JP5003275B2 - Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body - Google Patents

Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body Download PDF

Info

Publication number
JP5003275B2
JP5003275B2 JP2007131981A JP2007131981A JP5003275B2 JP 5003275 B2 JP5003275 B2 JP 5003275B2 JP 2007131981 A JP2007131981 A JP 2007131981A JP 2007131981 A JP2007131981 A JP 2007131981A JP 5003275 B2 JP5003275 B2 JP 5003275B2
Authority
JP
Japan
Prior art keywords
flaw detection
wave
tube
array
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007131981A
Other languages
Japanese (ja)
Other versions
JP2008286640A (en
Inventor
幸理 飯塚
大二郎 湯浅
重人 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007131981A priority Critical patent/JP5003275B2/en
Publication of JP2008286640A publication Critical patent/JP2008286640A/en
Application granted granted Critical
Publication of JP5003275B2 publication Critical patent/JP5003275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、管体の超音波探傷装置及び超音波探傷方法に係り、特に、溶接鋼管の溶接部に発生する微小な欠陥を超音波探傷で精度良く検出するための管体の超音波探傷装置及び超音波探傷方法に関する。   The present invention relates to an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method for a tubular body, and more particularly to an ultrasonic flaw detection apparatus for a tubular body for accurately detecting minute defects generated in a welded portion of a welded steel pipe by ultrasonic flaw detection. And an ultrasonic flaw detection method.

溶接鋼管では溶接部の品質が非常に重要であり、製造工程においては一般に超音波斜角探傷によって溶接部のオンライン探傷が行われている。この方法は、被検材の検査面に対して斜めに超音波を入射させ、欠陥で反射した反射波から被検材の内外表面欠陥および内部欠陥を検出するものである。通常、例えば電縫管では5MHzで45゜の屈折角を持つ超音波ビームによる反射法が適用され、mmオーダーの大きさの欠陥、例えば溶込不良、溶け落ち、介在物による割れなどの欠陥が検出される。   In welded steel pipes, the quality of the welded part is very important, and in the manufacturing process, on-line flaw detection is generally performed by ultrasonic oblique flaw detection. In this method, ultrasonic waves are incident obliquely on the inspection surface of the test material, and internal and external surface defects and internal defects of the test material are detected from reflected waves reflected by the defects. In general, for example, in an ERW pipe, a reflection method using an ultrasonic beam having a refraction angle of 45 ° at 5 MHz is applied. Detected.

一方、最近では溶接鋼管に対する品質要求が厳しくなり、従来よりも小さい欠陥の検出が求められるようになってきている。例えば、電縫管では冷接欠陥や微小ペネトレータ、レーザー溶接管ではブローホールなどで、これらの欠陥の大きさは数10μm〜数100μmと非常に微小である。また、発生位置は溶接線に沿って内面から外面までのいずれの場所でも発生する可能性があり、欠陥の位置によっては超音波ビームの入射点と帰点が異なってしまう。これらの影響のため、従来実用されている超音波探傷法では検出できない場合が多く、より精度良く検出できる技術が求められている。   On the other hand, recently, quality requirements for welded steel pipes have become stricter, and detection of defects smaller than conventional ones has been required. For example, cold-welded defects and minute penetrators are used for electric-welded pipes, and blow holes are used for laser-welded pipes. These defects have a very small size of several tens to several hundreds of micrometers. In addition, the generation position may occur anywhere along the weld line from the inner surface to the outer surface, and the incident point and return point of the ultrasonic beam differ depending on the position of the defect. Because of these influences, there are many cases where detection cannot be performed by a conventional ultrasonic flaw detection method, and a technique capable of detecting with higher accuracy is required.

溶接鋼管の微小欠陥を検出する方法として、これまで以下のような従来技術が開示されている。特許文献1では、斜角探傷において周波数8MHz以上のポイントフォーカス型探触子を用いるようにし、ペネトレータに対する検出能を向上させるようにしている。また、特許文献2では、アレイ探触子によりフォーカスビームを形成して検出能を向上させ、セクタスキャンによって溶接部の内面側から外面側までをスキャンするようにしてブローホールを検出できるようにしている。   The following conventional techniques have been disclosed as methods for detecting minute defects in a welded steel pipe. In Patent Document 1, a point focus type probe having a frequency of 8 MHz or more is used for oblique flaw detection to improve the detection capability for the penetrator. In Patent Document 2, a focus beam is formed by an array probe to improve detection ability, and a blow hole can be detected by scanning from the inner surface side to the outer surface side of the welded portion by sector scanning. Yes.

また、特許文献3では、超音波の周波数を25MHz以上500MHz以下として入射角0゜以上20゜以下で管外面側から溶接部に入射させることで、数μm以下の微細なFeOが群をなして夾雑している冷接欠陥を検出できるようにしている。さらに、特許文献4では、周波数20MHz〜80MHzのポイントフォーカス型探触子を複数用い、シーム直上から集束位置が3mm以下のピッチとなるように配置することで、0.1mm以上のブローホールを検出できるようにしている。   Moreover, in patent document 3, the frequency of an ultrasonic wave is 25 MHz or more and 500 MHz or less, and it makes it enter into a welding part from the pipe outer surface side with an incident angle of 0 degree or more and 20 degrees or less, and fine FeO below several micrometers forms a group. It makes it possible to detect a contaminated cold welding defect. Furthermore, in Patent Document 4, a plurality of point focus type probes having a frequency of 20 MHz to 80 MHz are used and arranged so that the focusing position is a pitch of 3 mm or less from directly above the seam, thereby detecting a blowhole of 0.1 mm or more. I can do it.

なお、[発明の開示]において、下記の特許文献5及び非特許文献1を引用するので、ここにあわせて記載しておく。   In [Disclosure of the Invention], the following Patent Document 5 and Non-Patent Document 1 are cited, and are described together here.

特開昭60−205356号公報JP 60-205356 A 特開平11−183446号公報Japanese Patent Laid-Open No. 11-183446 特開昭61−111461号公報Japanese Patent Laid-Open No. 61-111461 特開平7−35729号公報Japanese Patent Laid-Open No. 7-35729 特開平4−274756号公報JP-A-4-274756 日本鉄鋼協会編「超音波探傷シリーズ(II) 溶接鋼管の超音波探傷法」1988年、28〜31頁Edited by Japan Iron and Steel Institute "Ultrasonic flaw detection series (II) Ultrasonic flaw detection of welded steel pipes" 1988, pp. 28-31

しかしながら、上述の開示技術においても、以下に述べるような問題が残されていた。先ず特許文献1の方法では、集束した超音波のビーム幅が狭いため、溶接部の深さ方向(鋼管の肉厚方向)の全域を見逃しがないように探傷するためには、数多くのチャンネルが必要で設備コストが高くなる上、管のサイズが変わった際の位置調整などが非常に面倒であるという問題がある。また、欠陥形状がブローホール状ではなくペネトレータや冷接のように面状で、かつ位置が肉厚内部にある場合は、反射波が入射方向とは異なる方向に行ってしまうため検出が困難である。   However, the above-described disclosed technique still has the following problems. First, in the method of Patent Document 1, since the beam width of the focused ultrasonic wave is narrow, in order to perform flaw detection so as not to overlook the entire region in the depth direction of the welded portion (the thickness direction of the steel pipe), a large number of channels are required. There is a problem that the equipment cost is high because it is necessary and the position adjustment when the tube size is changed is very troublesome. Also, if the defect shape is not a blowhole shape but a planar shape such as a penetrator or cold weld and the position is inside the wall thickness, it is difficult to detect because the reflected wave goes in a direction different from the incident direction. is there.

また特許文献2の方法では、アレイ探触子が1個で済み、サイズ替わりの際の設定も電子的に行えるので、特許文献1で示した前者の問題はないものの、後者の問題については依然として未解決のままである。また、前者の問題を解決する電子的な走査において、超音波の送波ビームおよび受波ビームの伝搬経路の幾何学的な計算は、鋼管が真円であることを前提にしているため、鋼管1の内面に増肉部分1aが発生したロットでは、反射経路が変わって電子的な走査ができないという問題がある。   In the method of Patent Document 2, only one array probe is required, and the setting for changing the size can be performed electronically. Therefore, although the former problem shown in Patent Document 1 is not present, the latter problem still remains. It remains unresolved. Also, in the electronic scanning that solves the former problem, the geometric calculation of the propagation path of the ultrasonic transmission beam and reception beam is based on the assumption that the steel pipe is a perfect circle. In the lot in which the thickened portion 1a is generated on the inner surface of 1, the reflection path is changed and there is a problem that electronic scanning cannot be performed.

さらに欠陥形状が上記のように面状の場合、例えば電縫管ではシーム部にアプセットがかかっているためにシーム直上から見た欠陥の幅は100μm以下と非常に細く、特許文献3および特許文献4の方法であっても、実際には欠陥からの反射波は非常に弱くて検出困難な場合が多い。また、表面エコー近傍の1〜2mm程度は表面エコーの残響によって不感帯となるため、欠陥の位置が外面近傍にある場合は検出できないという問題がある。   Furthermore, when the defect shape is planar as described above, the width of the defect viewed from directly above the seam is very thin, for example, because the seam portion is upset in the ERW pipe. Even in the method 4, the reflected wave from the defect is actually very weak and difficult to detect in many cases. Further, since about 1 to 2 mm in the vicinity of the surface echo becomes a dead zone due to the reverberation of the surface echo, there is a problem that it cannot be detected when the position of the defect is in the vicinity of the outer surface.

このように、溶接鋼管の管軸方向の溶接部に発生する数100μm程度以下の微小欠陥を検出する技術は、溶接部を切り出したテストサンプルを、オフラインで測定するCスキャン法であれば可能であるが、数100μm程度以下の欠陥を非破壊で、且つ、オンラインで精度良く、安定して検出する技術はいまだに確立されていなかった。   As described above, a technique for detecting a micro defect of about several hundred μm or less generated in a welded portion in the pipe axis direction of a welded steel pipe can be performed by a C-scan method in which a test sample obtained by cutting a welded portion is measured off-line. However, there has not yet been established a technique for detecting defects having a size of several hundreds of μm or less in a non-destructive manner and with high accuracy and stability online.

本発明は上記事情に鑑みてなされたもので、電縫管などの溶接部の肉厚内部に位置する数100μm程度以下の微小な欠陥を、内面に増肉部分が発生している場合であっても、内面から外面まで漏れなく検出できるようにする管体の超音波探傷装置および超音波探傷方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a case in which a minute defect having a thickness of about several hundreds μm or less located inside the thickness of a welded portion such as an electric resistance welded tube is generated on the inner surface. However, it is an object of the present invention to provide an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method for a tubular body that enable detection from the inner surface to the outer surface without leakage.

本発明の請求項1に係る発明は、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部と、管体の肉厚分布を測定するための肉厚測定用探触子と、該肉厚測定用探触子で測定した肉厚分布に基づいて、前記探傷用アレイ探触子を用いて、管体の厚さ方向に走査するための超音波の伝播経路を算出する伝播経路算出手段と、算出された伝播経路に基づいて、前記探傷用アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更するように制御して、管体の厚さ方向に走査する制御を行なう制御部と、を備えたことを特徴とする管体の超音波探傷装置である。 The invention according to claim 1 of the present invention is configured to receive a part of or all of a reflected wave reflected by a welded part and a wave transmitting part that makes ultrasonic waves incident on a weld surface of a welded part of a pipe body in a tube axis direction. A transmitter / receiver unit, wherein the transmitter unit and the receiver unit are composed of different transducer groups on one or more array probes for flaws arranged in the circumferential direction of the tube, A wall thickness measurement probe for measuring the wall thickness distribution of the pipe body, and a tube array using the flaw detection array probe based on the wall thickness distribution measured by the wall thickness measurement probe. Propagation path calculation means for calculating a propagation path of ultrasonic waves for scanning in the body thickness direction, and based on the calculated propagation path, the transmitting section and the receiving section on the flaw detection array probe and by controlled so to change the corresponding transducer groups in, characterized by comprising a control unit for controlling the scanning in the thickness direction of the tubular body Body is an ultrasonic flaw detector.

又、本発明の請求項2に係る発明は、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部とを備えた管体の超音波探傷装置で管体を探傷する際に、管体の肉厚分布を測定し、測定した肉厚分布に基づいて、前記探傷用アレイ探触子を用いて、管体の厚さ方向に走査するための超音波の伝播経路を算出し、算出された伝播経路に基づいて、前記探傷用アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更するように制御して、管体の厚さ方向に走査することを特徴とする管体の超音波探傷方法である。 In the invention according to claim 2 of the present invention, a part of or all of the reflected wave reflected by the welded part and the wave sending part that enters the ultrasonic wave with respect to the weld surface of the welded part in the tube axis direction of the pipe body. A transmission / reception unit comprising a group of different transducers on one or more array probes for flaw detection, wherein the transmission unit and the reception unit are arranged in the tube circumferential direction. When the tube body is flaw-detected with an ultrasonic flaw detector of the tube body equipped with, based on the measured wall thickness distribution, based on the measured wall thickness distribution, using the flaw detection array probe, An ultrasonic propagation path for scanning in the thickness direction of the tubular body is calculated, and vibrations corresponding to the transmitting section and the receiving section on the flaw detection array probe are calculated based on the calculated propagation path. and by controlled so to change the element group, an ultrasonic flaw detection method of the tubular body, characterized in that scanning in the thickness direction of the tube.

本発明により、内面に増肉部分が発生している電縫管などの溶接部の肉厚内部に位置する数100μm程度以下の微小な欠陥を、内面から外面まで漏れなく検出できるようになるため、溶接鋼管の溶接部の機械的特性に影響を及ぼす微小欠陥が発生しないように溶接プロセスを改善したり、欠陥が流出しないように製造工程で選別できるようになり、溶接鋼管の品質を飛躍的に高めることができ、従来以上に過酷な使用条件で使用できるようになる。   According to the present invention, it becomes possible to detect a minute defect of about several hundreds μm or less located inside the thickness of a welded portion such as an electric resistance welded tube having an increased thickness on the inner surface from the inner surface to the outer surface without leakage. The quality of welded steel pipes will be dramatically improved by improving the welding process so that micro defects that affect the mechanical properties of the welded part of the welded steel pipe do not occur, and by making it possible to select in the manufacturing process so that defects do not flow out. And can be used under conditions that are severer than before.

