陥を検出することができる。
このため、図10に示すような管径が軸方向に一定の直管200Cと、管径が軸方向に変化するテーパ管200Dとの溶接継手部においても、直管200C側からのみ、テーパ管200Dの形状の影響を受けることなく両側の熱影響部206の欠陥の検出を行うことができる。
Next, as shown in FIG. 10, each of the first boundary portion 204 and the second boundary portion 205 opposite to the side on which the probe 110 is disposed is vertical according to the bevel angles φ1 and φ2. The refraction angle θ1 is set so as to reflect the light. As a result, the reflected waves reflected by the first boundary portion 204 and the second boundary portion 205 are received by each transducer 113 through the same path as the incident wave, and a defect can be detected.
For this reason, in a welded joint portion between a straight pipe 200C having a constant pipe diameter in the axial direction and a tapered pipe 200D having a pipe diameter changing in the axial direction as shown in FIG. It is possible to detect a defect in the heat affected zone 206 on both sides without being affected by the shape of 200D.

以上のように、本実施形態の超音波探傷試験方法によれば、探触子110から送信させて探傷面201から被検体200内部へと入射させる超音波の屈折角θを、溶接箇所203の境界部のベベル角φ、φの大きさに応じて、当該探触子110の複数の振動子113の少なくとも一部で受信するように調整している。このため、被検体200の溶接箇所203の幅方向片側からのみでも、熱影響部206における欠陥を検出することができる。また、本実施形態では、境界部のベベル角φ、φに応じて、探触子110から送信させて探傷面201から被検体200内部へと入射させる超音波の屈折角θを調整して、複数の振動子113を有する一つの探触子110で送受信可能としている。このため、複数の探触子110を用いて互いの位置関係を調整する必要なく、容易かつ正確に、熱影響部206における欠陥を検出する試験を実施することができる。 As described above, according to the ultrasonic flaw detection test method of this embodiment, the refraction angle θ 1 of the ultrasonic wave transmitted from the probe 110 and incident from the flaw detection surface 201 to the inside of the subject 200 is set to the welding location 203. Is adjusted so that at least a part of the plurality of transducers 113 of the probe 110 receives the signal according to the bevel angles φ 1 and φ 2 of the boundary portion of the probe 110. For this reason, the defect in the heat affected zone 206 can be detected only from one side in the width direction of the welded portion 203 of the subject 200. In the present embodiment, the refraction angle θ 1 of the ultrasonic wave transmitted from the probe 110 and incident from the flaw detection surface 201 into the subject 200 is adjusted according to the bevel angles φ 1 and φ 2 at the boundary. Thus, transmission / reception can be performed by one probe 110 having a plurality of transducers 113. For this reason, the test which detects the defect in the heat affected zone 206 can be implemented easily and correctly, without having to adjust a mutual positional relationship using the several probe 110. FIG.

ここで、TOFD法で同じ被検体200について超音波探傷試験を実施する場合には、両側に探触子110を配置して、一方側の境界部について検査をした後に、他方側の境界部について検査を行う。さらに、表面付近については、両側それぞれについて別途斜角探傷法により検査を行う必要があり、計4回の試験を実施する必要がある。しかしながら、本実施形態の超音波探傷試験においては、同じ探触子で送受信を実施することから、両側の探触子でそれぞれ同時に超音波探傷試験を実施することでき、すなわち最大で1試験回数で溶接箇所両側の熱影響部について欠陥を検出することができる。また、本実施形態の超音波探傷試験方法では、反射波を利用して欠陥を検出し、TOFD法のように回折波を利用していないことから、熱影響部で検出される欠陥と、溶接箇所内部における欠陥とを時間的に分離することができ、両者の識別が容易である。   Here, when an ultrasonic flaw detection test is performed on the same subject 200 by the TOFD method, the probe 110 is arranged on both sides, the inspection is performed on the boundary portion on one side, and then the boundary portion on the other side is performed. Perform an inspection. Further, in the vicinity of the surface, it is necessary to separately inspect both sides by the oblique flaw detection method, and it is necessary to perform a total of four tests. However, in the ultrasonic flaw detection test of the present embodiment, since transmission / reception is performed with the same probe, the ultrasonic flaw detection test can be simultaneously performed with the probes on both sides, that is, with a maximum of one test. Defects can be detected in the heat affected zone on both sides of the weld location. Further, in the ultrasonic flaw detection test method of the present embodiment, the defect is detected using the reflected wave, and since the diffracted wave is not used unlike the TOFD method, the defect detected in the heat affected zone, the welding It is possible to separate the defects in the location temporally, and the two can be easily identified.

