JP5909873B2 - Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product - Google Patents

Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product Download PDF

Info

Publication number
JP5909873B2
JP5909873B2 JP2011106935A JP2011106935A JP5909873B2 JP 5909873 B2 JP5909873 B2 JP 5909873B2 JP 2011106935 A JP2011106935 A JP 2011106935A JP 2011106935 A JP2011106935 A JP 2011106935A JP 5909873 B2 JP5909873 B2 JP 5909873B2
Authority
JP
Japan
Prior art keywords
welding
spark
luminance
welded
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106935A
Other languages
Japanese (ja)
Other versions
JP2012236213A (en
Inventor
岡部 能知
能知 岡部
児玉 俊文
俊文 児玉
飯塚 幸理
幸理 飯塚
弘道 堀
弘道 堀
謙一 岩崎
謙一 岩崎
竜男 小出
竜男 小出
昌利 荒谷
昌利 荒谷
俊介 豊田
俊介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011106935A priority Critical patent/JP5909873B2/en
Publication of JP2012236213A publication Critical patent/JP2012236213A/en
Application granted granted Critical
Publication of JP5909873B2 publication Critical patent/JP5909873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、溶接欠陥検出システム及び電縫鋼管の製造方法並びに溶接製品の製造方法に関する。
The present invention relates to a welding defect detection system, a method for manufacturing an ERW steel pipe, and a method for manufacturing a welded product.

特許文献1に記載されるとおり、例えば、電縫鋼管などの溶接製品の製造に用いられる高周波加熱溶接や高周波抵抗溶接などにおいては、正常な状態では、溶接部分の発熱や発光はほぼ一定に安定している。一方、種々の溶接条件により、異常となった場合には、加熱コイルの電流及び電圧に変動が生じ、スパークが発生する。
スパークとは、溶接部分を中心に、周囲へ激しく火花が飛び散る現象を指し、スパークが発生した部分は、一般的に、溶接不良となることが多いことが知られている。したがって、溶接時に、スパークが発生したか否かを正確に検出し、スパークを検出した場合には、需要家に出荷しないように、当該部位の切除(切断除去)を行なうことが必要である。
As described in Patent Document 1, for example, in high-frequency heating welding or high-frequency resistance welding used for the manufacture of welded products such as ERW steel pipes, the heat generation and light emission of the welded portion are stable and stable in a normal state. doing. On the other hand, when abnormalities occur due to various welding conditions, fluctuations occur in the current and voltage of the heating coil and sparks are generated.
Spark is a phenomenon in which sparks violently scatter around the welded part, and it is known that the part where the spark is generated often results in poor welding. Accordingly, it is necessary to accurately detect whether or not a spark has occurred during welding, and when the spark is detected, it is necessary to excise (cut and remove) the part so as not to be shipped to the customer.

しかしながら、溶接時には、スパークと似た火花による発光現象である、スパッタも発生する。スパッタは、一般に、スパークに比べて、発生頻度は高いものの、スパッタの発生した部位が溶接不良となる確率は低い。したがって、スパークの検出に当たっては、スパッタとの弁別を行うことが肝要である。
そこで、特許文献1に記載の発明では、青色フィルタを用いて、スパークの輝度は大きくなり、スパッタと正常時の輝度は小さくなるようにし、その間の輝度レベルに閾値を設定することにより、スパークを検出することを提案している。
However, during welding, spatter, which is a light emission phenomenon due to sparks similar to sparks, also occurs. In general, spatter occurs more frequently than sparks, but there is a low probability that the sputtered portion will be welded poorly. Therefore, it is important to discriminate from the spatter when detecting the spark.
Therefore, in the invention described in Patent Document 1, by using a blue filter, the brightness of the spark is increased, the brightness at the time of sputtering and normal is decreased, and a threshold is set for the brightness level between them, thereby reducing the spark. Propose to detect.

一方、欠陥の検出技術については、一般に超音波斜角探傷によって溶接部のオンライン探傷が行われている。この方法は、被検材の検査面に対して斜めに超音波を入射させ、欠陥で反射した反射波から被検材の内外表面欠陥および内部欠陥を検出するものである。例えば電縫管では通常5MHzで45°の屈折角をもつ超音波ビームによる反射法が適用され、mmオーダーの大きさの欠陥、例えば溶け込み不良、溶け落ち、介在物による割れなどの欠陥が検出されている。この超音波探傷法による検査では、数100μm程度以下の微小な溶接欠陥を検出することは困難である。これに対し、例えば特許文献2に開示されているような、アレイ探触子を用いた超音波探傷法によれば、数10μm〜数100μm程度の微小な溶接欠陥を検出することが可能である。   On the other hand, with regard to the defect detection technique, on-line flaw detection is generally performed on welds by ultrasonic oblique flaw detection. In this method, ultrasonic waves are incident obliquely on the inspection surface of the test material, and internal and external surface defects and internal defects of the test material are detected from reflected waves reflected by the defects. For example, a reflection method using an ultrasonic beam having a refraction angle of 45 ° at 5 MHz is usually applied to an electric resistance tube, and defects of the order of mm, for example, defects such as poor penetration, melt-down, and cracks due to inclusions are detected. ing. In the inspection by this ultrasonic flaw detection method, it is difficult to detect a minute welding defect of about several hundred μm or less. On the other hand, for example, according to the ultrasonic flaw detection method using an array probe as disclosed in Patent Document 2, it is possible to detect minute welding defects of about several tens of μm to several hundreds of μm. .