まず、発明者は、検出対象とする欠陥の反射特性の調査を行い、微小欠陥を検出するための、超音波の欠陥への入射角や、欠陥で反射する反射波について受波する超音波の反射角の最適範囲を求めた。詳細を以下に記載する。   First, the inventor investigates the reflection characteristics of the defect to be detected, and detects the incident angle of the ultrasonic wave to the defect and the reflected ultrasonic wave reflected by the defect in order to detect the minute defect. The optimum range of reflection angle was obtained. Details are described below.

[欠陥の反射特性の解析]
本発明が対象とする電縫溶接鋼管の溶接部に存在するペネトレータや冷接欠陥などの微小欠陥は、溶接部をアプセットして溶接鋼管を製造することから、管周方向にはつぶされ薄くなり、一方、管厚み(管径)方向と管軸方向、即ち、管軸溶接面内には伸ばされ、面積を有する平坦な形状であると想定される。
[Analysis of reflection characteristics of defects]
Microdefects such as penetrators and cold-welding defects existing in the welded parts of ERW welded steel pipes, which are the subject of the present invention, are crushed and thinned in the pipe circumferential direction because the welded pipes are manufactured by upsetting the welded parts On the other hand, the pipe thickness (tube diameter) direction and the pipe axis direction, that is, the pipe axis is assumed to be a flat shape extending in the weld surface and having an area.

そこで、欠陥の大きさと反射指向性の関係を理論的に検討し、図10に示す結果を得た。ここで、図10に示した結果は、図11に示すように、超音波を−45°方向から入射し、周波数10MHz、15MHz、20MHzにおいて、それぞれ管肉厚方向に対応する(図11では横方向に対応する)欠陥サイズ0.1mm、0.2mm、0.4mm、0.8mmの条件で、各反射角度における信号強度を理論的に計算して求めたものである。なお、図10の縦軸は正反射角度である45°の信号強度を基準値1として、規格化した相対値で示している。いずれの場合も超音波を入射した−45゜方向に反射する反射波の信号強度は非常に低く、正反射方向45゜のおよそ0.2以下である。いずれの場合も正反射方向である45゜方向が最も強いことがわかる。   Therefore, the relationship between the defect size and the reflection directivity was theoretically examined, and the result shown in FIG. 10 was obtained. Here, the results shown in FIG. 10 correspond to the tube thickness direction at frequencies of 10 MHz, 15 MHz, and 20 MHz, respectively, as shown in FIG. It is obtained by theoretically calculating the signal intensity at each reflection angle under the conditions of a defect size of 0.1 mm, 0.2 mm, 0.4 mm, and 0.8 mm (corresponding to the direction). Note that the vertical axis of FIG. 10 indicates a normalized relative value with a signal intensity of 45 °, which is a regular reflection angle, as a reference value 1. In any case, the signal intensity of the reflected wave reflected in the −45 ° direction where the ultrasonic wave is incident is very low, which is about 0.2 or less in the regular reflection direction of 45 °. In any case, it can be seen that the 45 ° direction which is the regular reflection direction is the strongest.

この計算条件で指向性が最も鋭い欠陥サイズ0.8mmの20MHzでは、正反射角度の信号強度に対して、信号強度が半分(図10で値が0.5)になる角度は40゜〜50゜の範囲である。このように、欠陥サイズによって指向性は異なるため、検出したい欠陥の大きさによって受波ビームの溶接部に対する入射角の範囲を決定すればよい。例えば、より大きな欠陥も感度の低下なく検出するためには受波ビームの溶接部に対する入射角は45゜に近い角度が望ましく、例えば15MHzで0.8mmの欠陥の信号強度低下を半分に抑えるには39゜〜52゜以内の範囲が好ましい。反対に例えば15MHzで0.4mm以下のみの小さな欠陥を対象とする場合は33゜〜61゜の範囲でも好ましい。   At 20 MHz with a defect size of 0.8 mm having the sharpest directivity under this calculation condition, the angle at which the signal intensity is half (value 0.5 in FIG. 10) is 40 ° to 50% with respect to the signal intensity at the regular reflection angle. It is the range of °. As described above, since the directivity differs depending on the defect size, the range of the incident angle of the received beam with respect to the welded portion may be determined according to the size of the defect to be detected. For example, in order to detect a larger defect without lowering the sensitivity, the incident angle of the received beam with respect to the welded portion is desirably an angle close to 45 °, for example, to reduce the signal strength decrease of a 0.8 mm defect by half at 15 MHz. Is preferably in the range of 39 ° to 52 °. On the other hand, for example, when a small defect of only 0.4 mm or less at 15 MHz is targeted, a range of 33 ° to 61 ° is also preferable.

上記解析により、欠陥における超音波の反射信号は、正反射方向をピークとして信号強度が高いことを見出した。その正反射方向の超音波を受波することが最も好ましいが、反射強度がピークの50%であれば十分に検出できるので、その範囲に対応する角度範囲に反射した超音波を受波すればよいことが分った。   From the above analysis, it was found that the reflected signal of the ultrasonic wave at the defect has a high signal intensity with the regular reflection direction as a peak. It is most preferable to receive the ultrasonic waves in the regular reflection direction, but if the reflection intensity is 50% of the peak, it can be detected sufficiently, so if ultrasonic waves reflected in the angular range corresponding to that range are received. I found it good.

図10に示される、周波数15MHzで欠陥サイズ0.4mmの反射指向性の結果からすれば、反射強度がピークの50%以上となる反射角度が33〜61°であるから、正反射角度である45°を基準として、−12°〜+16°の範囲が好ましい範囲である。また、周波数20MHzで欠陥サイズ0.8mmまでを対象とすれば、正反射角度に対して、−5〜+5°の範囲が好ましい範囲となる。また、上述の例は、欠陥への入射角45°で反射角度特性を示したが、逆の反射角度を45°としたときの入射角特性も同様の結果が得られる。また、45°以外の入射角度であっても、後述するモード変換ロスの条件をクリアできる入射角度範囲であれば、ほぼ同様な特性が得られる。   According to the result of the reflection directivity having a defect size of 0.4 mm at a frequency of 15 MHz shown in FIG. 10, the reflection angle at which the reflection intensity is 50% or more of the peak is 33 to 61 °, and thus the regular reflection angle. A range of −12 ° to + 16 ° is a preferable range on the basis of 45 °. In addition, when a defect size of up to 0.8 mm is targeted at a frequency of 20 MHz, a range of −5 to + 5 ° with respect to the regular reflection angle is a preferable range. Moreover, although the above-mentioned example showed the reflection angle characteristic at an incident angle of 45 ° to the defect, the same result can be obtained for the incident angle characteristic when the opposite reflection angle is 45 °. Even if the incident angle is other than 45 °, substantially the same characteristics can be obtained as long as the incident angle range can satisfy the condition of mode conversion loss described later.

そして、この欠陥の反射特性に基づき、超音波センサの構成について検討を行った内容について以下に説明する。   And the content which examined the structure of the ultrasonic sensor based on the reflective characteristic of this defect is demonstrated below.

[タンデム構成]
上記のような欠陥反射特性の知見によれば、欠陥での正反射方向を中心として所定の角度範囲に反射した超音波を受波するためには、受波用超音波探触子を、送波用超音波探触子とは別の位置に配置する、いわゆるタンデム配置の構成とすることが好ましい。しかしながら、特許文献1のような、ポイントフォーカス型探触子を用いて、溶接部の管肉厚み方向(管径方向)に、抜けなく検査をするために、複数の探触子を配置する必要がある。また、より小さい欠陥を検出するために、ビームを集束するための大開口径化を指向することになる。このことを、装置構成として実現するには、エンジニアリング的、コスト的に非常に困難である。
[Tandem configuration]
According to the knowledge of the defect reflection characteristics as described above, in order to receive an ultrasonic wave reflected within a predetermined angle range centering on the specular reflection direction at the defect, the receiving ultrasonic probe is transmitted. It is preferable to adopt a so-called tandem arrangement that is arranged at a position different from the wave ultrasonic probe. However, it is necessary to arrange a plurality of probes in order to inspect in the tube thickness thickness direction (tube diameter direction) of the welded portion using the point focus type probe as in Patent Document 1 without disconnection. There is. In addition, in order to detect a smaller defect, it is aimed to increase the aperture diameter for focusing the beam. It is very difficult in terms of engineering and cost to realize this as a device configuration.

そこで、本発明においては、アレイ探触子を用い、送信部と受信部が異なるタンデム構成とした。アレイ探触子を用いることにより、送波部の振動子群と受波部の振動子群、および/または送波時の屈折角と受波時の屈折角を順次変更していくことで、超音波ビームの集束位置を溶接部の管肉厚み方向の内面側から外面側まで(あるいは、外面側から内面側まで。向きはどちらでもよい。)走査させることができ、内面側から外面側まで不感帯なく探傷可能となる。また、アレイ探触子を使用しているため、管のサイズが変わっても、走査範囲および集束位置を容易に変更でき、事前の設定調整が非常に簡単にもなる。このように、アレイ探触子の振動子をタンデム配置となるように選択し、且つ、厚み方向に抜けの無い検査を実現するようにした。   Therefore, in the present invention, an array probe is used, and the transmission unit and the reception unit are different in tandem configuration. By using the array probe, by sequentially changing the transducer group of the transmission unit and the transducer group of the reception unit, and / or the refraction angle at the time of transmission and the refraction angle at the time of reception, The focused position of the ultrasonic beam can be scanned from the inner surface side to the outer surface side (or from the outer surface side to the inner surface side in either direction) in the tube thickness direction of the welded portion, from the inner surface side to the outer surface side. Flaw detection is possible without dead zone. Further, since the array probe is used, the scanning range and the focusing position can be easily changed even if the size of the tube is changed, and the setting adjustment in advance becomes very simple. As described above, the transducers of the array probe are selected so as to be arranged in tandem, and inspection without missing in the thickness direction is realized.

なお、このタンデム構成は正反射方向に対し所定の角度範囲の反射波を受波することで感度向上のメリットがあるが、それ以外に、以下に述べるように他の感度向上効果があり、微小欠陥を確実に検出するためには、タンデム構成とすることが望ましいとの知見に至った。   This tandem configuration has the advantage of improving sensitivity by receiving reflected waves in a predetermined angle range with respect to the regular reflection direction. In addition to this, there are other sensitivity improvement effects as described below. In order to detect defects reliably, the inventors have found that a tandem configuration is desirable.

図12は、非タンデム構成とタンデム構成との比較を模式的に示す図である。図12(a)はアレイ探触子を用いて、送波部と受波部を同じとする一般的な反射法で溶接部を探傷する場合を示したものである。超音波は、アレイ探触子の振動子群から発せられて、管外面で屈折して管の内部に入り、溶接部に達する。欠陥があれば反射して、送波時と同じ経路を辿って送波した振動子群に入射し、受波される。ここで、受波する際に、欠陥からの反射波以外に、アレイ探触子内部での残響、管外面の表面粗さに起因する乱反射波、管外面で反射しアレイ探触子やその保持部などでの反射波、管内面の表面粗さやビード切削残りでの反射波が、アレイ探触子に向かう。このように、一般的な反射法の場合は、これらの不要な反射波、つまりノイズが、欠陥信号に重畳して、受波されるので、信号感度、S/N比が悪い状態の検出を行っている。また、そのノイズ除去は非常に困難を要するものである。   FIG. 12 is a diagram schematically illustrating a comparison between a non-tandem configuration and a tandem configuration. FIG. 12A shows a case where a welded portion is flawed by a general reflection method using an array probe and having the same transmitting portion and receiving portion. Ultrasound is emitted from the transducer group of the array probe, refracts on the outer surface of the tube, enters the inside of the tube, and reaches the weld. If there is a defect, it will be reflected and incident on the transducer group that has been transmitted along the same path as during transmission and received. Here, when receiving a wave, in addition to the reflected wave from the defect, reverberation inside the array probe, irregular reflection due to the surface roughness of the outer surface of the tube, reflected by the outer surface of the tube, and the array probe and its holding The reflected wave at the section, the surface roughness of the inner surface of the tube, and the reflected wave at the bead cutting residue are directed to the array probe. As described above, in the case of a general reflection method, these unnecessary reflected waves, that is, noises are superimposed on the defect signal and received, so that detection of a state in which the signal sensitivity and the S / N ratio are poor is detected. Is going. Moreover, the noise removal is very difficult.

一方、図12(b)に送波と受波を別の振動子群を用いたタンデム構成の場合を示した。超音波は、アレイ探触子の送波用振動子群から発せられて、管外面で屈折して管の内部に入り、溶接部に達する。欠陥があればそこで反射し、この時、正反射方向に最も強く進み、その後管内面で反射した後、管外面に達し、屈折して受波用の振動子群に入射し、受波される。このような経路を辿るため、アレイ探触子内部での残響、管外面の表面粗さに起因する乱反射、管外面で反射しアレイ探触子やその保持部などで反射、管内面の表面粗さやビード切削残りでの反射は、全て送波用の振動子群へ向かうが、受波用の振動子群には到達しない。つまり、タンデム構成における受波用振動子群で受波する信号には、超音波の乱反射に起因するノイズエコーが重畳せず、ノイズの影響をほとんど受けず、図12(a)に示す一般的な反射法に比べて極めて高いS/Nを得ることができることとなり、正反射方向の反射波を取ることの効果とノイズ低減の効果が得られて、微小欠陥の検出を容易とするものである。   On the other hand, FIG. 12B shows a case of a tandem configuration using different transducer groups for transmission and reception. Ultrasound is emitted from a group of transducers for transmitting the array probe, refracts on the outer surface of the tube, enters the tube, and reaches the weld. If there is a defect, it is reflected there, and at this time, it travels most strongly in the regular reflection direction, then reflects on the inner surface of the tube, reaches the outer surface of the tube, refracts, enters the receiving transducer group, and is received . In order to follow such a path, reverberation inside the array probe, irregular reflection due to the surface roughness of the outer surface of the tube, reflection at the outer surface of the tube, reflection at the array probe and its holding part, etc., surface roughness of the inner surface of the tube All reflections from the sheath cutting residue are directed to the transmitting transducer group, but do not reach the receiving transducer group. That is, the signal received by the receiving transducer group in the tandem configuration is not superposed with noise echoes caused by the irregular reflection of ultrasonic waves and is hardly affected by noise, and is generally shown in FIG. Compared with a simple reflection method, an extremely high S / N can be obtained, and the effect of taking a reflected wave in the regular reflection direction and the effect of noise reduction can be obtained, thereby facilitating detection of a micro defect. .