また、リニアスキャン実施工程(第一の超音波送受信工程)では、境界部で略垂直に反射させるように、屈折角を設定することで、探触子110から送信された超音波は、境界部で反射した後に再びほぼ同じ経路をもって当該探触子110に受信されることとなり、最小限の大きさの探触子110で送受信を実施することができる。   Further, in the linear scan execution step (first ultrasonic transmission / reception step), the refraction angle is set so as to reflect substantially perpendicularly at the boundary portion, so that the ultrasonic wave transmitted from the probe 110 is reflected at the boundary portion. After being reflected on the probe 110, the probe 110 receives the signal again through substantially the same path, and transmission / reception can be performed with the probe 110 having the minimum size.

さらに、探触子110から送信される超音波を小さな屈折角で横波のモードで探傷面201から入射させることで、入射した屈折波Sは、探傷面201と対向する面で、大きな反射角をもって縦波のモードで反射することとなる。このため、ベベル角の大きな境界部においても、探触子110を溶接箇所203から幅方向に離間させることなく超音波を垂直に反射させて、当該探触子110で受信させることができる。 Further, by making the ultrasonic wave transmitted from the probe 110 incident from the flaw detection surface 201 in a transverse wave mode with a small refraction angle, the incident refracted wave S 1 is a surface facing the flaw detection surface 201 and has a large reflection angle. Will be reflected in the longitudinal wave mode. For this reason, ultrasonic waves can be reflected vertically and received by the probe 110 without separating the probe 110 from the welding location 203 in the width direction even at a boundary portion having a large bevel angle.

特に、ベベル角φの大小によりリニアスキャン実施工程(第一の超音波送受信工程)と(タンデムスキャン実施工程)第二の超音波送受信工程を組み合わせることで、同一の探触子110で、溶接箇所203の幅方向に位置を変えることなく、被検体200の厚さ方向全体にわたって熱影響部206の欠陥の有無を検出することができる。   In particular, by combining the linear scan execution process (first ultrasonic transmission / reception process) and the (tandem scan execution process) second ultrasonic transmission / reception process depending on the size of the bevel angle φ, the welding location of the same probe 110 can be reduced. The presence or absence of a defect in the heat affected zone 206 can be detected over the entire thickness direction of the subject 200 without changing the position in the width direction 203.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

110、110A、110B 探触子
113 振動子
200 被検体
201 探傷面
202 裏面(探傷面と対向する面)
203 溶接箇所
204 第一の境界部
205 第二の境界部
206 熱影響部
屈折波
θ 屈折角
φ、φ、φ ベベル角
110, 110A, 110B Probe 113 Vibrator 200 Subject 201 Flaw detection surface 202 Back surface (surface opposite to flaw detection surface)
203 welding location 204 first boundary 205 second boundary 206 heat-affected zone S 1 refracted wave θ 1 refraction angle φ, φ 1 , φ 2 bevel angle

Claims (2)

所定のベベル角をもって溶接された被検体における溶接箇所の境界部周囲に形成された熱影響部の欠陥を検出するための超音波探傷試験方法であって、
複数の振動子で構成された探触子を前記被検体の探傷面における溶接箇所の片側に配置し、前記探触子から送信させて前記探傷面から前記被検体内部へと入射させる超音波の屈折角を、前記溶接箇所の前記境界部のベベル角の大きさに応じて、当該探触子の複数の前記振動子の少なくとも一部で受信するように調整する方法であり、
前記探傷面から前記被検体内部へと、超音波を横波のモードの屈折波で入射させ、前記探傷面と対向する面で反射させて縦波のモードに変換させて、該縦波のモードで前記溶接箇所の前記片側の前記境界部で略垂直に反射させるように、前記屈折角を設定し、前記探触子で超音波を送受信させる第一の超音波送受信工程と、
前記探傷面から前記被検体内部へと、超音波を入射させ、前記溶接箇所の前記片側と反対側の境界部で略垂直に反射させるように前記屈折角を設定し、前記探触子で超音波を送受信させる反対側の境界部を検査する工程とを備える
ことを特徴とする超音波探傷試験方法。
An ultrasonic flaw detection test method for detecting defects in a heat-affected zone formed around a boundary portion of a welded part in a specimen welded with a predetermined bevel angle,
Place a plurality of probes composed of a vibrator on one side of the subject of the probe definitive scratch surface welding point, ultrasonic wave is incident to the inside of the subject from the inspection surface while transmitted from the probe Is adjusted so as to be received by at least a part of the plurality of transducers of the probe according to the bevel angle of the boundary portion of the welded portion ,
An ultrasonic wave is incident from the flaw detection surface into the subject as a refracted wave in a transverse wave mode, reflected by a surface facing the flaw detection surface and converted into a longitudinal wave mode, and in the longitudinal wave mode. A first ultrasonic transmission / reception step of setting the refraction angle so as to reflect substantially perpendicularly at the boundary portion on the one side of the welding location, and transmitting / receiving ultrasonic waves with the probe;
The refraction angle is set so that an ultrasonic wave is incident from the flaw detection surface to the inside of the subject and reflected substantially perpendicularly at a boundary portion on the opposite side to the one side of the welded portion, and the probe is used to And a step of inspecting a boundary portion on the opposite side where sound waves are transmitted and received.
請求項に記載の超音波探傷試験方法において、
前記探傷面から前記被検体内部へと入射する屈折波と同一のモードで前記探傷面と対向する面及び前記片側の前記境界部で反射させた反射波を受信するように、前記探触子で送受信させる第二の超音波送受信工程を備え、
前記境界部のベベル角が前記被検体の厚さ方向に変化する場合に、前記ベベル角が相対的に大きい前記厚さ方向の範囲に対しては前記第一の超音波送受信工程を実施し、前記ベベル角が相対的に小さい前記厚さ方向の範囲に対しては前記第二の超音波送受信工程を実施することを特徴とする超音波探傷試験方法。
The ultrasonic flaw detection test method according to claim 1 ,
The probe is adapted to receive the reflected wave reflected from the boundary portion on one side and the surface facing the flaw detection surface in the same mode as the refracted wave entering the subject from the flaw detection surface. A second ultrasonic transmission / reception step for transmitting and receiving,
When the bevel angle of the boundary portion changes in the thickness direction of the subject, the first ultrasonic transmission / reception step is performed for the range in the thickness direction where the bevel angle is relatively large, The ultrasonic testing method according to claim 2, wherein the second ultrasonic transmission / reception step is performed for a range in the thickness direction in which the bevel angle is relatively small.
JP2010024393A 2010-02-05 2010-02-05 Ultrasonic flaw detection test method Active JP5574731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024393A JP5574731B2 (en) 2010-02-05 2010-02-05 Ultrasonic flaw detection test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024393A JP5574731B2 (en) 2010-02-05 2010-02-05 Ultrasonic flaw detection test method