特開2009−072788号公報JP 2009-072788 A 特開2008−286640号公報JP 2008-286640 A

しかしながら、従来技術の範囲内で溶接状態を最良に保ってもなお、極めて微細な溶接欠陥が生じることがある。これは、電縫溶接部に微細な異物が混入する場合と、帯材(管素材)の端部(縁部)に当て疵などが存在する場合である。すなわち、電縫成形溶接過程において管素材表面の酸化鉄や鉄などが剥離して、大気中に微量の粉塵として存在しており、電縫溶接過程においては、溶接時に発生する溶鋼がスパッタ粒として存在しているが、これらの粉塵やスパッタ粒が溶接部に稀に飛び込んだ場合に溶接欠陥を生じることがある。さらに、帯材の端部にわずかな疵が生じている部分が電縫溶接される場合にも、その疵が溶接欠陥の発生原因となることがある。これらの溶接欠陥はいずれも、その大きさが数10μm〜数100μm程度と微細であり、また、発生位置は溶接線に沿って管体内面から外面までの範囲内でデタラメに分布する可能性があった。   However, even with the best welding conditions within the scope of the prior art, very fine weld defects may still occur. This is a case where fine foreign matter is mixed in the electric-welded welded portion and a case where a paddle or the like is present at the end portion (edge portion) of the band material (tube material). In other words, iron oxide or iron on the surface of the tube material is peeled off during the electric seam forming welding process and exists as a small amount of dust in the atmosphere. In the electric seam welding process, the molten steel generated during welding is sputtered. Although present, when these dusts and spatter particles rarely jump into the weld, welding defects may occur. Furthermore, even when a portion where a slight wrinkle is generated at the end portion of the strip is electro-welded, the wrinkle may cause a welding defect. All of these weld defects are as small as several tens of μm to several hundreds of μm, and the occurrence positions may be distributed in a range from the inner surface to the outer surface of the tube along the weld line. there were.

前記アレイ探触子を用いた超音波探傷法では、原理上、管体表面近傍の欠陥検出能力は低いことから、50μm前後の微小な欠陥が管体表面近傍に存在する場合には検出感度が低下して、検出できないことがある。
又、上記スパーク検出技術を用いて、スパーク発生部位を切除してもなお、溶接部の機械的特性が局部的に低下することがある。
In principle, the ultrasonic flaw detection method using the array probe has a low defect detection capability in the vicinity of the surface of the tube body. Therefore, when a minute defect of about 50 μm exists in the vicinity of the tube surface, the detection sensitivity is high. It may drop and be undetectable.
In addition, even if the spark generation site is excised using the spark detection technique, the mechanical properties of the weld may be locally degraded.

つまり、従来の欠陥検出技術では電縫溶接部の欠陥を十分に検出できるまでには至っておらず、機械的特性の劣化した局部を含む電縫鋼管が製品に混入する場合があるという事態を防ぎ難いという課題があった。   In other words, the conventional defect detection technology has not yet been able to sufficiently detect defects in ERW welds, preventing the situation that ERW steel pipes containing local parts with deteriorated mechanical properties may be mixed into the product. There was a problem that it was difficult.

発明者らは、前記課題を解決するために鋭意検討し、次の知見を得た。
(i)スパーク発生部位を切除した後の電縫鋼管において溶接部の機械的特性が低下している造管長さ方向部分からサンプルを切り出して走査型電子顕微鏡で観察すると、極めて微細な溶接欠陥が存在している。
(ii)極めて微細な溶接欠陥が生じるのは、電縫溶接部に微細な異物が混入する場合と、管素材である帯材の幅端部(管状に成形後は管状体の円周方向縁部となる)に当て疵などが存在する場合である。すなわち、管素材のロール成形乃至電縫溶接過程において管素材表面の酸化鉄や鉄などが剥離して、大気中に微量の粉塵として存在しており、電縫溶接過程においては、溶接時に発生する溶鋼がスパッタ粒として存在しているが、これらの粉塵やスパッタ粒が溶接部に稀に飛び込んだ場合に溶接欠陥を生じることがある。
(iii)上記溶接欠陥が生じる際に、溶接点出側(下流側)の輝度の分布状態が瞬間的にダーク(暗い)側に変化する。
The inventors diligently studied to solve the above problems and obtained the following knowledge.
(I) When a sample is cut out from a pipe-forming length direction part where the mechanical properties of the welded part have deteriorated in the ERW steel pipe after excision of the spark generation site, and observed with a scanning electron microscope, extremely fine welding defects are found. Existing.
(ii) Extremely fine weld defects occur when fine foreign matter is mixed in the ERW weld and the width end of the strip that is a tube material (the circumferential edge of the tubular body after forming into a tubular shape) This is a case where there is a guess. In other words, iron oxide or iron on the surface of the tube material is peeled off during roll forming or electro-welding of the tube material, and is present as a small amount of dust in the atmosphere. Although molten steel exists as sputtered grains, welding defects may occur when these dusts or sputtered grains rarely jump into the weld.
(Iii) When the above-mentioned welding defect occurs, the luminance distribution state on the welding point extraction side (downstream side) instantaneously changes to the dark (dark) side.

尚、溶接点とは、溶接時の溶接部において溶接進行方向における既溶接部分(これを溶接線ともいう)と未溶接部分との境界点を指す。又、溶接点出側とは、溶接点から見て前記既溶接部分側(前記溶接線側)を指す。
(iv)従って、溶接点近傍を対象としてスパーク検出と輝度監視とを併せて行い、更にこれと併せて上記アレイ探触子を用いた超音波探傷装置で検査を行うことで、溶接不良部のみならず微細な溶接欠陥の発生部をも同定してそれら部位を切断除去することが可能である。
In addition, a welding point refers to the boundary point of the already-welded part (this is also called a weld line) and the unwelded part in the welding advancing direction in the welding part at the time of welding. Further, the welding point output side refers to the already welded portion side (the weld line side) when viewed from the welding point.
(iv) Therefore, spark detection and brightness monitoring are performed in the vicinity of the welding point, and further, in addition to this, by performing an inspection with the ultrasonic flaw detector using the above array probe, only the defective weld portion is detected. In addition, it is possible to identify a portion where a fine welding defect is generated and to cut and remove those portions.