図13は、タンデム構成をとらない送受波を同じ探触子で行う一探法とタンデム法とを比較した探傷結果の一例である。   FIG. 13 is an example of a flaw detection result comparing the one tandem method and the tandem method in which transmission / reception waves that do not have a tandem configuration are performed by the same probe.

比較するために使用した被検査管体には、図14に示すような3種類のドリル穴DHを設けている。すなわち、異なる肉厚方向の3箇所に、肉厚方向と管軸方向からなる面に対し、直交方向にあけたφ1mmのドリル穴(図14(a))、肉厚方向にφ1.6mmで貫通するドリル穴(図14(b))、および管軸方向にφ1.6mmで貫通するドリル穴(図14(c))である。   The tube to be inspected used for comparison is provided with three types of drill holes DH as shown in FIG. That is, φ1mm drill holes (Fig. 14 (a)) drilled in the orthogonal direction with respect to the surface consisting of the thickness direction and the pipe axis direction at three locations in different thickness directions, and penetrated with φ1.6mm in the thickness direction Drill hole (FIG. 14 (b)) to be drilled, and drill hole (FIG. 14 (c)) penetrating through the tube axis direction at φ1.6 mm.

図13(a)は従来法での探傷画像データ、(c)は本発明での探傷画像データであり、探傷画像(a)、(c)の検出状況を説明するために、(b)は(a)を模式的に示した図、(d)は本発明での探傷画像である(c)を模式的に示した図である。なお、画像データ(a)、(c)においては、信号強度が高いほど白くなるように表示している。   FIG. 13A shows flaw detection image data according to the conventional method, and FIG. 13C shows flaw detection image data according to the present invention. In order to explain the detection status of flaw detection images (a) and (c), FIG. (A) is a diagram schematically showing, (d) is a diagram schematically showing (c) which is a flaw detection image in the present invention. In the image data (a) and (c), the higher the signal intensity, the whiter the data is displayed.

上述のように、タンデム構成は、従来法に対して、検出性能を向上させることがわかった。しかし、曲率をもった管体に適用するにあたり、いくつかの困難があることが判明した。その解決策について以下に説明する。   As described above, it has been found that the tandem configuration improves the detection performance over the conventional method. However, it has been found that there are some difficulties in applying to a tube with curvature. The solution will be described below.

この結果からわかるように、一探法では内面側表面粗さによるノイズが強く発生しており、微小欠陥を模擬したφ1mmドリル穴先端(図14(a)参照)からのエコーはノイズに埋もれて、その検出が困難である。特に肉厚内部からの反射は非常に弱くなっており、ほとんど検出されていない。一方、タンデム法では内面側表面粗さによるノイズは弱くなり、φ1mmドリル穴先端からのエコーにも影響を及ぼすことなく、肉厚内部も含めて明瞭に検出できるようになった。   As can be seen from this result, noise due to the surface roughness of the inner surface is strongly generated in one search method, and the echo from the tip of the φ1 mm drill hole (see FIG. 14A) simulating a minute defect is buried in the noise. The detection is difficult. In particular, the reflection from the inside of the wall is very weak and is hardly detected. On the other hand, in the tandem method, the noise due to the surface roughness on the inner surface side is weakened, and it can be clearly detected including the inside of the wall thickness without affecting the echo from the tip of the φ1 mm drill hole.

上述のように、タンデム法は、一探法に対して、検出性能を向上させることがわかった。しかし、曲率を持ち、場合によって内面に増肉部分が発生する管体に適用するにあたり、いくつかの困難があることが判明した。その解決策について以下に説明する。   As described above, it has been found that the tandem method improves the detection performance as compared with the one-search method. However, it has been found that there are some difficulties in applying to a tubular body having a curvature and sometimes having a thickened portion on the inner surface. The solution will be described below.

[モード変換ロスの検討]
上述のようにタンデム構成により高感度化が十分達成できることを見出した。しかし、タンデム構成の高感度化を維持するためには、超音波の鋼管内部の伝播過程で、管の内面や外面、欠陥で反射する際の、「モード変換ロス」による信号強度の減衰が発生しないようにしなければならない。モード変換ロスは、鋼管に入射する超音波は横波超音波であるが、反射条件により縦波超音波に変換し、その結果、信号強度が減衰し、検出感度が低下する現象である。この現象を、図を用いて説明する。
[Examination of mode conversion loss]
As described above, it has been found that high sensitivity can be sufficiently achieved by the tandem configuration. However, in order to maintain the high sensitivity of the tandem configuration, the signal intensity is attenuated due to the "mode conversion loss" when the ultrasonic wave propagates inside the steel pipe and is reflected by the inner and outer surfaces of the pipe and defects. You must not do it. The mode conversion loss is a phenomenon in which the ultrasonic wave incident on the steel pipe is a transverse wave ultrasonic wave, but is converted into a longitudinal wave ultrasonic wave depending on reflection conditions, and as a result, the signal intensity is attenuated and the detection sensitivity is lowered. This phenomenon will be described with reference to the drawings.

図15は、平鋼板でのモード変換ロスを説明する図である。図15(a)は平鋼板のタンデム構成での探傷(以下、タンデム探傷とも記載する)を示している。平鋼板に対して横波超音波を入射し、その屈折角をθとすると、平鋼板では、溶接面への入射角θaは(90°−θ)となる。また、底面への入射角θbはθとなる。ここで、鋼中においては、横波超音波が溶接部や鋼板底面などで反射する際に、約33°以下の入射角で入射すると、反射でのモード変換によって縦波超音波が図の点線方向に生じてしまうことが知られている。   FIG. 15 is a diagram for explaining mode conversion loss in a flat steel plate. FIG. 15A shows flaw detection (hereinafter also referred to as tandem flaw detection) in a tandem configuration of a flat steel plate. When a transverse wave ultrasonic wave is incident on a flat steel plate and its refraction angle is θ, the incident angle θa on the welding surface is (90 ° −θ) in the flat steel plate. Further, the incident angle θb to the bottom surface is θ. Here, in steel, when a transverse wave ultrasonic wave is reflected at a welded portion, a steel plate bottom surface, or the like, and incident at an incident angle of about 33 ° or less, the longitudinal wave ultrasonic wave is converted into a dotted line direction by mode conversion in reflection. It is known that it will occur.

例えば、図15(a)のように、θが大きい(約57°以上)と、θaが小さく(約33°以下)なり、溶接部の反射でモード変換が発生し、図15(b)のように、θが小さい(約33°以下)と、溶接部の反射でモード変換が発生しないが、θbは約33°以下となるため、モード変換が発生する。このような横波から縦波へのモード変換が生ずると、タンデム探傷方向の超音波強度は弱まってしまい、その結果、検出感度が低下する。このように反射時に超音波が横波から縦波にモード変換し、横波超音波の強度が減衰する現象をモード変換ロスという。ここで、図15(c)は、反射する時に、その入射角に対する超音波が溶接面と内面とで2回反射したときの、反射強度の変化を示したもので、これに示されるように、理論値として入射角33.2°〜56.8°の範囲とすれば、モード変換ロスは生じない。   For example, as shown in FIG. 15A, when θ is large (about 57 ° or more), θa becomes small (about 33 ° or less), and mode conversion occurs due to reflection of the welded portion. As described above, when θ is small (about 33 ° or less), mode conversion does not occur due to reflection of the weld, but θb is about 33 ° or less, and mode conversion occurs. When such a mode conversion from a transverse wave to a longitudinal wave occurs, the ultrasonic intensity in the tandem flaw detection direction becomes weak, and as a result, the detection sensitivity decreases. A phenomenon in which the ultrasonic wave undergoes mode conversion from a transverse wave to a longitudinal wave during reflection and the intensity of the transverse wave ultrasonic wave is attenuated is referred to as mode conversion loss. Here, FIG. 15C shows the change in the reflection intensity when the ultrasonic wave corresponding to the incident angle is reflected twice by the welding surface and the inner surface when reflecting, as shown in FIG. If the incident angle is in the range of 33.2 ° to 56.8 ° as a theoretical value, no mode conversion loss occurs.

なお、平鋼板であれば、アレイ探触子面と平鋼板上面との相対角度は場所によらず一定であるので、溶接面を超音波ビームで走査するために、送波部と受波部を構成する振動子群を移動させた場合でも、任意の位置で、平鋼板上面に対するアレイ探触子面の相対角度と探触子面に対する送波ビームの角度を検討しておけば、モード変換ロスが発生するか否かの屈折角条件は、容易に判断できる。   In the case of a flat steel plate, the relative angle between the array probe surface and the flat steel plate upper surface is constant regardless of the location. Therefore, in order to scan the welding surface with an ultrasonic beam, a transmitting portion and a receiving portion are used. Even if the transducers that make up the sensor are moved, mode conversion is possible if the relative angle of the array probe surface to the flat steel plate upper surface and the angle of the transmitted beam with respect to the probe surface are studied at an arbitrary position. The refraction angle condition for determining whether or not loss occurs can be easily determined.

しかしながら、鋼管のタンデム探傷では、曲率の影響により、平鋼板のように単純にいかないことを図16で説明する。前述の平鋼板と同様に、図16(a)に示す如く、溶接面の角度を基準角度0°とした時に、屈折角θとなるようにアレイ探触子から超音波が鋼管に入射する場合を考える。なお、鋼管外面への入射点(入射位置)は、入射点における外面法線方向と溶接面とのなす角がθ1となる位置とする。このときの溶接面への入射角θaは(90°−θ)にはならず、(90°−θ−θ1)となる。同様に、底面への入射角θbはθにはならず、(θ+θ2)となる。   However, it will be described with reference to FIG. 16 that tandem flaw detection of a steel pipe is not as simple as a flat steel plate due to the influence of curvature. As in the case of the flat steel plate described above, as shown in FIG. 16A, when the angle of the weld surface is set to a reference angle of 0 °, ultrasonic waves are incident on the steel pipe so as to have a refraction angle θ. think of. The incident point (incident position) on the outer surface of the steel pipe is a position where the angle formed by the normal direction of the outer surface at the incident point and the weld surface is θ1. The incident angle θa to the welding surface at this time is not (90 ° −θ) but (90 ° −θ−θ1). Similarly, the incident angle θb to the bottom surface is not θ, but is (θ + θ2).

この例においては、θ1<θ2であるから、平鋼板に比べると、モード変換ロスが生じない屈折角の範囲は最大でθ2だけ狭くなることになる。一例をあげると、肉厚t/外径D=3.4%の鋼管では、例えば屈折角が約45°とすれば、θ2は約4゜であるから、屈折角に対応させると、モード変換ロスが生じない屈折角の範囲は37゜〜53゜と狭くなる。なお、現実的に考えられる鋼管のサイズからすると、θ2は1.7°〜11.25°程度の範囲になる。   In this example, since θ1 <θ2, the range of the refraction angle at which no mode conversion loss occurs is narrowed by θ2 at the maximum compared to flat steel plates. As an example, in a steel pipe having a wall thickness t / outer diameter D = 3.4%, for example, if the refraction angle is about 45 °, θ2 is about 4 °. The range of refraction angles at which no loss occurs is narrowed to 37 ° to 53 °. Note that θ2 is in the range of about 1.7 ° to 11.25 °, considering the size of a steel pipe that can be realistically considered.

なお、t/Dを最も小さい値からt/D=5%程度までで、主要な鋼管サイズのかなりがカバーでき、t/D=5%では、θ2が6.8°となる。この場合、屈折角の範囲は40゜〜50゜となる。   In addition, when t / D is from the smallest value to about t / D = 5%, a considerable amount of main steel pipe size can be covered, and when t / D = 5%, θ2 is 6.8 °. In this case, the range of the refraction angle is 40 ° to 50 °.

さらに、ここでアレイ振動子が一般的に直線状であり鋼管に曲率があることを考慮すると、図16(b)に示すように、平鋼板の場合と同様にアレイ振動子から超音波ビームを一定角度(図では探触子面に対して90°)で送波すると、鋼管への入射角は一定角度にはならず、よって屈折角も一定にはならない。タンデム探傷を行うためには、アレイ振動子からのビームスキャン幅を肉厚の倍として、先のt/D=3.4%の鋼管を例に取ると、中心で屈折角45°となるように探触子を配置しても、スキャン幅内で屈折角は31°〜62°と変化してしまい、モード変換ロスが生じない範囲を超えてしまう。   Furthermore, considering that the array transducer is generally linear and the steel pipe has a curvature, as shown in FIG. 16B, an ultrasonic beam is emitted from the array transducer as in the case of a flat steel plate. When the wave is transmitted at a constant angle (90 ° with respect to the probe surface in the figure), the incident angle to the steel pipe does not become a constant angle, and therefore the refraction angle does not become constant. In order to perform tandem flaw detection, the beam scan width from the array transducer is double the wall thickness, and the above steel tube with t / D = 3.4% is taken as an example so that the refraction angle is 45 ° at the center. Even if the probe is arranged on the surface, the refraction angle changes from 31 ° to 62 ° within the scan width, exceeding the range where no mode conversion loss occurs.