Publications (2)

Publication Number Publication Date
JP2011163814A JP2011163814A (en) 2011-08-25
JP5574731B2 true JP5574731B2 (en) 2014-08-20

Family

ID=44594688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024393A Active JP5574731B2 (en) 2010-02-05 2010-02-05 Ultrasonic flaw detection test method

Country Status (1)

Country Link
JP (1) JP5574731B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018326A (en) * 2012-11-29 2013-04-03 北京理工大学 Contact type ultrasonic non-destructive testing straight-line automatic scanning device
WO2015001625A1 (en) * 2013-07-03 2015-01-08 株式会社 日立製作所 Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure
JP6437758B2 (en) 2014-08-12 2018-12-12 Ntn株式会社 Inspection device for joint type outer joint member of constant velocity universal joint
RU2573707C1 (en) * 2015-03-13 2016-01-27 Открытое Акционерное Общество "Российские Железные Дороги" Welding quality control method
JP6387161B2 (en) * 2017-07-28 2018-09-05 三菱日立パワーシステムズ株式会社 Damage analysis method for piping
US10571385B2 (en) * 2017-11-22 2020-02-25 The Boeing Company Ultrasonic inspection of a structure with a ramp

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281878B2 (en) * 1999-11-02 2002-05-13 三菱重工業株式会社 Ultrasonic flaw detection method and apparatus
JP3971935B2 (en) * 2002-02-12 2007-09-05 株式会社日立コミュニケーションテクノロジー Optical transmission device and optical transmission system capable of reducing transmission quality degradation due to four-wave mixing
JP4364031B2 (en) * 2004-03-25 2009-11-11 株式会社東芝 Ultrasonic flaw detection image processing apparatus and processing method thereof
JP2006234701A (en) * 2005-02-28 2006-09-07 Hitachi Ltd Ultrasonic test device and ultrasonic test method
CA2593893C (en) * 2007-01-26 2016-11-08 Roentgen Technische Dienst B.V. Improved technique and phased array transducer for ultrasonic inspection of coarse grained, anisotropic welds

Also Published As

Publication number Publication date
JP2011163814A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP5841026B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP2011149888A (en) Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
JP5846367B2 (en) Flaw detection method and flaw detection apparatus for welds using TOFD method
JP4148959B2 (en) Ultrasonic flaw detection method and apparatus
TWI471559B (en) Ultrasonic sensor, the use of its inspection methods and inspection devices
JP2013019715A (en) Ultrasonic inspection method and ultrasonic inspection device
JP2002062281A (en) Flaw depth measuring method and its device
JP6870980B2 (en) Ultrasonic inspection equipment, ultrasonic inspection method, and manufacturing method of joint block material
JP6460136B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP2014077708A (en) Inspection device and inspection method
JP5535680B2 (en) Ultrasonic inspection method
JP2006138672A (en) Method of and device for ultrasonic inspection
JP2002214204A (en) Ultrasonic flaw detector and method using the same
JP3765417B2 (en) Ultrasonic flaw detection method and apparatus
JPH11316215A (en) Ultrasonic flaw detection apparatus and method
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP4175762B2 (en) Ultrasonic flaw detector
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131028

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R151 Written notification of patent or utility model registration

Ref document number: 5574731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350