本発明は、上記知見に基づき、更に検討を重ねてなされたものであり、その要旨は以下のとおりである。
(1)
溶接施工時の溶接部を対象とし、該対象の発光状態を撮像し、該撮像した画像からスパークを判定するスパーク判定工程と、次いで前記対象の輝度を画像信号として捉えて監視する輝度監視工程とを備え、更に前記監視工程後の溶接部をアレイ探触子を用いた超音波探傷装置で検査する検査工程を備えた溶接欠陥検出方法の実施に用いる溶接欠陥検出システムであって、
前記対象の発光状態を撮像するためのスパークセンサと、前記対象の輝度を画像信号として捉えて監視し、ダークスポットであるDSを検出するDSセンサとしての輝度センサと、前記アレイ探触子を用いた超音波探傷装置であるアレイUTとを有すること、及び、
前記スパーク判定工程の判定結果と、前記輝度監視工程の監視結果とに基づいて溶接欠陥を判定する欠陥判定手段を備えたこと、及び、
前記欠陥判定手段は、前記スパーク判定工程と前記輝度監視工程における双方の画像信号をリアルタイムで捉えてそれぞれ画像処理後、所定の閾値と比較する演算を行い、該演算結果に基づいて瞬時的な溶接状態の適否を判別することにより溶接欠陥を判定すること、及び、
前記欠陥判定手段における溶接欠陥有りの判定条件として、前記スパークセンサで捉えたスパーク光量が自然光ノイズレベル上限超のピーク高さを示し、該ピーク検出時点から5秒以内に前記DSセンサがDSを検出することという条件を採用すること
を特徴とする溶接欠陥検出システム。
(2)
前記スパーク判定工程は、前記撮像した画像の画像信号から青色成分強度を抽出し、該
青色成分強度が所定の閾値以上のときのみスパークが発生したと判定することを特徴とする前記(1)に記載の溶接欠陥検出システム。
(3)
前記輝度センサは、溶接部の幅中心線である溶接線にほぼ直交する線状領域の輝度分布を、撮影速度1ms以下、撮影回数1000回/s以上の撮影による画像信号として捉えることを特徴とする前記(1)又は(2)に記載の溶接欠陥検出システム。
(4)
前記アレイUTは、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部を備えた超音波探傷装置であることを特徴とする前記(1)〜(3)の何れか1つに記載の溶接欠陥検出システム。
(5)
鋼の帯材を管状に成形して形成したV字状ギャップの縁部同士を連続的に電縫溶接する電縫鋼管の製造方法において、該電縫溶接による溶接部を対象として前記(1)〜(4)の何れか1つに記載の溶接欠陥検出システムを適用することを特徴とする電縫鋼管の製造方法。
(6)
金属材料に対して溶接を施す溶接製品の製造方法において、該溶接による溶接部を対象として前記(1)〜(4)のいずれか1つに記載の溶接欠陥検出システムを適用することを特徴とする溶接製品の製造方法
The present invention has been made by further study based on the above findings, and the gist thereof is as follows.
(1)
Targeting a welded part at the time of welding construction, imaging a light emission state of the object, a spark determination step of determining a spark from the captured image, and a luminance monitoring step of capturing and monitoring the luminance of the target as an image signal A welding defect detection system used for carrying out a welding defect detection method further comprising an inspection step of inspecting the welded portion after the monitoring step with an ultrasonic flaw detector using an array probe,
Using a spark sensor for imaging the light emission state of the target, a luminance sensor as a DS sensor that detects and monitors the brightness of the target as an image signal, and detects DS that is a dark spot, and the array probe Having an array UT which is a conventional ultrasonic flaw detector, and
Comprising a defect determination means for determining a weld defect based on the determination result of the spark determination step and the monitoring result of the luminance monitoring step; and
The defect determination means captures both image signals in the spark determination step and the luminance monitoring step in real time, performs image processing, and compares them with a predetermined threshold value. Based on the calculation results, instantaneous welding is performed. Determining weld defects by determining the suitability of the state; and
As a determination condition for the presence of a welding defect in the defect determination means, the amount of spark captured by the spark sensor indicates a peak height exceeding the upper limit of the natural light noise level, and the DS sensor detects DS within 5 seconds from the peak detection time point. A welding defect detection system characterized by adopting a condition of performing.
(2)
The spark determination step extracts the blue component intensity from the image signal of the captured image, and determines that a spark has occurred only when the blue component intensity is equal to or greater than a predetermined threshold. The welding defect detection system described.
(3)
The luminance sensor is characterized in that the luminance distribution of a linear region that is substantially orthogonal to the weld line, which is the width center line of the welded portion, is captured as an image signal by imaging at an imaging speed of 1 ms or less and an imaging frequency of 1000 times / s or more. The welding defect detection system according to (1) or (2).
(4)
The array UT includes a wave transmitting unit that inputs ultrasonic waves to the weld surface of the tube axis direction welded portion of the tube body, and a wave receiving unit that receives part or all of the reflected wave reflected by the welded portion. An ultrasonic flaw detector comprising: a transmitter and a receiver, wherein the transmitter and the receiver are composed of different transducer groups on one or more flaw detection array probes arranged in a circumferential direction of the tube The welding defect detection system according to any one of (1) to (3), wherein there is a welding defect detection system.
(5)
In the method for manufacturing an ERW steel pipe, wherein the edges of the V-shaped gap formed by forming a steel strip into a tubular shape are continuously electro-welded to each other, the above-mentioned (1) A method for manufacturing an ERW steel pipe, wherein the welding defect detection system according to any one of (4) is applied.
(6)
The method of manufacturing a welded product to facilities weld the metal material, characterized by applying a welding defect detection system as claimed in any one of the targeting weld by the welding (1) to (4) A method for manufacturing a welded product.

本発明によれば、スパーク発生及び/又は粉塵若しくはスパッタ粒飛び込みによって生じる微小な溶接欠陥を溶接部の表面から内部に亘って精度良く検出でき、従って前記溶接欠陥に起因する溶接部機械特性低下部を確実に且つ過不足なく検出でき、これらの部分を切除した溶接製品を得ることができるので、溶接製品の信頼性が格段に向上する。   According to the present invention, it is possible to accurately detect a minute welding defect caused by spark generation and / or dust or spatter particle jumping from the surface to the inside of the welded portion, and accordingly, a welded portion mechanical property lowered portion caused by the welded defect. Can be detected reliably and without excess and deficiency, and a welded product in which these portions are cut out can be obtained, so that the reliability of the welded product is remarkably improved.