従って、上記問題があるので鋼管の曲率を考慮して、溶接面および底面でモード変換ロスが生じないよう屈折角が一定範囲となるようにビームを制御しないと、鋼管を高い感度でタンデム探傷することはできない。管体の溶接面および管体の内面への入射角を上記θ2を考慮して屈折角に変換すると、t/Dが最も小さな値のときで入射角の理論値に対して、屈折角は35゜〜55゜の角度になる。   Therefore, considering the curvature of the steel pipe due to the above problem, the steel pipe is tandemly detected with high sensitivity unless the beam is controlled so that the refraction angle is within a certain range so that mode conversion loss does not occur on the weld surface and bottom surface. It is not possible. When the incident angle to the welded surface of the tube and the inner surface of the tube is converted into a refraction angle in consideration of the above θ2, the refraction angle is 35 with respect to the theoretical value of the incident angle when t / D is the smallest value. The angle is between ゜ and 55 degrees.

つまり、超音波ビームを走査して測定位置を移動させていくと、鋼管への超音波入射角(屈折角)を変化させていくことになるので、モード変換ロスの発生する角度になるのか否かが容易に判断できず、その方法は確立されていなかった。   In other words, if the measurement position is moved by scanning the ultrasonic beam, the ultrasonic incident angle (refractive angle) to the steel pipe will be changed, so whether or not the angle at which mode conversion loss occurs will occur. However, the method was not established.

発明者は、モード変換ロスの発生しないように入射角度を、一例として以下に示す走査線の決定方法により、設定することを実現した。   The inventor has realized that the incident angle is set by the scanning line determination method described below as an example so that no mode conversion loss occurs.

以下、屈折角度は、モード変換ロスが発生しない屈折角度範囲に設定する手順について説明する。   Hereinafter, a procedure for setting the refraction angle to a refraction angle range in which mode conversion loss does not occur will be described.

1)屈折角を決め、アレイ探触子の位置および角度を定める。
1)−1:溶接面への入射角θaを考慮して、屈折角θを決定する。モード変換ロスが発生しない理論的な溶接面への入射角は、33.2°≦θa≦56.8°であり、この範囲内であれば溶接面を管肉厚み方向の内面外面にかけて走査する際に、溶接面への入射角が一定でなく、変化しても構わない。よって、ここでは計算を容易にするために、屈折角θが一定になるようにする例で示す。ここで、溶接面への入射角度θaは、θa=90°−θ−θ1であり、また、θ1は、0〜θ2の範囲で溶接部肉厚方向位置により変化する(例えば、内面側ではθ1=θ2、外面側でθ1=0となる。)。例えば、θ2=4°、屈折角45°のときは、θa=41°〜45°。また、溶接部の管肉厚中心近傍に入射するときに屈折角を47°とすれば、溶接部の肉厚方向中心部でθa=約45°となり、内外面での走査では、θa=43°〜47°の範囲となる。
1)−2:アレイ探触子の中心に位置する振動子から、その探触子面に対して垂直方向に送波されるビームが、所定の屈折角度(例えば、45°)で、横波超音波が鋼管外面側から入射し、溶接面の内面側端(または外面側端)の位置に所定の入射角(例えば、上述の例では41°)で入射するように、アレイ探触子の位置および角度を定める。
1) Determine the refraction angle and determine the position and angle of the array probe.
1) -1: The refraction angle θ is determined in consideration of the incident angle θa to the weld surface. The incident angle on the theoretical weld surface where no mode conversion loss occurs is 33.2 ° ≦ θa ≦ 56.8 °, and within this range, the weld surface is scanned over the inner surface of the pipe in the thickness direction. At this time, the incident angle on the welding surface is not constant and may change. Therefore, here, in order to facilitate the calculation, an example in which the refraction angle θ is made constant is shown. Here, the incident angle θa to the weld surface is θa = 90 ° −θ−θ1, and θ1 varies depending on the position in the thickness direction of the weld in the range of 0 to θ2 (for example, θ1 on the inner surface side). = Θ2 and θ1 = 0 on the outer surface side). For example, when θ2 = 4 ° and a refraction angle of 45 °, θa = 41 ° to 45 °. Further, if the refraction angle is 47 ° when entering the vicinity of the tube thickness center of the welded portion, θa = about 45 ° at the center portion in the thickness direction of the welded portion, and θa = 43 in scanning on the inner and outer surfaces. It is in the range of ° to 47 °.
1) -2: A beam transmitted from a transducer located at the center of the array probe in a direction perpendicular to the probe surface is super transverse wave at a predetermined refraction angle (for example, 45 °). The position of the array probe so that the sound wave enters from the outer surface side of the steel pipe and enters the inner surface side end (or outer surface side end) of the welding surface at a predetermined incident angle (for example, 41 ° in the above example). And determine the angle.

2)アレイ探触子の各振動子から送受波される走査線が管の外面上に入射する位置を決める。
2)−1:決め方は色々あるが、例えば、対象となる振動子(又は振動子の間の位置)について、管外面上を走査して、振動子位置と外面走査位置と外面接線とで決まる屈折角θを算出し、θが1)−1で決めた値になる外面上の入射位置を決定する。具体的には、各振動子から外面上の各点(例えば、各点は外周上に等間隔や任意間隔に配置)とを直線で結んで走査線を定め、それら各走査線について屈折角θを計算し、θが所定の屈折角と同じ、あるいは、最も近い値となる走査線を選択し、その走査線の入射位置とする。
2)−2:振動子位置と上記2)−1で決めた外面上の入射位置と管形状(径と厚さ)から管入射後の伝播経路を幾何学的に求め、溶接面への入射位置を割り出す。
2) The position where the scanning line transmitted / received from each transducer of the array probe enters the outer surface of the tube is determined.
2) -1: There are various methods of determination. For example, the target transducer (or a position between the transducers) is scanned on the outer surface of the tube, and is determined by the transducer position, the outer surface scanning position, and the outer surface tangent. The refraction angle θ is calculated, and the incident position on the outer surface where θ becomes the value determined in 1) −1 is determined. Specifically, a scanning line is defined by connecting each point on the outer surface from each transducer (for example, each point is arranged at equal intervals or arbitrary intervals on the outer circumference) with a straight line, and the refraction angle θ for each of these scanning lines. Is calculated, and a scanning line having the same or the closest value of θ as the predetermined refraction angle is selected and set as the incident position of the scanning line.
2) -2: Geometrically determine the propagation path after pipe incidence from the transducer position, the incident position on the outer surface determined in 2) -1, and the pipe shape (diameter and thickness), and enter the weld surface. Determine the position.

3)上記1)でアレイ探触子の中心で位置決めし、かつ屈折角一定で上記処理をしているので、アレイ探触子中心の走査線を基準として対称的に、溶接面上に2)−2で求めた伝播経路(走査線)のルートの組合せ(ペア)ができる。このペアを送波・受波の走査線とし、送波部・受波部それぞれの中心振動子とする(この振動子を中心に送波部・受波部の振動子群が形成される)。なお、振動子群の数が偶数の場合は、中心位置が振動子の境界に修正されて、上記処理を行う。さらに、ここでは屈折角θ一定として計算したが、溶接面への入射角θaを一定として計算してもよいし、θおよびθaの双方を変化させることも可能である。   3) Positioning is performed at the center of the array probe in the above 1), and the above processing is performed with a constant refraction angle. Therefore, 2) on the welding surface symmetrically with respect to the scanning line at the center of the array probe. The combination (pair) of routes of the propagation path (scan line) obtained in -2. This pair is used as a transmission / reception scanning line, and is used as the central transducer for each of the transmission / reception units (the transducer group of the transmission / reception units is formed around this transducer) . If the number of transducer groups is an even number, the center position is corrected to the boundary of the transducers and the above processing is performed. Further, although the calculation is made here with the refraction angle θ constant, it may be calculated with the incident angle θa to the weld surface constant, or both θ and θa can be changed.

詳細は後述するが、振動子群を適宜制御するまたは曲率をもったアレイ探触子にするようにすれば、入射角、屈折角をモード変換ロスを生じない理論的範囲に収めることができる。なお、横波での探傷に適した屈折角は、およそ30゜〜70゜の範囲で適用できるが、横波が欠陥および内面で反射する際の音圧反射率の角度依存性を考慮すると、全反射となるおよそ35゜〜55゜の範囲がより望ましい。さらに、安定性を考慮して40゜〜50゜の範囲にしてもよい。また、送波と受波の屈折角は同一であることが最も望ましいが、欠陥の反射指向性はブロードであることから、反射指向性の範囲内で異なっていても適用できる。   Although details will be described later, if the transducer group is appropriately controlled or an array probe having a curvature is used, the incident angle and the refraction angle can be within a theoretical range in which no mode conversion loss occurs. The refraction angle suitable for flaw detection with a transverse wave can be applied in the range of approximately 30 ° to 70 °. However, considering the angular dependence of the sound pressure reflectivity when the transverse wave is reflected on the defect and the inner surface, total reflection is considered. A range of approximately 35 ° to 55 ° is more desirable. Furthermore, it may be in the range of 40 ° to 50 ° in consideration of stability. In addition, it is most desirable that the refraction angles of the transmitted wave and the received wave are the same, but since the reflection directivity of the defect is broad, the present invention can be applied even if they are different within the range of the reflection directivity.

上述の説明は、内面に増肉部分が発生しない場合、つまり、管体を真円とした場合を説明したが、実際の管体では、ロットにより、内面に増肉部分が発生する場合があり、真円とならない場合もある。そのような場合には、上述の真円で経路を算出する手順に加えて、図1(a)に例示するような、探傷用アレイ探触子5と肉厚測定用アレイ探触子50を備えた装置構成で、内面形状を求めて、その結果に基づき経路を決定する。つまり、図1(b)に示す如く、溶接部(シーム)2の直上に設けた肉厚測定用アレイ探触子50により肉厚分布を測定し、この結果から内面形状を決定する。そして、この結果を元に、図1(c)に示す如く、内面での反射経路を求めて、タンデム探傷を実現する。   In the above description, the case where the thickened portion does not occur on the inner surface, that is, the case where the pipe body is a perfect circle has been described, but in an actual tubular body, the thickened portion may occur on the inner surface depending on the lot. , It may not be a perfect circle. In such a case, in addition to the above-described procedure for calculating the path with a perfect circle, the flaw detection array probe 5 and the wall thickness measurement array probe 50 as illustrated in FIG. With the device configuration provided, the inner surface shape is obtained, and the route is determined based on the result. That is, as shown in FIG. 1B, the thickness distribution is measured by the thickness measuring array probe 50 provided immediately above the welded portion (seam) 2, and the inner surface shape is determined from the result. And based on this result, as shown in FIG.1 (c), the reflection path | route in an inner surface is calculated | required and a tandem flaw detection is implement | achieved.

具体的には、肉厚を測定し、例えば多項近似式により、内面形状を算出しておく。そして、送波後の伝播経路を、真円であるとして計算して、先の求めた内面(形状近似式)との交点を求める。さらに、内面角度(形状近似式の微分)に基づいて反射経路を求めて、真円として屈折経路を求めるようにする。   Specifically, the wall thickness is measured, and the inner surface shape is calculated by, for example, a polynomial approximation. Then, the propagation path after the wave transmission is calculated as being a perfect circle, and the intersection point with the previously determined inner surface (shape approximate expression) is obtained. Further, the reflection path is obtained based on the inner surface angle (differentiation of the shape approximation formula), and the refraction path is obtained as a perfect circle.

[入射角一定の制御]
曲率を有する管体にタンデム化されたアレイ探触子を適用するに際しては、一般的なアレイ探触子は直線状であってこれを周面に対して配置することから、送波部と受波部を構成する振動子群のアレイ上の位置が変化すると、ある送受信と他の送受信では管体への入射角が変わってしまう。この現象を、管体での伝播経路例を表わす図17にて示す。実線のビームでは送波と受波が成り立っているが、それ以外の破線のビームについては、屈折角が異なっているため、送波と受波の関係が成り立たなくなっていることが分かる。
[Control of constant incident angle]
When applying a tandem array probe to a tube having a curvature, a general array probe is linear and is arranged with respect to the circumferential surface. When the position on the array of the transducer group constituting the wave portion changes, the incident angle to the tube body changes in certain transmission / reception and other transmission / reception. This phenomenon is shown in FIG. 17 showing an example of a propagation path in the tubular body. It can be seen that transmission and reception are established in the solid beam, but the relationship between transmission and reception is not established in the other broken beams because the refraction angles are different.

即ち、送波部はアレイ探触子内に収められても、受波部はアレイ探触子の外の位置(図の破線に示す)になったりして、アレイ探触子の範囲内で、送波部と受波部の振動子群をタンデム構成となるように配置することができなくなる。発明者は、送波側若しくは受波側の少なくとも何れか一方、好ましくは双方の入射角を走査を通じて一定角度に保つようにした。そのようにすると、鋼管などの管体内部の屈折角が一定になるため、上述したような問題はほとんど生じない。   In other words, even if the transmitting section is housed in the array probe, the receiving section is located outside the array probe (shown by the broken line in the figure), and within the range of the array probe. Therefore, it becomes impossible to arrange the transducer group of the transmission unit and the reception unit so as to have a tandem configuration. The inventor kept the incident angle of at least one of the transmission side and the reception side, preferably both, at a constant angle through scanning. If it does so, since the refraction angle inside pipes, such as a steel pipe, will become constant, the above problems will hardly arise.

例えば、図17と同様なアレイ探触子を用いた図2の場合でも屈折角を一定とすることで、全ての送波部と受波部の組合せがアレイ探触子内に収まる。また、屈折角を一定にすると、例えば鋼管の外面側内面側ともに真円であれば送波と受波の位置関係が幾何学的に容易に求まるという利点もある。さらには、鋼管に肉厚の変化があり内面側が真円でない場合でも、送波側若しくは受波側の何れか一方が一定の屈折角であれば、溶接面へ入射して反射した経路までは鋼管の外面側は真円であるから容易に求めることができ、そこから先の経路も内面側の形状を考慮して理論的あるいは実験的に決定することができる。   For example, even in the case of FIG. 2 using an array probe similar to that in FIG. 17, by making the refraction angle constant, all combinations of transmission parts and reception parts can be accommodated in the array probe. Further, if the refraction angle is made constant, for example, if the outer surface side inner surface side of the steel pipe is a perfect circle, there is an advantage that the positional relationship between the transmitted wave and the received wave can be easily obtained geometrically. Furthermore, even if there is a change in the thickness of the steel pipe and the inner surface side is not a perfect circle, if either the transmitting side or the receiving side has a constant refraction angle, the path that is incident on the welding surface and reflected is reflected. Since the outer surface side of the steel pipe is a perfect circle, it can be easily obtained, and the path ahead can be determined theoretically or experimentally in consideration of the shape of the inner surface side.

なお、入射角を一定にする手段は、アレイ探触子から、送波部と受波部に使用する振動子群の各振動子を制御することで実現できる。振動子群の選択は、上述の方法で行えばよいが、他の制御に関する詳細は後述する。   The means for making the incident angle constant can be realized by controlling each transducer of the transducer group used for the transmission unit and the reception unit from the array probe. The selection of the transducer group may be performed by the above-described method, but details regarding other controls will be described later.

また、別の手段としては、アレイ探触子自体を管体と略同曲率となる形状で構成し、振動子を制御させてもよい。   As another means, the array probe itself may be formed in a shape having substantially the same curvature as that of the tube, and the vibrator may be controlled.

[超音波ビームの集束条件]
ペネトレータなどの微小欠陥の高さは数100μm以下と小さいが、集束によって送波ビームおよび受波感度を欠陥に集中させることで反射強度が高められる。発明者は、次式に示す集束係数Jを用いて、微小欠陥の検出可能な条件を導き出した。集束係数Jとは、集束位置での音圧上昇を示した値である。
[Ultrasonic beam focusing conditions]
Although the height of a minute defect such as a penetrator is as small as several hundred μm or less, the reflection intensity can be increased by concentrating the transmitted beam and the received sensitivity on the defect by focusing. The inventor has derived a condition for detecting a minute defect by using a focusing coefficient J represented by the following equation. The focusing coefficient J is a value indicating an increase in sound pressure at the focusing position.

ここで、Dは振動子の開口幅、Fは焦点距離、λは波長である。なお、式(1)において、焦点距離Fと波長λは水中換算の値を用いる。   Here, D is the aperture width of the vibrator, F is the focal length, and λ is the wavelength. In Expression (1), the focal length F and the wavelength λ are values converted into water.

図18は、本発明において必要な集束能を調査した実験例を示す図である。この実験においては、微小ペネトレータを含む電縫管溶接部を、シーム部を挟んで2mmずつにスライス加工したサンプルを用い、種々の集束係数を持つポイントフォーカス探触子を用いてシーム部に焦点を合わせて溶接部をCスキャン探傷した。なお、ここではCスキャンの測定結果で集束係数の範囲を決定しているが、集束係数は異なる方式の超音波探傷法であっても、等価に評価できる指標数値として扱える利点があるので、Cスキャンの結果をそのまま適用できることになる。   FIG. 18 is a diagram showing an experimental example in which the focusing ability required in the present invention is investigated. In this experiment, we used a sample obtained by slicing an ERW welded part including a micro penetrator every 2 mm across the seam, and focused on the seam using a point focus probe with various focusing coefficients. In addition, C-scan flaw detection was performed on the weld. Here, the range of the focusing coefficient is determined by the measurement result of the C scan, but the focusing coefficient has an advantage that it can be treated as an index value that can be evaluated equivalently even if the ultrasonic flaw detection method is different. The result of the scan can be applied as it is.

図18(a)は、Cスキャンの結果から、集束係数とS/Nの関係を求めた結果であり、集束係数Jが高いほど欠陥エコーのS/Nが良いことが示されている。欠陥を断面観察した結果、欠陥Fの高さ(鋼管の径方向における大きさ)はおよそ100μmであった。   FIG. 18A shows the result of obtaining the relationship between the focusing coefficient and S / N from the C-scan result, and shows that the higher the focusing coefficient J, the better the S / N of the defect echo. As a result of cross-sectional observation of the defect, the height of the defect F (size in the radial direction of the steel pipe) was about 100 μm.

一般にオンライン探傷では最低でS/N=6dBは必要であり、望ましくは10dB以上必要である。従って、同図より、欠陥Fと同様な欠陥、または小さな欠陥を検出しようとするならば必要な集束係数は5dB以上、望ましくは10dB以上であることが判明した。   In general, at least S / N = 6 dB is required for online flaw detection, and preferably 10 dB or more is required. Therefore, from the figure, it was found that if a defect similar to the defect F or a small defect is to be detected, the necessary focusing coefficient is 5 dB or more, preferably 10 dB or more.

なお、前述の図10に示した反射特性からすれば、タンデム構成でない従来技術では反射角度が―45°相当になるので、タンデム構成の20%程度しか反射強度が得られない。つまり、従来技術ではタンデム構成に対して感度が約14dB劣っているので、同等のS/Nを得るためには、集束係数を少なくとも20dB程度は必要となる。さらに、従来技術には外乱ノイズが影響を避けられないことも考えれば、それ以上の集束係数の向上が必要になる。このように、本願発明のタンデム構成とビーム集束を組み合わせることがより有効であることが分かった。   According to the reflection characteristics shown in FIG. 10 described above, since the reflection angle is equivalent to −45 ° in the conventional technology that does not have a tandem configuration, the reflection intensity can be obtained only about 20% of the tandem configuration. That is, in the conventional technique, the sensitivity is inferior to about 14 dB with respect to the tandem configuration. Therefore, in order to obtain an equivalent S / N, a focusing coefficient of about 20 dB is required. Further, considering that the influence of disturbance noise is inevitable in the prior art, it is necessary to further improve the focusing coefficient. Thus, it has been found that it is more effective to combine the tandem configuration of the present invention and beam focusing.

また、同様にビーム径とS/Nの関係を求めた結果が図18(b)である。同図より、必要なビーム径は0.7mm以下、望ましくは0.5mm以下であることが判明した。   Similarly, the result of obtaining the relationship between the beam diameter and S / N is FIG. 18B. From the figure, it was found that the required beam diameter is 0.7 mm or less, preferably 0.5 mm or less.

なお、それぞれの集束係数の上限およびビーム径の下限については、鋼管の斜角探傷において、実際に実現可能な範囲として、周波数の上限の範囲は20MHz〜50MHz程度、開口幅の上限の範囲は20mm〜40mm程度、焦点距離の下限の範囲は20mm〜40mm程度であることから、集束係数では24dB〜50dB、ビーム径では30μm〜0.32mmである。なお、周波数が20MHzを超えると鋼中伝播において超音波信号強度の減衰が大きくなるので、周波数の上限を20MHzとすれば、集束係数の上限は40dB、およびビーム径の下限は74μmとするのが好ましい範囲である。   As for the upper limit of each focusing coefficient and the lower limit of the beam diameter, the range of the upper limit of the frequency is about 20 MHz to 50 MHz and the upper limit of the opening width is 20 mm as an actually feasible range in oblique flaw detection of a steel pipe. Since the lower limit range of the focal length is about 20 mm to 40 mm, the focusing coefficient is 24 dB to 50 dB, and the beam diameter is 30 μm to 0.32 mm. When the frequency exceeds 20 MHz, the attenuation of the ultrasonic signal intensity increases in propagation in steel. Therefore, if the upper limit of the frequency is 20 MHz, the upper limit of the focusing coefficient is 40 dB, and the lower limit of the beam diameter is 74 μm. This is a preferred range.

例えば、水距離20mm、鋼中の路程を38mmとすると、焦点距離Fは20mm+(38mm/水中音速1480m/S×鋼中横波音速3230m/S)=103mm、周波数を15MHzとすると、波長λは1480m/S/15MHz=0.1mmであり、集束係数10dBを得るための開口幅Dは、以下の式(2)より求められる。   For example, if the water distance is 20 mm and the path length in the steel is 38 mm, the focal length F is 20 mm + (38 mm / underwater sound speed 1480 m / S × steel wave transverse sound speed 3230 m / S) = 103 mm, and the frequency is 15 MHz, the wavelength λ is 1480 m. / S / 15 MHz = 0.1 mm, and the aperture width D for obtaining a focusing coefficient of 10 dB is obtained from the following equation (2).

式(2)より開口幅Dは、D=11.3mmと求められる。そこで、リニアアレイ探触子の振動子ピッチが例えば0.5mmであれば、振動子群の振動子数は11.3/0.5=約22個と求められる。   From Expression (2), the opening width D is determined as D = 11.3 mm. Therefore, if the transducer pitch of the linear array probe is 0.5 mm, for example, the number of transducers in the transducer group is calculated as 11.3 / 0.5 = about 22.

以上のようにして求められたビームサイズにより振動子群の振動子数は求められるが、これを一定の値とすると、溶接部に近い側ほど焦点距離が短くなるためビーム幅が狭くなり細かい走査ピッチが必要となってしまい、溶接部から遠い側ほど焦点距離が長くなるため集束能が悪化するという問題が生ずる。   The number of transducers in the transducer group can be obtained from the beam size obtained as described above, but if this is a constant value, the closer to the weld, the shorter the focal length, so the beam width becomes narrower and fine scanning is performed. The pitch becomes necessary, and the focal length becomes longer toward the side farther from the welded portion, resulting in a problem that the focusing ability is deteriorated.

そこで、送波用の振動子群および受波用の振動子群の振動子数を、溶接部に近いほど少なく、溶接部から遠いほど多く設定するのが好ましい。このようにすると、溶接部から近い側ほど同時励振の際の開口幅は狭くなるため、焦点距離が短くてもビーム幅が狭くなり過ぎることがなく、溶接部から遠い側ほど同時励振の際の開口幅は広くなるため、焦点距離が長くても集束係数を高めることができ検出能の劣化が生じない。従って、各振動子群からの集束特性を一定に揃えることができるため、内面側から外面側まで均一の検出感度で探傷が可能となる。   Therefore, it is preferable to set the number of transducers of the transmitting transducer group and the receiving transducer group to be smaller as it is closer to the welded portion and larger as it is farther from the welded portion. In this way, the closer to the welded portion, the narrower the opening width at the time of simultaneous excitation, so the beam width does not become too narrow even if the focal length is short. Since the aperture width is wide, the focusing coefficient can be increased even when the focal length is long, and the detection ability does not deteriorate. Accordingly, since the focusing characteristics from each transducer group can be made uniform, flaw detection can be performed with uniform detection sensitivity from the inner surface side to the outer surface side.

しかし、集束係数Jは、焦点距離Fと開口幅Dとをパラメータとして含んでいるので、集束係数が一定または所定範囲内に入るように設定すれば、走査に伴う測定位置による感度変化なく、焦点距離に合わせて開口幅も設定できる。このように、集束係数を用いることによって、走査位置の移動に合わせての計算が非常に容易になるといった効果もある。   However, since the focusing coefficient J includes the focal length F and the aperture width D as parameters, if the focusing coefficient is set to be constant or within a predetermined range, the focus does not change due to the measurement position due to scanning. The opening width can be set according to the distance. Thus, by using the focusing coefficient, there is an effect that the calculation according to the movement of the scanning position becomes very easy.

さらに、リニアアレイ探触子には音響レンズを備えるようにし、音響レンズの焦点距離は、溶接部に近いほど短く、溶接部から遠いほど長く設定すると、管軸方向に関しても集束した送波ビームおよび受波感度が得られ、高い検出能を得ることができる。音響レンズを使うようにしているため、焦点距離の変更はレンズを交換するだけで容易に可能であり、管サイズが変わった場合の設定調整も容易である。   Furthermore, if the linear array probe is provided with an acoustic lens, and the focal length of the acoustic lens is set shorter as it is closer to the welded portion and longer as it is farther from the welded portion, the transmission beam focused in the tube axis direction and Received sensitivity is obtained, and high detectability can be obtained. Since an acoustic lens is used, the focal length can be easily changed by simply exchanging the lens, and setting adjustment when the tube size is changed is also easy.

本願発明に係る実施形態について図を参照して、以下に説明する。図1は、本願発明の原理を説明するための概略図である。本願発明の構成は、図1(a)に示すような、タンデム探傷用のアレイ探触子5に加え、肉厚測定用アレイ探触子50を備えた構成である。
タンデム探傷用のアレイ探触子5は、図2に示すように、鋼管内部に超音波を伝搬させて、探傷を行なう。管体1の管軸方向溶接部2の溶接面に対し送波ビーム8の径が検出対象に合わせて設定された範囲となるようにして、送波部6から超音波を送波し、前記溶接面の微小欠陥3において反射され、その反射波の一部又は全部(受波ビーム9)を受波部7にて受波するようになっている。前記送波部6及び前記受波部7は、管体周方向に配置された一又は二以上のアレイ探触子5上の異なる振動子群からなる。そして、図3に示すように、前記アレイ探触子上で前記送波部及び前記受波部に対応する振動子群を変更する、又は前記アレイ探触子の角度を変更するように制御して前記管体の厚さ方向に走査すると共に、前記溶接面に対する超音波ビームの径が前記範囲に維持されるようになっている。
Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram for explaining the principle of the present invention. The configuration of the present invention is a configuration including an array probe 50 for thickness measurement in addition to the array probe 5 for tandem flaw detection as shown in FIG.
As shown in FIG. 2, the array probe 5 for tandem flaw detection performs flaw detection by propagating ultrasonic waves inside the steel pipe. An ultrasonic wave is transmitted from the wave transmission unit 6 so that the diameter of the transmission beam 8 is set in accordance with the detection target with respect to the welding surface of the tube axis direction welded part 2 of the tube body 1, Reflected by the minute defect 3 on the welding surface, a part or all of the reflected wave (received beam 9) is received by the receiving unit 7. The transmitting unit 6 and the receiving unit 7 are composed of different transducer groups on one or more array probes 5 arranged in the circumferential direction of the tube. Then, as shown in FIG. 3, control is performed so as to change the transducer group corresponding to the transmitting unit and the receiving unit on the array probe, or to change the angle of the array probe. The tube is scanned in the thickness direction, and the diameter of the ultrasonic beam with respect to the weld surface is maintained in the above range.