本発明の実施形態の1例を示す電縫鋼管製造ラインの模式図である。It is a schematic diagram of the ERW steel pipe manufacturing line which shows an example of embodiment of this invention. 図1のA部詳細を示す概略斜視図である。It is a schematic perspective view which shows the A section detail of FIG. 図2の一部切欠平面図である。FIG. 3 is a partially cutaway plan view of FIG. 2. スパークの判定方法を示す説明図である。It is explanatory drawing which shows the determination method of a spark. 輝度分布監視データの推移を示す模式図である。It is a schematic diagram which shows transition of luminance distribution monitoring data. 造管長に対する瞬時輝度の総和の推移曲線の1例を示す線図である。It is a diagram which shows an example of the transition curve of the sum total of the instantaneous luminance with respect to pipe making length. 造管長に対する瞬時輝度の半値幅の推移曲線の1例を示す線図である。It is a diagram which shows one example of the transition curve of the half value width of the instantaneous luminance with respect to pipe making length. アレイUTの原理を従来UTと比較して示す説明図である。It is explanatory drawing which shows the principle of the array UT compared with the conventional UT.

図1は、本発明の実施形態の1例を示す電縫鋼管製造ラインの模式図、図2は、図1のA部詳細を示す概略斜視図、図3は、図2の一部切欠平面図である。図1〜図3において、1は初期形態がコイル状である帯材、1aは被溶接部が溶接結合する点である溶接点、1b、1cは被溶接部とされる帯材幅方向両端部である縁部、2はアンコイラー、3はロール成形機、4は高周波加熱装置、4aはワークコイル、4dは高周波発振装置、5はスクイズロール、6はビード切削機、7は切断機、8は管(この例では電縫鋼管)、8Wは溶接部、10はDSセンサともいう輝度センサ、11はアレイ探触子を用いた超音波探傷装置であるアレイUT、12はスパーク検出用撮像装置であるスパークセンサ、13はスパークセンサ12の撮像領域、14は溶接部8Wの幅方向中心線である溶接線、15はDSセンサ10の輝度監視領域である。   FIG. 1 is a schematic view of an ERW steel pipe production line showing an example of an embodiment of the present invention, FIG. 2 is a schematic perspective view showing the details of part A of FIG. 1, and FIG. 3 is a partially cutaway plane of FIG. FIG. 1 to 3, reference numeral 1 is a strip whose initial form is a coil shape, 1a is a welding point at which the welded portion is welded, and 1b and 1c are both ends of the strip in the width direction of the welded portion. 2 is an uncoiler, 3 is a roll forming machine, 4 is a high frequency heating device, 4a is a work coil, 4d is a high frequency oscillation device, 5 is a squeeze roll, 6 is a bead cutting machine, 7 is a cutting machine, 8 is a cutting machine Tube (in this example, ERW steel tube), 8W is a welded portion, 10 is a luminance sensor called a DS sensor, 11 is an array UT that is an ultrasonic flaw detector using an array probe, and 12 is an imaging device for detecting a spark. A certain spark sensor, 13 is an imaging region of the spark sensor 12, 14 is a weld line that is a center line in the width direction of the welded portion 8W, and 15 is a luminance monitoring region of the DS sensor 10.

上記ラインでは、帯材1をアンコイラー2で払い出し、ロール成形機3で管状に成形し、形成したV字状ギャップの縁部1b、1c同士を、高周波加熱装置4によって高周波発振装置4dからワークコイル4aに高周波電流を通電して縁部1b、1cに誘導電流を発生させ、そのジュール熱により融点以上に加熱しつつ、V字状ギャップの収束点をスクイズロール5で圧接し、生じた溶接点1aの下流側に溶接線14を幅中心線とする溶接部8Wを形成させることにより、溶接して管8となし、ビード切削機6で溶接部8Wの外面ビードを切削したのち、管8を切断機7で所定の長さに切断する。帯材1としては鋼帯(熱延鋼帯もしくは冷延鋼帯)あるいは該鋼帯を条切りしたものが用いられる。この例では、高周波加熱装置4として誘導加熱式の装置を示したが、これに限らず、直接通電加熱式の装置であってもよい。尚、高周波電流の通電部分を含む通材方向範囲内の管素材ないし管の内面側に、図示しないインピーダを装入して電縫溶接を行う場合もある。   In the above line, the strip 1 is discharged by the uncoiler 2 and formed into a tubular shape by the roll forming machine 3, and the edges 1b and 1c of the formed V-shaped gap are moved from the high frequency oscillation device 4d to the work coil by the high frequency heating device 4. A high-frequency current is applied to 4a to generate an induced current at the edges 1b and 1c, and the convergence point of the V-shaped gap is pressed with the squeeze roll 5 while being heated to the melting point or higher by the Joule heat, and the resulting weld point By forming a welded portion 8W having the weld line 14 as the width center line on the downstream side of 1a, the welded portion 8W is welded to form the tube 8, and the bead cutting machine 6 cuts the outer surface bead of the welded portion 8W. Cutting to a predetermined length by the cutting machine 7. As the strip 1, a steel strip (hot rolled steel strip or cold rolled steel strip) or a material obtained by cutting the steel strip is used. In this example, an induction heating type device is shown as the high-frequency heating device 4, but this is not a limitation, and a direct current heating type device may be used. Incidentally, there may be a case where an electroimpedance welding is performed by inserting an impeller (not shown) on the inner side of the pipe material or the pipe within the passing direction range including the energized portion of the high-frequency current.