図3において、走査の開始を示すステップ1では、リニアアレイ探触子の中央近傍の振動子群を用いて、溶接部の鋼管内面側に集束位置(焦点位置)を合わせて、0.5スキップの反射法で探傷を行う。この時は送波と受波は同一の振動子群で行う。次に、ステップ2では、送波の振動子群を溶接部側にずらすとともに、受波の振動子群を溶接部から遠い側にずらし、焦点位置を溶接部の鋼管内面側から少し上(鋼管外面側)に設定することで、タンデム探傷によって溶接部の鋼管内面側から少し上(鋼管外面側)の肉厚内部を探傷する。   In FIG. 3, in step 1 indicating the start of scanning, the transducer group in the vicinity of the center of the linear array probe is used to align the focusing position (focal position) on the inner surface of the steel pipe of the welded portion, and 0.5 skip is performed. The flaw detection method is used. At this time, transmission and reception are performed by the same transducer group. Next, in step 2, the transmitting transducer group is shifted to the welded portion side, the received transducer group is shifted to the far side from the welded portion, and the focal position is slightly above the steel pipe inner surface side of the welded portion (steel pipe By setting to the outer surface side, flaw detection is performed inside the wall a little above (outer surface side of the steel pipe) from the inner surface of the steel pipe of the weld by tandem flaw detection.

引き続き、ステップ3では送波の振動子群を溶接部側に、受波の振動子群を溶接部とは反対側にずらしていき、溶接部における探傷位置を鋼管外面側へと移動させて探傷を行う。図ではステップ2と3のみ図示しているが、実際には超音波の焦点サイズ(焦点位置におけるビームサイズ)を考慮して、探傷の抜け(漏れ)と重複のない効率的な探傷となるように、超音波ビームの一部が重なり合うように振動子群のずらす個数を決定する。最後にステップ4は走査の終了を示しており、溶接部から遠い側の振動子群を用いて、溶接部の外面側を1.0スキップの反射法で探傷を行う。このステップ1〜4を繰り返すとともに、鋼管とリニアアレイ探触子の相対位置を管軸方向に機械的に走査させることで、溶接部の全面全長(鋼管の外面側から内面側まで)にわたって探傷を行うことができる。   Subsequently, in Step 3, the transmitting transducer group is shifted to the welded portion side and the received transducer group is shifted to the opposite side of the welded portion, and the flaw detection position in the welded portion is moved to the outer surface side of the steel pipe. I do. In the figure, only steps 2 and 3 are shown. However, in consideration of the focal point size of the ultrasonic wave (the beam size at the focal position), the flaw detection defect (leakage) and the effective flaw detection without overlapping are actually performed. In addition, the number of transducer groups to be shifted is determined so that a part of the ultrasonic beam overlaps. Finally, step 4 indicates the end of scanning, and flaw detection is performed on the outer surface side of the welded portion by a 1.0-skip reflection method using a group of transducers far from the welded portion. While repeating Steps 1 to 4, the relative position between the steel pipe and the linear array probe is mechanically scanned in the pipe axis direction, so that the entire length of the welded portion (from the outer surface side to the inner surface side) can be detected. It can be carried out.

肉厚測定用アレイ探触子50は、図1(b)に示すように、溶接部(シーム)2の直上で、溶接面に対して略直交する方向にアレイ探触子を配置する。また、肉厚測定用アレイ探触子50は、鋼管内面において、その肉厚が変化する領域(増肉部分が発生する領域)の厚さを測定できる大きさであればよく、肉厚変化が発生する領域とほぼ同じ大きさとすればよい。   As shown in FIG. 1B, the array probe 50 for measuring the thickness is arranged in a direction substantially orthogonal to the welding surface immediately above the welded portion (seam) 2. Moreover, the array probe 50 for thickness measurement should just be the magnitude | size which can measure the thickness of the area | region (area | region where a thickened part generate | occur | produces) where the thickness changes in the inner surface of a steel pipe, and thickness change What is necessary is just to make it the same magnitude | size as the area | region which generate | occur | produces.

そして、肉厚測定用アレイ探触子50の振動子の内、連続する数個の振動子を同時励振して、その振動子の略直下方向に超音波を送波する。そのように、送波された超音波は、管外面にて一部反射され、肉厚測定用アレイ探触子50側にて受波されるが、残りは管内部に入射して、管内面にて反射され、肉厚測定用アレイ探触子50にて受波される。このときの外面と内面との反射波の伝播時間の差を計測することによって、超音波が入射した箇所の肉厚を測定できる。これを、肉厚測定用アレイ探触子50内の送波や受波する振動子を位置を変えて、超音波の入射位置を管周方向に走査することによって、管の肉厚分布を測定でき、この結果から内面形状を算出することができる。   Then, several consecutive transducers among the transducers of the wall thickness measurement array probe 50 are simultaneously excited, and ultrasonic waves are transmitted in a direction substantially directly below the transducers. In this way, the transmitted ultrasonic wave is partially reflected on the outer surface of the tube and received on the side of the array probe 50 for thickness measurement, but the rest is incident on the inside of the tube, and the inner surface of the tube. And is received by the wall thickness measurement array probe 50. By measuring the difference in propagation time of the reflected wave between the outer surface and the inner surface at this time, it is possible to measure the thickness of the portion where the ultrasonic wave is incident. The thickness distribution of the tube is measured by changing the position of the transducer for transmitting and receiving the wave in the wall thickness measuring array probe 50 and scanning the incident position of the ultrasonic wave in the tube circumferential direction. From this result, the inner surface shape can be calculated.

そうして求めた内面形状の結果に基づいて、タンデム探傷用探触子5にて、タンデム探傷により、溶接部を肉厚方向に一様な走査ができる、管体内部の超音波の伝播経路を幾何学的に算出する。そのようにして求めた伝播経路で算出された、入射位置、入射角、屈折角などにしたがって、図1(c)に示すようなタンデム探傷探触子5にて送波・受波を行う。   Based on the inner surface result thus obtained, the tandem flaw detection probe 5 can perform uniform scanning in the thickness direction of the welded portion by tandem flaw detection. Is calculated geometrically. In accordance with the incident position, the incident angle, the refraction angle, etc. calculated in the propagation path thus obtained, the tandem flaw detection probe 5 as shown in FIG.

図4は、本発明に係る超音波探傷装置の機能構成例を示す図である。構成としてはタンデム探傷用を行なうための機能部に、内面形状を算出するための機能部を付加したものである。   FIG. 4 is a diagram showing a functional configuration example of the ultrasonic flaw detector according to the present invention. As a configuration, a functional unit for calculating the inner surface shape is added to a functional unit for performing tandem flaw detection.

タンデム探傷を行なうための機能部は、探傷用リニアアレイ探触子5、被検体サイズ入力部30、アレイ探触子記憶部31、送受信制御部32、ゲート位置記憶部33、アレイ送信則記憶部34、アレイ受信則記憶部35、アレイ送信部36、アレイ受信部37、ゲート部38、判定しきい値入力部39、欠陥判定部40から構成されている。   The functional units for performing tandem flaw detection include a flaw detection linear array probe 5, a subject size input unit 30, an array probe storage unit 31, a transmission / reception control unit 32, a gate position storage unit 33, and an array transmission rule storage unit. 34, an array reception rule storage unit 35, an array transmission unit 36, an array reception unit 37, a gate unit 38, a determination threshold value input unit 39, and a defect determination unit 40.

内面形状を算出するための機能部は、肉厚測定用リニアアレイ探触子50、肉厚測定用送受信制御部51、肉厚測定用ゲート位置記憶部52、肉厚測定用アレイ送信則記憶部53、肉厚測定用アレイ受信則記憶部54、肉厚測定用アレイ送信部55、肉厚測定用アレイ受信部56、肉厚測定用ゲート部57、内面形状算出部58から構成されている。   The functional units for calculating the inner surface shape are a linear array probe 50 for thickness measurement, a transmission / reception control unit 51 for thickness measurement, a gate position storage unit 52 for thickness measurement, and an array transmission rule storage unit for thickness measurement. 53, a wall thickness measurement array reception rule storage unit 54, a wall thickness measurement array transmission unit 55, a wall thickness measurement array reception unit 56, a wall thickness measurement gate unit 57, and an inner surface shape calculation unit 58.

まず、タンデム探傷の機能部から説明する。被検体サイズ入力部30では、オペレータあるいはプロセスコンピュータから、タンデム探傷を行う鋼管の外径、肉厚の値が入力される。さらに、タンデム探傷を行なう前に算出された内面形状のデータを、内面形状算出部58から入力する。また、アレイ探触子記憶部31には、アレイ探触子5の周波数、振動子ピッチ、振動子数が記憶されている。   First, the function part of tandem flaw detection will be described. In the object size input unit 30, values of the outer diameter and thickness of the steel pipe that performs tandem flaw detection are input from an operator or a process computer. Further, data of the inner surface shape calculated before performing the tandem flaw detection is input from the inner surface shape calculating unit 58. The array probe storage unit 31 stores the frequency, transducer pitch, and number of transducers of the array probe 5.

送受信制御部32では、鋼管のサイズ、アレイ探触子の仕様、内面形状に応じて、送波用アレイ探触子の位置、送波用走査線の数、各走査線の送波用ビームの経路、各走査線の送波用振動子群の振動子数、送波用振動子群の位置、焦点距離、偏向角を計算し、さらに走査線毎に各振動子の遅延時間を計算する。このように決定された上記の各値をここではアレイ送信則と呼ぶ。   In the transmission / reception control unit 32, the position of the transmission array probe, the number of transmission scanning lines, the number of transmission beams of each scanning line, according to the size of the steel pipe, the specifications of the array probe, and the inner surface shape. The path, the number of transducers of the transmission transducer group for each scanning line, the position of the transducer group for transmission, the focal length, and the deflection angle are calculated, and the delay time of each transducer is calculated for each scanning line. Each value determined in this way is referred to herein as an array transmission rule.

送受信制御部32では、又、鋼管のサイズ、アレイ探触子の仕様、内面形状に応じて、アレイ探触子の位置、受波用走査線の数、各走査線の受波用ビームの経路、各走査線の受波用振動子群の振動子数、受波用振動子群の位置、焦点距離、偏向角を計算し、さらに走査線毎に各振動子の遅延時間を計算する。このように決定された上記の各値をここではアレイ受信則と呼ぶ。さらに、送受信制御部32にて計算されたビームの経路に基づき欠陥検出用のゲート位置を決定してゲート位置記憶部33に記憶する。   In the transmission / reception control unit 32, the position of the array probe, the number of reception scanning lines, and the path of the reception beam of each scanning line according to the size of the steel pipe, the specification of the array probe, and the inner surface shape. The number of transducers of the receiving transducer group for each scanning line, the position of the receiving transducer group, the focal length, and the deflection angle are calculated, and the delay time of each transducer is calculated for each scanning line. Each of the above values determined in this way is referred to herein as an array reception rule. Furthermore, a defect detection gate position is determined based on the beam path calculated by the transmission / reception control unit 32 and stored in the gate position storage unit 33.

なお、ここで、アレイ受信則は先に求めたアレイ送信則に基づいて決定しても良いし、反対にアレイ受信則を先に求めてそれに基づいてアレイ送信則を決定しても良い。このようにして決定されたアレイ送信則とアレイ受信則はそれぞれアレイ送信則記憶部34とアレイ受信則記憶部35にて記憶され、以下の送受信制御に用いられる。   Here, the array reception rule may be determined based on the previously obtained array transmission rule, or conversely, the array reception rule may be determined first and the array transmission rule may be determined based thereon. The array transmission rule and the array reception rule determined in this way are stored in the array transmission rule storage unit 34 and the array reception rule storage unit 35, respectively, and used for the following transmission / reception control.

アレイ送信部36では、アレイ送信則記憶部34に記憶されたアレイ送信則に基づいて、送波用の振動子群を選択し、各素子に遅延時間を付けて送信パルスを発生する。アレイ受信部37では、アレイ受信則記憶部35に記憶されたアレイ受信則に基づいて、受波用の振動子群を選択し、各素子に遅延時間を付けて信号を加算し、探傷波形を得る。ゲート部38では、ゲート部記憶部33に記憶されたゲート位置の信号を抽出する。   The array transmission unit 36 selects a transmission transducer group based on the array transmission rule stored in the array transmission rule storage unit 34, and generates a transmission pulse with a delay time added to each element. The array receiving unit 37 selects a transducer group for receiving waves based on the array receiving rule stored in the array receiving rule storage unit 35, adds a signal with a delay time to each element, and generates a flaw detection waveform. obtain. The gate unit 38 extracts a gate position signal stored in the gate storage unit 33.

欠陥判定部40では、判定しきい値入力部39に入力された欠陥判定しきい値と、ゲート内の信号強度とを比較し、信号強度がしきい値以上であれば欠陥と判定する。このようにして1走査線の探傷が終了したら、アレイ送信則記憶部34に記憶されたアレイ送信則に基づいて、次の送波用の振動子群を選択し、以下上記と同様に探傷を繰り返し行う。なお、欠陥の判定については、信号強度がしきい値以上となる場合が複数回あった時に欠陥と判定するようにしても良い。   The defect determination unit 40 compares the defect determination threshold value input to the determination threshold value input unit 39 with the signal intensity in the gate, and determines that the defect is a defect if the signal intensity is equal to or greater than the threshold value. When the flaw detection for one scanning line is completed in this way, the next transducer group for transmission is selected based on the array transmission rule stored in the array transmission rule storage unit 34, and the flaw detection is performed in the same manner as described above. Repeat. In addition, regarding the determination of the defect, the defect may be determined when the signal intensity is equal to or more than a threshold value a plurality of times.

次に、内面形状算出するための機能部を説明する。肉厚測定用送受信制御部51では、被検体サイズ入力部30で入力したサイズデータを、送受信制御部32経由で入力し、そのデータに応じて、肉厚測定用リニアアレイ探触子の位置、送受波ビームの経路、各走査線の振動子群の振動子数、振動子群の位置、焦点距離、偏向角などの、肉厚測定用アレイ送信則と肉厚測定用アレイ受信則を算出する。   Next, a functional unit for calculating the inner surface shape will be described. In the thickness measurement transmission / reception control unit 51, the size data input by the subject size input unit 30 is input via the transmission / reception control unit 32, and according to the data, the position of the thickness measurement linear array probe, Calculate the array transmission rule for wall thickness measurement and the array reception rule for wall thickness measurement, such as the path of the transmission / reception beam, the number of transducers of the transducer group of each scanning line, the position of the transducer group, the focal length, and the deflection angle. .

さらに、肉厚測定用送受信制御部51にて計算されたビームの経路に基づき肉厚測定用の外面反射波と内面反射波を検出するための、ゲート位置を決定して肉厚測定用ゲート位置記憶部52に記憶する。   Further, the thickness measurement gate position is determined by determining the gate position for detecting the outer surface reflection wave and the inner surface reflection wave for the wall thickness measurement based on the beam path calculated by the wall thickness measurement transmission / reception control unit 51. Store in the storage unit 52.

このようにして決定された肉厚測定用アレイ送信則と肉厚測定用アレイ受信則は、それぞれ肉厚測定用アレイ送信則記憶部53と肉厚測定用アレイ受信則記憶部54にて記憶され、以下の肉厚測定のための送受信制御に用いられる。   The wall thickness measurement array transmission rule and the wall thickness measurement array reception rule thus determined are stored in the wall thickness measurement array transmission rule storage unit 53 and the wall thickness measurement array reception rule storage unit 54, respectively. It is used for transmission / reception control for the following wall thickness measurement.

肉厚測定用アレイ送信部55では、肉厚測定用アレイ送信則記憶部53に記憶された肉厚測定用アレイ送信則に基づいて、送波用の振動子群を選択し、各素子から送信パルスを発生し、管周方向に走査する。肉厚測定用アレイ受信部56では、肉厚測定用アレイ受信則記憶部54に記憶された肉厚測定用アレイ受信則に基づいて、受波用の振動子群を選択し、各素子の受波信号を加算し、各走査位置にて肉厚測定用の信号波形を得る。肉厚測定用ゲート部57では、肉厚測定用ゲート位置記憶部52に記憶されたゲート位置の信号を抽出し、外面反射波と内面反射波を含む信号を得る。   The wall thickness measurement array transmission unit 55 selects a transducer group for transmission based on the wall thickness measurement array transmission rule stored in the wall thickness measurement array transmission rule storage unit 53 and transmits it from each element. A pulse is generated and scanned in the tube circumferential direction. The wall thickness measurement array receiver 56 selects a receiving transducer group based on the wall thickness measurement array reception rule stored in the wall thickness measurement array reception rule storage unit 54 and receives each element. Wave signals are added, and a signal waveform for thickness measurement is obtained at each scanning position. The thickness measurement gate unit 57 extracts the signal of the gate position stored in the thickness measurement gate position storage unit 52, and obtains a signal including an external reflection wave and an internal reflection wave.

内面形状算出部58では、外面反射波と内面反射波との伝搬時間の違いから、各走査位置における肉厚を求め、肉厚分布を算出する。更に、その結果から内面形状を導出する。
このように導出された内面形状は、内面形状算出部58から、送受信制御部32に出力される。
The inner surface shape calculation unit 58 obtains the thickness at each scanning position from the difference in propagation time between the outer surface reflected wave and the inner surface reflected wave, and calculates the thickness distribution. Further, the inner surface shape is derived from the result.
The inner surface shape derived in this way is output from the inner surface shape calculation unit 58 to the transmission / reception control unit 32.

ここで、内面増肉に対応する処理は、図5に示すような手順で行なわれる。   Here, the processing corresponding to the inner surface thickening is performed in the procedure as shown in FIG.

即ち、まずステップS1で、シーム2の直上に入射角0°で配置した肉厚測定用アレイ探触子50を用いて、管周方向の肉厚分布を測定する。肉厚測定用アレイ探触子は溶接部の略直上に配置し、その肉厚測定用アレイ探触子の中の、数個〜数十個の振動子からなる振動子群を用いて、管体外面での入射角0°となるようにして、超音波を送波する。送波された超音波は管体の外面表面で反射されるとともに、管体内部に伝播して、内面において反射する。この外面と内面での反射波を肉厚測定用アレイ探触子で受信し、その波形から、内面形状算出部では、その伝搬時間の差から入射位置における肉厚が求まる。また、超音波の送波は、管周方向に走査されるので、各走査位置において肉厚を求めれば、管周方向の肉厚分布を算出できる。その際、ビームは管の中心へ向かう方向に設定する。なお、偏向角をつけても良いし、開口を狭くして指向角を拡げても良い。測定結果の一例を図6に示す。横軸のX座標は、管体の中心を原点座標として、外面の水平方向の位置座標である。X座標が0の位置が、溶接部に対応する。また、縦軸は外面のX座標において、そこから中心に向かったときの肉厚の値である。真円であれば、均一な値を示すが、ここでは内面の増肉部があるために、溶接部から両側にずれた位置で肉厚が増え、それより外側になると薄くなっていくのがわかる。   That is, first, in step S1, the wall thickness distribution in the tube circumferential direction is measured using the wall thickness measuring array probe 50 arranged at an incident angle of 0 ° directly above the seam 2. The array probe for wall thickness measurement is arranged almost directly above the welded part, and a tube group consisting of several to several tens of transducers in the array probe for wall thickness measurement is used. Ultrasonic waves are transmitted so that the incident angle on the outer surface is 0 °. The transmitted ultrasonic wave is reflected on the outer surface of the tube, propagates inside the tube, and is reflected on the inner surface. The reflected wave on the outer surface and the inner surface is received by the array probe for thickness measurement, and from the waveform, the inner surface shape calculation unit finds the thickness at the incident position from the difference in propagation time. Further, since the ultrasonic wave is scanned in the tube circumferential direction, the thickness distribution in the tube circumferential direction can be calculated by obtaining the wall thickness at each scanning position. At that time, the beam is set in a direction toward the center of the tube. Note that a deflection angle may be set, or the opening angle may be narrowed to widen the directivity angle. An example of the measurement result is shown in FIG. The X coordinate on the horizontal axis is the horizontal position coordinate of the outer surface with the center of the tube as the origin coordinate. The position where the X coordinate is 0 corresponds to the weld. The vertical axis represents the value of the wall thickness when moving from the X coordinate of the outer surface toward the center. If it is a perfect circle, it shows a uniform value, but here there is a thickened part on the inner surface, so the thickness increases at a position shifted to both sides from the welded part, and it becomes thinner at the outer side. Recognize.

次いでステップS2で、内面形状を決定する。具体的には、まず、(1)各走査線のアレイ探触子50上の位置と、鋼管1との位置関係から、肉厚測定時のビームの管外面側の各入射位置を求める。次いで、(2)その各入射位置と、ステップS1で求めた肉厚から、ビームの内面に当たる部分の各座標を求める。次いで、(3)それらの各座標から、内面形状を多項式やスプライン関数で近似する。結果を図7に示す。横軸は、図6と同じである。縦軸Y座標は、管体中心を原点として鉛直方向の内面の位置座標を示したものである。図7の形状は、図6の形状の上下反転させたものである。図7において、真円であれば、X=0でY座標が最大となる円弧となるが、円弧の形状でないため、真円でないことがわかる。   Next, in step S2, the inner surface shape is determined. Specifically, first, (1) each incident position on the outer surface side of the beam at the time of wall thickness measurement is obtained from the position relationship between each scanning line on the array probe 50 and the steel pipe 1. Next, (2) each coordinate of the portion that hits the inner surface of the beam is obtained from each incident position and the thickness obtained in step S1. Next, (3) the inner surface shape is approximated by a polynomial or a spline function from these coordinates. The results are shown in FIG. The horizontal axis is the same as in FIG. The vertical axis Y-coordinate indicates the position coordinate of the inner surface in the vertical direction with the tube center as the origin. The shape shown in FIG. 7 is obtained by inverting the shape shown in FIG. In FIG. 7, if it is a perfect circle, it becomes an arc having the maximum Y coordinate when X = 0, but it is not a perfect circle because it is not an arc shape.

次いでステップS3で、真円としてパスを計算する。具体的には、まず、(1)肉厚測定用アレイ探触子50を、中央部分のビームが内面に当たるような配置とする。次いで、(2)斜角探傷用アレイ探触子5の各振動子の座標を求める。次いで、(3)各振動子の座標と、同時励振素子数から、斜角用の各走査線のアレイ5上の各位置を求める。次いで、(4)各走査線の入射角(=屈折角)が一定となる管外面側の各入射位置を、鋼管1のサイズ、水4と鋼の音速、(3)で求めた斜角用各走査線のアレイ5上の各位置とから、スネルの法則に基づいて求める。次いで、(5)管外面側の各入射位置と鋼管サイズから、鋼管を真円と見做して、シーム部2への経路を各走査線毎に決定する。次いで、(6)シーム部へ入射したビームが正反射する角度を求め、内面へ向かうビームの経路を各走査線毎に決定する。   Next, in step S3, a path is calculated as a perfect circle. Specifically, first, (1) the array probe 50 for measuring the thickness is arranged so that the beam of the central portion hits the inner surface. Next, (2) coordinates of each transducer of the oblique angle flaw detection array probe 5 are obtained. Next, (3) each position on the array 5 of each scanning line for oblique angles is obtained from the coordinates of each transducer and the number of simultaneous excitation elements. Next, (4) each incident position on the pipe outer surface side where the incident angle (= refraction angle) of each scanning line is constant is the size of the steel pipe 1, the sound speed of water 4 and steel, and the oblique angle obtained in (3). From each position of each scanning line on the array 5, it is obtained based on Snell's law. Next, (5) from each incident position on the pipe outer surface side and the steel pipe size, the steel pipe is regarded as a perfect circle, and the path to the seam portion 2 is determined for each scanning line. Next, (6) the angle at which the beam incident on the seam part is regularly reflected is obtained, and the beam path toward the inner surface is determined for each scanning line.

なお、(4)で各素子数の偏向角を、(5)でアレイ探触子5からシーム2までの鋼中距離及び水距離から、各走査線の焦点距離を求めておく。   The focal length of each scanning line is obtained from (4) the deflection angle of each element number and (5) from the steel intermediate distance from the array probe 5 to the seam 2 and the water distance.

次いでステップS4で、内面近似式と、ステップS3の(5)で求めたビーム経路との交点を、各走査線毎に決定する。次いでステップS5で、内面角度に基づいて反射経路を求める。具体的には、(1)内面近似式の微分値から、交点における内面の角度を求め、内面に入射する角度を各走査線毎に決定する。次いで、(2)内面に入射する角度から、内面で反射して外面へ向かうビームの経路を各走査線毎に決定する。次いで、(3)外面に入射する部分の各座標を各走査線毎に決定する。次いで、(4)外面に入射する角度を各走査線毎に決定する。   Next, in step S4, an intersection point between the inner surface approximation formula and the beam path obtained in step S3 (5) is determined for each scanning line. Next, in step S5, a reflection path is obtained based on the inner surface angle. Specifically, (1) the angle of the inner surface at the intersection is obtained from the differential value of the inner surface approximate expression, and the angle incident on the inner surface is determined for each scanning line. Next, (2) a beam path reflected from the inner surface and directed toward the outer surface is determined for each scanning line from the angle of incidence on the inner surface. Next, (3) the coordinates of the portion incident on the outer surface are determined for each scanning line. Next, (4) the angle of incidence on the outer surface is determined for each scanning line.

次いでステップS6に進み、鋼管が真円であるとして、鋼管のサイズ、水と鋼の音速、ステップS5の(4)の角度から、スネルの法則に基づいて、屈折する経路を、各走査線毎に決定する。   Next, in step S6, assuming that the steel pipe is a perfect circle, the refraction path based on Snell's law is determined for each scanning line from the size of the steel pipe, the speed of sound of water and steel, and the angle of step S5 (4) To decide.

次いでステップS7で、(1)アレイ探触子5に入射する位置を各走査線毎に求め、各走査線のタンデムペア振動子群(振動子番号)を決定する。次いで(2)アレイ探触子5に入射する角度を各走査線毎に求め、各走査線の受波時の偏向角を求める。次いで、(3)シーム2からアレイ探触子5までの鋼中距離及び水距離を各走査線毎に求め、各走査線の受波時の焦点距離を求める。   Next, in step S7, (1) a position incident on the array probe 5 is obtained for each scanning line, and a tandem pair transducer group (transducer number) of each scanning line is determined. Next, (2) the angle of incidence on the array probe 5 is determined for each scanning line, and the deflection angle when receiving each scanning line is determined. Next, (3) the distance in the steel and the water distance from the seam 2 to the array probe 5 are obtained for each scanning line, and the focal length when receiving each scanning line is obtained.

次いでステップS8で、送波及び受波の各走査線の各振動子の遅延時間を、各走査線の偏向角と焦点距離とから求める。   Next, in step S8, the delay time of each transducer of each scanning line for transmission and reception is obtained from the deflection angle and focal length of each scanning line.

求め方は、特許文献2や非特許文献1などの公知文献に開示された方法で実現可能であるが、ここでは、その一例として、具体的な計算の基本的な考え方を、以下に図8および数式を参照して説明する。まず、振動子群の中心位置を座標の原点とし、焦点距離をF、偏向角をθとして、焦点位置の座標{Xf,Yf}を以下のように求める。   The calculation method can be realized by a method disclosed in known documents such as Patent Document 2 and Non-Patent Document 1, but here, as an example, a basic concept of a specific calculation is shown in FIG. It demonstrates with reference to a numerical formula. First, the coordinates {Xf, Yf} of the focal position are obtained as follows, where the center position of the transducer group is the origin of coordinates, the focal length is F, and the deflection angle is θ.

Xf=F・sinθ,Yf=−F・cosθ     Xf = F · sinθ, Yf = −F · cosθ

次に振動子ピッチをP、振動子群の振動子数をn(ただし、nは偶数)として、各振動子の座標{Xp(i),Yp(i)}を求める。   Next, assuming that the transducer pitch is P and the number of transducers in the transducer group is n (where n is an even number), the coordinates {Xp (i), Yp (i)} of each transducer are obtained.