本発明は、上記のようなラインにおいて、溶接施工時の溶接部を対象とし、該対象の発光状態をスパークセンサ12で撮像し、該撮像した画像からスパークを判定するスパーク判定工程と、次いで前記対象の輝度をDSセンサ10で画像信号として捉えて監視する輝度監視工程とを備え、更に前記監視工程後の溶接部をアレイ探触子を用いた超音波探傷装置即ちアレイUT11で検査する検査工程を備えた溶接欠陥検出方法の実施に用いる溶接欠陥検出システムであって、前記対象の発光状態を撮像するためのスパークセンサと、前記対象の輝度を画像信号として捉えて監視するための輝度センサと、前記アレイ探触子を用いた超音波探傷装置であるアレイUTとを有することを特徴とする溶接欠陥検出システムである。   In the line as described above, the present invention is directed to a welded part at the time of welding construction, images the light emission state of the object by the spark sensor 12, and determines the spark from the captured image, A luminance monitoring step of monitoring and monitoring the luminance of the target as an image signal by the DS sensor 10, and further, an inspection step of inspecting the welded portion after the monitoring step with an ultrasonic flaw detector using an array probe, that is, the array UT11 A welding defect detection system used for carrying out a welding defect detection method comprising: a spark sensor for imaging the light emission state of the object; and a luminance sensor for capturing and monitoring the luminance of the object as an image signal; And an array UT which is an ultrasonic flaw detector using the array probe.

スパーク判定工程、輝度監視工程、検査工程の3工程を備えることで、何れか1つ又は2つを備える場合と比べ、ある工程で溶接欠陥の見落としがあっても他の工程で検出できる可能性が大幅に向上し、溶接欠陥をより一層確実に検出できるようになる。
よって、ある長さの溶接成品について、スパーク判定工程、輝度監視工程、検査工程の3工程とも溶接欠陥無しと判定した場合のみ、その溶接成品は溶接部全長に亘って健全であるとしてそのまま溶接製品とし、一方、これら3工程の何れか1つ又は2つが溶接欠陥無しと判定しても残りの2つ又は1つが溶接欠陥有りと判定した場合、その溶接成品はその溶接欠陥に起因する溶接部機械特性不良部(不健全部)になる長さ部分を有するから、その長さ部分を切除した残りを溶接製品とすることで、溶接製品に不健全部が混入するのを高精度に防止できて、溶接製品の品質信頼性が格段に向上する。
Compared to the case where any one or two are provided, the possibility of being able to be detected in other processes even if there is an oversight of a weld defect in comparison with the case where any one or two are provided. Is greatly improved, and welding defects can be detected more reliably.
Therefore, for a certain length of welded product, only when it is determined that there are no welding defects in all of the spark judging process, the luminance monitoring process, and the inspection process, the welded product is assumed to be healthy over the entire length of the welded part. On the other hand, if any one or two of these three steps are determined to have no weld defects, but the remaining two or one is determined to have a weld defect, the welded product is a welded portion resulting from the weld defects. Since it has a length part that becomes a defective part of mechanical properties (unhealthy part), it is possible to prevent the unhealthy part from being mixed into the welded product with high accuracy by using the remainder after cutting the length part as a welded product. As a result, the quality and reliability of the welded product is significantly improved.

尚、図1の例では、アレイUT11による検査を切断後の管8に対して行う形態(オフラインで検査する形態)を示したが、これに限らず、アレイUT11による検査をビード切削後切断前の管8に対して行う形態(オンラインで検査する形態)としてもよい。
以下、各工程について説明する。
(スパーク判定工程)
スパーク判定工程の実施形態に関しては、特許文献1に詳細な記載があるので、ここでは、かいつまんで説明する。
In the example of FIG. 1, a mode in which the inspection by the array UT11 is performed on the cut tube 8 (a mode in which inspection is performed off-line) is shown, but this is not limiting, and the inspection by the array UT11 is performed after bead cutting and before cutting. It is good also as a form (form to test | inspect on-line) with respect to this pipe | tube 8.
Hereinafter, each step will be described.
(Spark determination process)
Since the detailed description of the embodiment of the spark determination step is described in Patent Document 1, it will be described here briefly.

溶接施工時の溶接部の発光状態は、スパークセンサ12を用いて撮像する。スパークセンサ12には、モノクロのCCDカメラやCMOSカメラ等を用い、溶接点1aを中心に約300mm四方を撮像領域13として、そこから斜め上方に少なくとも500mm程度離して設置するのがよい。撮像された画像の画像信号はPC(パソコン)等に取り込んで画像処理する。   The light emission state of the welded part at the time of welding is imaged using the spark sensor 12. As the spark sensor 12, a monochrome CCD camera, a CMOS camera, or the like is used. It is preferable that the imaging region 13 is about 300 mm square with the welding point 1a as the center, and is set at an angle of at least about 500 mm away from there. An image signal of the captured image is captured in a PC (personal computer) or the like and processed.

撮像条件としては、撮像回数(コマ数)=30回/s程度、撮像速度(露光時間)=(1/30)s=33ms程度が好適であるが、これに限定されない。但し、スパークを見逃がさないためには、撮像回数×撮像時間=1s、を満たすことが望ましい。
スパークセンサのカメラレンズ前面には、透過率が約300nm以上約500nm以下の波長の範囲で最大となる特性を有する青色フィルタを装着するとよい。これにより、モノクロカメラでも、発光した光の青色成分を抽出して受光でき、その信号変化によって、スパッタと区別して、スパークを検出することができる。尚、モノクロカメラに代えて、カラーカメラを用いて青色成分の信号だけを取り出して処理してもよい。
As imaging conditions, the number of imaging (the number of frames) = about 30 times / s and the imaging speed (exposure time) = (1/30) s = 33 ms are preferable, but are not limited thereto. However, in order not to overlook the spark, it is desirable that the number of imaging times × imaging time = 1 s is satisfied.
A blue filter having a maximum transmittance in a wavelength range of about 300 nm to about 500 nm may be attached to the front surface of the camera lens of the spark sensor. As a result, even a monochrome camera can extract and receive the blue component of the emitted light, and can detect sparks by distinguishing it from sputtering by changing the signal. In place of the monochrome camera, only a blue component signal may be extracted and processed using a color camera.

撮像した画像の画像信号から得られる青色成分強度は、例えば図4中にデータ21、22として示すように、光量(カウント数)で表わされ、時間と共に変化するが、その変化するデータ21、22の中に時々ピーク21a,22aが現れる。そこで、これらピークの高さが所定の閾値20(図4の例では閾値=200とした)を超えたときのみ、スパークが発生したと判定する。すなわち、図4(a)ではスパーク発生有り(すなわちスパーク検出)、図4(b)ではスパーク発生無しと判定される。閾値20は、自然光ノイズ域30よりも高い値とし、ピーク検出部位でのピーク高さと溶接部機械特性との対応調査実験等により定めればよい。   The blue component intensity obtained from the image signal of the captured image is represented by the light amount (count number) as shown as data 21 and 22 in FIG. 4, for example, and changes with time. In FIG. 22, peaks 21a and 22a sometimes appear. Therefore, it is determined that a spark has occurred only when the height of these peaks exceeds a predetermined threshold 20 (threshold = 200 in the example of FIG. 4). That is, in FIG. 4A, it is determined that a spark has occurred (that is, spark detection), and in FIG. 4B, it has been determined that no spark has occurred. The threshold value 20 may be a value higher than the natural light noise region 30 and may be determined by a correspondence investigation experiment between the peak height at the peak detection site and the welded part mechanical characteristics.

前記スパークを検出した時点に関する情報(スパーク検出時点情報)を、常用のトラッキング技術(例えばコンタクトロール及びロータリーエンコーダを用いて走間材料の走行方向位置をトラッキングする技術)により、対応する造管長位置情報に変換して、前記スパーク検出時点に対応する造管長位置を特定できる。
(輝度監視工程)
輝度監視工程では、溶接施工時の溶接部の輝度を画像信号として捉えて監視する手段として、DSセンサ10を用いる。DSセンサ10は、線状の輝度監視領域15を撮影し、該撮影した画面内の輝度分布を導出する機能を有しており、これには例えば市販のラインスキャンカメラ等が好ましく適用できる。
Information related to the time at which the spark is detected (spark detection time information) is obtained by using a conventional tracking technique (for example, a technique for tracking the position in the running direction of the running material using a contact roll and a rotary encoder), and corresponding pipe forming length position information. In this way, the pipe forming length position corresponding to the spark detection time can be specified.
(Luminance monitoring process)
In the luminance monitoring step, the DS sensor 10 is used as means for capturing and monitoring the luminance of the welded portion at the time of welding as an image signal. The DS sensor 10 has a function of photographing the linear luminance monitoring region 15 and deriving the luminance distribution in the photographed screen, and for example, a commercially available line scan camera can be preferably applied.

撮影コマごとの輝度情報(瞬時輝度)はPC(パソコン)等に取り込んで画像処理することで、図5に模式的に示すように、瞬時輝度の分布曲線に相当する画像信号の経時変化データとして監視することができる。そして、この監視される経時変化データから、粉塵やスパッタの稀な飛び込みや帯材端部の微小な疵による溶接欠陥発生に対応するDS(ダークスポット)を検出することができ、該DS検出時点情報を、常用のトラッキング技術により、対応する造管長位置情報に変換して、前記DS検出時点に対応する造管長位置を特定できる。   Luminance information (instantaneous luminance) for each shooting frame is captured and processed on a PC (personal computer) or the like, and as shown schematically in FIG. 5, the temporal change data of the image signal corresponding to the instantaneous luminance distribution curve is obtained. Can be monitored. The DS (dark spot) corresponding to the occurrence of welding defects due to rare jumps in dust or spatter or minute flaws at the end of the strip can be detected from the time-dependent data monitored. The information is converted into the corresponding tube forming position information by a conventional tracking technique, and the tube forming position corresponding to the DS detection time can be specified.

瞬時輝度の変化を確実に捉えるためには、輝度監視領域15は、溶接点1aから下流に20〜500mm離れた位置で溶接線14を中心に溶接線14とほぼ直交(90°±10°程度)することが望ましい。
ところで、電縫溶接の速度(溶接線生成速度または造管速度)は、各種溶接法の中でも高速溶接法に分類され、100m/分を超える速度で溶接される場合がある。これらの溶接速度において、数mm以下の溶接欠陥を判別するためには、撮影速度(1撮影コマの露光時間)は1ms(=1/1000秒)以下にしなければならない。1msを超える撮影速度では、溶接欠陥部の輝度変化部以外の部分が同じ撮影コマ内にかなりの程度まで入って、DSの検出が困難となる。さらに、微小な溶接欠陥を見逃さないためには、撮影回数(撮影コマ数)は、毎秒1000回(毎秒1000コマ)以上にしなければならない。撮影回数が毎秒1000回未満の場合、溶接欠陥部が撮影コマから外れて、見逃しが発生することがある。
In order to reliably capture the change in instantaneous luminance, the luminance monitoring region 15 is substantially orthogonal to the welding line 14 (about 90 ° ± 10 °) around the welding line 14 at a position 20 to 500 mm downstream from the welding point 1a. ) Is desirable.
By the way, the speed of electric resistance welding (weld line generation speed or pipe forming speed) is classified as a high-speed welding method among various welding methods, and may be welded at a speed exceeding 100 m / min. At these welding speeds, in order to discriminate a welding defect of several mm or less, the photographing speed (exposure time of one photographing frame) must be 1 ms (= 1/1000 second) or less. When the imaging speed exceeds 1 ms, portions other than the luminance change portion of the weld defect portion enter the same imaging frame to a considerable extent, and DS detection becomes difficult. Furthermore, in order not to miss a minute welding defect, the number of times of photographing (number of photographing frames) must be 1000 times per second (1000 frames per second) or more. If the number of times of photographing is less than 1000 times per second, the weld defect part may be removed from the photographing frame, resulting in oversight.

したがって、本発明においては、電縫溶接の速度が100m/分を超える場合でも、溶接欠陥部の判別が確実にでき、かつ溶接欠陥部の見逃しが生じないように、DSセンサで監視する輝度分布は、撮影速度1ms以下、撮影回数1000回/s以上の撮影による画像信号として捉えることが好ましい。
次に、輝度監視工程の監視結果からDSを検出するための、より具体的な方法について述べる。
Therefore, in the present invention, even when the speed of ERW welding exceeds 100 m / min, the luminance distribution monitored by the DS sensor is ensured so that the welding defect portion can be reliably identified and the welding defect portion is not overlooked. Is preferably captured as an image signal by shooting at a shooting speed of 1 ms or less and a shooting count of 1000 times / s or more.
Next, a more specific method for detecting DS from the monitoring result of the luminance monitoring process will be described.