Xp(i)=−n・p/2−p/2+p・i,Yp(i)=0 (i=1〜n)     Xp (i) =-n.p / 2-p / 2 + p.i, Yp (i) = 0 (i = 1 to n)

さらに、焦点位置と各振動子との距離Z(i)およびその最大値Zmを次のように求める。   Further, the distance Z (i) between the focal position and each transducer and the maximum value Zm thereof are obtained as follows.

Z(i)=SQRT{(Xf−Xp(i))2+(Yf−Yp(i))2} (i=1〜n)
Zm=max{Z(i)} (i=1〜n)
Z (i) = SQRT {(Xf−Xp (i)) 2 + (Yf−Yp (i)) 2 } (i = 1 to n)
Zm = max {Z (i)} (i = 1 to n)

最後に、次式で遅延時間Δt(i)を求める。なお、Cは音速である。   Finally, the delay time Δt (i) is obtained by the following equation. C is the speed of sound.

Δt(i)=(Zm−Z(i))/C (i=1〜n)     Δt (i) = (Zm−Z (i)) / C (i = 1 to n)

なお、上記は計算の基本的な考え方を示したものであって、各走査線のそれぞれについて振動子群の中心位置を座標の原点とする必要は必ずしもない。また、振動子数nは偶数として説明したが、奇数であってもよい。奇数の場合には、上記式を一部変更すれば適用可能であることはいうまでもない。実際の計算においては、予めアレイ探触子の素子それぞれの座標を決めておき、焦点距離と偏向角に応じて焦点位置の座標を求め、上記焦点位置と各振動子との距離Z(i)を求めるようにすれば良い。   The above shows the basic concept of calculation, and the center position of the transducer group does not necessarily have to be the coordinate origin for each scanning line. Moreover, although the number n of vibrators has been described as an even number, it may be an odd number. In the case of an odd number, it is needless to say that the above formula can be applied if it is partially changed. In actual calculation, the coordinates of each element of the array probe are determined in advance, the coordinates of the focal position are obtained according to the focal length and the deflection angle, and the distance Z (i) between the focal position and each transducer. Should be asked.

上述の方法により、内面側に増肉があるサンプルについて、厚み方向に対して、φ1.6mmのドリルホールをあけて、内部形状を補正した場合と内部形状を補正しない場合での感度変化の違いを確認した。その実験結果を図9に示す。内面形状を補正しない場合は、1/2t(管厚の半分)より外面側で大きく感度が低下し、感度差が20dB程度となっている。一方で、内面形状を測定し、その測定結果に基づいて、タンデム探傷の伝搬経路を補正して、探傷条件を設定して、計測を行なうと、感度差が6dB以内に改善可能であることが確認できた。   The difference in sensitivity between the case where the inner shape is corrected and the case where the inner shape is not corrected by drilling a φ1.6 mm drill hole in the thickness direction for the sample with the thickening on the inner surface side by the above method It was confirmed. The experimental results are shown in FIG. When the inner surface shape is not corrected, the sensitivity is greatly reduced on the outer surface side from 1 / 2t (half the tube thickness), and the sensitivity difference is about 20 dB. On the other hand, if the inner surface shape is measured, the propagation path of tandem flaw detection is corrected based on the measurement result, flaw detection conditions are set, and measurement is performed, the sensitivity difference can be improved within 6 dB. It could be confirmed.

本実施例において探傷条件の計算は、まず各走査線の入射点を決めてから、順次計算を行っていったが、これに限られることなく、例えば、焦点位置を決めてから、その焦点位置に至る伝播時間が最も短い経路を各振動子について探索的に求めるようにしても良い。   In this embodiment, the flaw detection conditions are calculated by first determining the incident point of each scanning line and then calculating sequentially. However, the present invention is not limited to this. For example, after determining the focal position, the focal position is determined. Alternatively, the path with the shortest propagation time may be searched for each transducer.

なお、タンデム探傷用のアレイ探触子は、リニアアレイ探触子として説明したが、その形状がリニアアレイ型でなくとも、曲率をもったアレイ探触子でもよいし、また1つの探触子でなくとも、例えば、溶接面を内面側と外面側とに分割し、その内面側を検査するための探触子と外面側を検査するために2つの探触子の構成としてもよい。また、溶接面の厚み方向に走査は、電子的に行なったが、機械的に探触子を移動あるいは回転などをしてもよい。また、複数の探触子の構成とする場合には、リニアアレイ探触子と曲率をもった探触子の組合せ、電子的な走査と機械的な操作など、適宜組み合わせて、構成してもよい。   Although the array probe for tandem flaw detection has been described as a linear array probe, it may be an array probe having a curvature, even if the shape is not a linear array type, or a single probe. For example, the welding surface may be divided into an inner surface side and an outer surface side, and a probe for inspecting the inner surface side and two probes for inspecting the outer surface side may be used. The scanning in the thickness direction of the weld surface is performed electronically, but the probe may be mechanically moved or rotated. In the case of a configuration of a plurality of probes, it may be configured by appropriately combining a combination of a linear array probe and a probe having a curvature, electronic scanning and mechanical operation. Good.

本発明の第1の実施例を説明する図The figure explaining 1st Example of this invention 第1の実施例における斜角探傷の様子を示す図The figure which shows the mode of the bevel flaw detection in 1st Example 同じく走査の手順例を示す図The figure which shows the example of the procedure of scanning similarly 同じく本発明に係る超音波探傷装置の機能構成例を示す図The figure which similarly shows the function structural example of the ultrasonic flaw detector based on this invention 第1の実施例の処理手順を示す流れ図The flowchart which shows the process sequence of 1st Example. 第1の実施例で測定された肉厚の一例を示す図The figure which shows an example of the wall thickness measured in the 1st Example 第1の実施例で決定された内面形状の一例を示す図The figure which shows an example of the inner surface shape determined in the 1st Example 各振動子に与える遅延時間の計算を説明する図Diagram explaining the delay time given to each transducer 内面増肉が大きいサンプルでの本発明の有無による効果の差を示す図The figure which shows the difference of the effect by the presence or absence of this invention in the sample whose internal wall thickness is large 欠陥の大きさと反射指向性の関係を説明する図Diagram explaining the relationship between defect size and reflection directivity 反射特性を説明する図Diagram explaining reflection characteristics 非タンデム構成とタンデム構成との比較を模式的に示す図Diagram showing a comparison between non-tandem and tandem configurations 非タンデム構成をとる従来法とタンデム探傷法との比較例を示す図The figure which shows the comparative example of the conventional method and the tandem flaw detection method which take non-tandem constitution 被検査管体に設けたドリル穴を説明する図The figure explaining the drill hole provided in the inspection pipe 平鋼板でのモード変換ロスを説明する図Diagram explaining mode conversion loss in flat steel plate 鋼管でのモード変換ロスを説明する図Diagram explaining mode conversion loss in steel pipe 管体での伝播経路例を表わす図Diagram showing an example of a propagation path in a tube 本発明において必要な集束能を調査した実験例を示す図The figure which shows the experiment example which investigated the focusing ability required in this invention

符号の説明Explanation of symbols

1…鋼管
2…溶接部(シーム)
3…欠陥
4…水
5…探傷用リニアアレイ探触子
6…送波用の振動子群
7…受波用の振動子群
8…送波ビーム
9…受波ビーム
30…被検体サイズ入力部
31…アレイ探触子記憶部
32…開口幅制御部
33…ゲート位置記憶部
34…アレイ送信則記憶部
35…アレイ受信則記憶部
36…アレイ送信部
37…アレイ受信部
38…ゲート部
39…判定しきい値入力部
40…欠陥判定部
50…肉厚測定用リニアアレイ探触子
1 ... Steel pipe 2 ... Welded part (Seam)
DESCRIPTION OF SYMBOLS 3 ... Defect 4 ... Water 5 ... Linear array probe for flaw detection 6 ... Transmitter transducer group 7 ... Receiver transducer group 8 ... Transmit beam 9 ... Receive beam 30 ... Subject size input part DESCRIPTION OF SYMBOLS 31 ... Array probe memory | storage part 32 ... Aperture width control part 33 ... Gate position memory | storage part 34 ... Array transmission rule memory | storage part 35 ... Array reception rule memory | storage part 36 ... Array transmission part 37 ... Array receiving part 38 ... Gate part 39 ... Determination threshold value input unit 40 ... Defect determination unit 50 ... Linear array probe for wall thickness measurement

Claims (2)

管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部と、
管体の肉厚分布を測定するための肉厚測定用探触子と、
該肉厚測定用探触子で測定した肉厚分布に基づいて、前記探傷用アレイ探触子を用いて、管体の厚さ方向に走査するための超音波の伝播経路を算出する伝播経路算出手段と、
算出された伝播経路に基づいて、前記探傷用アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更するように制御して、管体の厚さ方向に走査する制御を行なう制御部と、
を備えたことを特徴とする管体の超音波探傷装置。
A wave transmitting portion that makes ultrasonic waves incident on the welding surface of the welded portion in the tube axial direction of the tubular body, and a wave receiving portion that receives a part or all of the reflected wave reflected by the welded portion. A wave transmitting portion and a wave receiving portion are composed of different transducer groups on one or two or more flaw detection array probes arranged in the circumferential direction of the tube, and
A thickness measuring probe for measuring the thickness distribution of the tube;
Propagation path for calculating ultrasonic propagation path for scanning in the thickness direction of the tube using the array probe for flaw detection based on the thickness distribution measured by the thickness measurement probe A calculation means;
Based on the calculated propagation path, the probe said on wound array probe transmitting section and with due controlled so to change the corresponding transducer groups on the wave receiver, the scanning in the thickness direction of the tubular body A control unit for performing control,
An ultrasonic flaw detection apparatus for a tubular body, comprising:
管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部とを備えた管体の超音波探傷装置で管体を探傷する際に、
管体の肉厚分布を測定し、
測定した肉厚分布に基づいて、前記探傷用アレイ探触子を用いて、管体の厚さ方向に走査するための超音波の伝播経路を算出し、
算出された伝播経路に基づいて、前記探傷用アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更するように制御して、管体の厚さ方向に走査することを特徴とする管体の超音波探傷方法。
A wave transmitting portion that makes ultrasonic waves incident on the welding surface of the welded portion in the tube axial direction of the tubular body, and a wave receiving portion that receives a part or all of the reflected wave reflected by the welded portion. A tube is an ultrasonic flaw detector having a wave section and a wave receiving section, each of which includes a transmitter / receiver section including different transducer groups on one or more flaw detection array probes arranged in the circumferential direction of the pipe body. When testing your body,
Measure the wall thickness distribution of the tube,
Based on the measured thickness distribution, using the array probe for flaw detection, calculate the propagation path of ultrasonic waves for scanning in the thickness direction of the tube,
Based on the calculated propagation path, the probe said on wound array probe transmitting section and with due controlled so to change the corresponding transducer groups on the wave receiver, the scanning in the thickness direction of the tubular body An ultrasonic flaw detection method for a tubular body characterized by:
JP2007131981A 2007-05-17 2007-05-17 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body Active JP5003275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131981A JP5003275B2 (en) 2007-05-17 2007-05-17 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131981A JP5003275B2 (en) 2007-05-17 2007-05-17 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body

Publications (2)

Publication Number Publication Date
JP2008286640A JP2008286640A (en) 2008-11-27
JP5003275B2 true JP5003275B2 (en) 2012-08-15

Family

ID=40146499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131981A Active JP5003275B2 (en) 2007-05-17 2007-05-17 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body

Country Status (1)

Country Link
JP (1) JP5003275B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797375B2 (en) * 2009-11-18 2015-10-21 Jfeスチール株式会社 ERW steel pipe manufacturing method
JP5731765B2 (en) * 2010-07-12 2015-06-10 株式会社東芝 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5909870B2 (en) * 2011-04-27 2016-04-27 Jfeスチール株式会社 WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5909873B2 (en) * 2011-05-12 2016-04-27 Jfeスチール株式会社 Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
ES2745122T3 (en) * 2011-07-15 2020-02-27 Toshiba Kk Ultrasonic flaw detector and ultrasonic flaw detection method for objects having complex surface shape
JP2013156166A (en) * 2012-01-30 2013-08-15 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection method
JP5854141B2 (en) 2012-07-17 2016-02-09 Jfeスチール株式会社 Ultrasonic measurement method and ultrasonic measurement apparatus
CN105067702B (en) * 2015-07-28 2017-12-01 天津市特种设备监督检验技术研究院 One kind closure threeway welding line ultrasonic phased array lossless detection method
RU2613567C1 (en) * 2015-11-26 2017-03-17 Соколов Игорь Вячеславович, RU, Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ", RU Method for ultrasonic nondestructive inspection
JP7109980B2 (en) * 2018-04-26 2022-08-01 株式会社東芝 Ultrasonic measuring device, ultrasonic measuring method, and joining method of members
CN110763765A (en) * 2019-11-29 2020-02-07 中国石油天然气集团公司管材研究所 Seamless steel pipe multi-channel non-contact automatic ultrasonic detection system and method
CN112305073B (en) * 2020-10-26 2024-01-19 西安热工研究院有限公司 Ultrasonic detection method for weld toe cracks of sliding pair of boiler heating surface pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667750A (en) * 1979-11-08 1981-06-08 Kawasaki Steel Corp Automatic ultrasonic flaw detecting method
JPS6396551A (en) * 1986-10-14 1988-04-27 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector
JPH11183446A (en) * 1997-12-25 1999-07-09 Nkk Corp Method and apparatus for ultrasonic flaw detection of weld
JP3731369B2 (en) * 1999-02-03 2006-01-05 Jfeスチール株式会社 Ultrasonic flaw detection method for welded pipe
JP4544240B2 (en) * 2005-11-21 2010-09-15 Jfeスチール株式会社 Tubular ultrasonic inspection apparatus and ultrasonic inspection method

Also Published As

Publication number Publication date
JP2008286640A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4910768B2 (en) Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method
JP4910769B2 (en) Pipe quality control method and manufacturing method
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
JP5574731B2 (en) Ultrasonic flaw detection test method
JP5115024B2 (en) Coupling check method for ultrasonic oblique angle flaw detector
Călţaru et al. Inspection of the Petroleum Pipelines Welded Joint by Using the Phased Array Ultrasonic Nondestructive Testing.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250