DSセンサでの撮影による画像信号として捉えられる輝度分布は、実際には、必ずしも図5に模式的に示すような単純で滑らかな山形の曲線形状を示すわけではなく、大きな凹凸を多数含む複雑な曲線形状を示す場合が少なからずあり、そのような複雑な分布曲線形状の瞬時輝度データから直ちにDS検出(すなわち瞬時的な溶接状態の適否判別)を行うのは困難である。そこで発明者らは、この困難を克服するための手法を検討し、その結果、前記画像信号を処理して瞬時輝度の総和および/または半値幅を演算した結果(図6、図7参照)を用いることによりDS検出が確実かつ容易となることが分った。なお、図6には、画像信号を処理・演算してなる瞬時輝度の総和の、造管長に対する推移曲線(データ41)の1例を示し、また、図7には、図6と同じ画像信号を処理・演算してなる瞬時輝度の半値幅の、造管長に対する推移曲線(データ51)の1例を示す。これら図6、図7の推移曲線はほぼフラットな中に明瞭な窪み部を有する形状を示しており、これにより確実かつ容易にDSの発生した造管長部位を検出できることが分る。尚、DSが発生したことの判定には、実験等により適宜定めた閾値(図6では閾値40、図7では閾値50)を用い、推移曲線が閾値未満となった造管長部位をDS発生部位とする。閾値40或いは50は、輝度低下検出部位での極小輝度値と溶接部機械特性との対応調査実験等により定めればよい。
(検査工程)
輝度監視領域15よりも下流側では、上述のようにアレイUT11を用いて溶接部をオフラインまたはオンラインで検査する。前述のように、アレイUTによれば、数10μm〜数100μm程度の微小な溶接欠陥を検出することが可能である。図8は、アレイUT11の原理を従来UTと比較して示す説明図であり、このようなアレイUTを用いることで、従来UTのφ0.5mm〜1.0mm程度に比べ、格段に微細な、例えばφ250μm以下の溶接欠陥を検出できる。
In fact, the luminance distribution captured as an image signal obtained by photographing with the DS sensor does not necessarily indicate a simple and smooth mountain-shaped curve as schematically shown in FIG. In many cases, the curve shape is shown, and it is difficult to immediately detect the DS from the instantaneous luminance data of such a complicated distribution curve shape (that is, to determine whether the welding state is instantaneous or not). Therefore, the inventors examined a method for overcoming this difficulty, and as a result, processed the image signal and calculated the sum of instantaneous luminance and / or the half-value width (see FIGS. 6 and 7). It has been found that the DS detection is surely and easy to use. FIG. 6 shows an example of a transition curve (data 41) with respect to the tube forming length of the sum of instantaneous luminances obtained by processing and calculating the image signal. FIG. 7 shows the same image signal as FIG. An example of a transition curve (data 51) with respect to the pipe forming length of the half-value width of instantaneous luminance obtained by processing and calculating the above is shown. These transition curves in FIGS. 6 and 7 show a shape having a clear hollow portion in a substantially flat shape, and it can be seen that the tube-forming length portion where the DS is generated can be reliably and easily detected. The determination of the occurrence of DS uses a threshold value appropriately determined by experiments or the like (threshold 40 in FIG. 6 and threshold 50 in FIG. 7). And The threshold value 40 or 50 may be determined by a correspondence investigation experiment between the minimum luminance value and the welded portion mechanical characteristics at the luminance reduction detection site.
(Inspection process)
On the downstream side of the brightness monitoring region 15, the welded portion is inspected offline or online using the array UT11 as described above. As described above, according to the array UT, it is possible to detect a minute welding defect of about several tens of μm to several hundreds of μm. FIG. 8 is an explanatory view showing the principle of the array UT11 in comparison with the conventional UT, and by using such an array UT, it is much finer than the conventional UT of about φ0.5 mm to 1.0 mm. For example, a welding defect of φ250 μm or less can be detected.

図8に例示したアレイUT11は、好適な形態として、管体(管8)の管軸方向に延在する溶接部8Wの溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用のアレイ探触子11A上の異なる振動子群からなる送受信部を備えた超音波探傷装置である。   The array UT11 illustrated in FIG. 8 includes, as a preferred form, a wave transmitting unit that applies ultrasonic waves to the welding surface of the welded portion 8W extending in the tube axis direction of the tube (tube 8), and a welded portion. An array probe for flaw detection in which one or two or more flaw detection units are arranged in the circumferential direction of the tube. This is an ultrasonic flaw detector provided with a transmission / reception unit comprising different transducer groups on the child 11A.

なお、より好適な形態のアレイUTとしては、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上のアレイ探触子上の異なる振動子群からなる送受信部と、管体の肉厚分布を測定するための肉厚測定用探触子と、該肉厚測定用探触子で測定した肉厚分布に基づいて、前記アレイ探触子を用いて、管体の厚さ方向に走査するための超音波の伝播経路を算出する伝播経路算出手段と、算出された伝播経路に基づいて、前記アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更する、又は、前記アレイ探触子の角度を変更するように制御して、管体の厚さ方向に走査する制御を行なう制御部と、を備えた形態のもの(特許文献2に記載の発明)が挙げられる。   Note that the array UT having a more preferable form is configured to receive a ultrasonic wave incident on the welding surface of the welded portion in the tube axis direction of the tubular body and a part or all of the reflected wave reflected by the welded portion. A transmitting / receiving unit that includes a different transducer group on one or more array probes arranged in the circumferential direction of the tube, and a tube Thickness measurement probe for measuring the thickness distribution of the body, and based on the thickness distribution measured by the thickness measurement probe, using the array probe, A propagation path calculating means for calculating a propagation path of ultrasonic waves for scanning in the vertical direction, and transducers corresponding to the transmitting section and the receiving section on the array probe based on the calculated propagation path Control to scan the tube in the thickness direction by changing the group or changing the angle of the array probe Those in a form comprising a control unit, a (invention described in Patent Document 2).

このさらなる好適形態のアレイUTによれば、内面に増肉部分が発生している電縫鋼管などの溶接部の肉厚内部に位置する数100μm程度以下の微小な欠陥を、内面から外面まで漏れなく検出できるようになるため、溶接鋼管の溶接部の機械的特性に影響を及ぼす微小欠陥が発生しないように溶接プロセスを改善したり、欠陥が流出しないように製造工程で選別できるようになり、溶接鋼管の品質を飛躍的に高めることができ、従来以上に過酷な使用条件で使用できるようになる(特許文献2に記載の発明の効果欄参照)。   According to this further preferred embodiment of the array UT, a minute defect of about several hundreds μm or less located inside the thickness of a welded portion such as an electric resistance welded steel pipe having a thickened portion on the inner surface leaks from the inner surface to the outer surface. Because it becomes possible to detect without defects, it becomes possible to improve the welding process so that micro defects that affect the mechanical properties of the welded part of the welded steel pipe do not occur, or to select in the manufacturing process so that defects do not flow out, The quality of the welded steel pipe can be drastically improved, and it can be used under conditions that are severer than before (see the effect column of the invention described in Patent Document 2).

なお、さらにより一層好ましくは、送波用の振動子群および受波用の振動子群の振動子数を、溶接部に近いほど少なく、溶接部から遠いほど多く設定する。このようにすると、溶接部から近い側ほど同時励振の際の開口幅は狭くなるため、焦点距離が短くてもビーム幅が狭くなりすぎることがなく、溶接部から遠い側ほど同時励振の際の開口幅は広くなるため、焦点距離が長くても集束係数を高めることができ検出能の劣化が生じない。したがって、各振動子群からの集束特性を一定に揃えることができるため、溶接部内部の内面側から外面側まで均一の検出感度で探傷が可能となる。   Even more preferably, the number of transducers of the transducer group for transmission and the transducer group for reception is set to be smaller as it is closer to the welded portion and larger as it is farther from the welded portion. In this way, the opening width at the time of simultaneous excitation becomes narrower toward the side closer to the welded portion, so that the beam width does not become too narrow even if the focal length is short, and the side farther from the welded portion becomes closer to the time of simultaneous excitation. Since the aperture width is wide, the focusing coefficient can be increased even when the focal length is long, and the detection ability does not deteriorate. Accordingly, since the focusing characteristics from each transducer group can be made uniform, flaw detection can be performed with uniform detection sensitivity from the inner surface side to the outer surface side inside the welded portion.

本発明において、スパークセンサの検出限界を超える溶接部機械特性不良部をもたらす溶接欠陥を検出する手段として、輝度センサ(DSセンサ)とアレイUTのいずれか一方ではなく、両方を用いることが必要である理由は次のとおりである。
一般に、管を使用する際には、管の肉厚方向中央部ではなく、表面に応力は集中しやすい(管の表面にひずみは加わりやすい)。よって、管の表面に欠陥が存在する方が割れの感受性は高くなり、微小な疵であっても機械的特性は劣化しやすく、使用上の問題になりやすい。すなわち、溶接部に欠陥が存在する場合、管の肉厚方向中央部に比べて、同じ大きさの欠陥であっても、疵が管の肉厚方向中央部に存在していれば使用上の問題になりにくいが、疵が管の表面近傍に存在する場合には、使用時に割れ等の問題が生じやすいことになる。
In the present invention, it is necessary to use both of the brightness sensor (DS sensor) and the array UT, not both, as a means for detecting a weld defect that causes a welded part mechanical property defect exceeding the detection limit of the spark sensor. The reason is as follows.
In general, when a tube is used, stress tends to concentrate on the surface rather than the central portion in the thickness direction of the tube (strain is easily applied to the surface of the tube). Therefore, if there is a defect on the surface of the tube, the susceptibility to cracking is high, and even if it is a minute flaw, the mechanical characteristics are likely to deteriorate, which is likely to be a problem in use. That is, when there is a defect in the welded part, even if it is a defect of the same size compared to the central part in the thickness direction of the pipe, if the flaw is present in the central part in the thickness direction of the pipe, Although it does not become a problem, when a ridge exists in the vicinity of the surface of the pipe, problems such as cracking are likely to occur during use.

発明者らは、欠陥の存在形態、すなわち欠陥の位置や大きさが、溶接部の機械的特性に及ぼす影響について詳細に調査した。その結果、100μm以上の大きさの欠陥が管の溶接部の内部に存在すると、機械的特性は劣化すること、100μm未満の欠陥が管の溶接部の内部に存在しても、機械的特性に影響を及ぼさないこと、50μm以上の欠陥が管の溶接部の表面近傍に存在する場合には、機械的特性は劣化すること、50μm未満の欠陥が管の溶接部の表面近傍に存在しても機械的特性に影響を及ぼさないこと、を発見した。   The inventors have investigated in detail the influence of the presence form of defects, that is, the position and size of the defects, on the mechanical properties of the weld. As a result, if a defect having a size of 100 μm or more exists inside the welded portion of the pipe, the mechanical properties deteriorate, and even if a defect of less than 100 μm exists inside the welded portion of the tube, the mechanical properties are reduced. It has no effect, and when a defect of 50 μm or more exists near the surface of the welded part of the pipe, the mechanical properties deteriorate, and even if a defect of less than 50 μm exists near the surface of the welded part of the pipe It was discovered that it does not affect the mechanical properties.

ところで、輝度センサは、被測定物の表面の輝度を測定する原理上、特に、管の溶接部表面近傍の欠陥検出能力は高く、管の溶接部表面近傍では約30μm程度の欠陥を十分に検出することができる。
一方、アレイUTは、原理上、管の表面近傍の欠陥検出能力は低く、これを用いても、50μm前後の微小な欠陥が管表面近傍に存在する場合、検出感度は低下するために、当該欠陥を検出できないことがある。
By the way, the brightness sensor has a high defect detection capability in the vicinity of the surface of the welded part of the pipe, especially in principle for measuring the brightness of the surface of the object to be measured, and sufficiently detects a defect of about 30 μm near the surface of the welded part of the pipe. can do.
On the other hand, the array UT, in principle, has a low defect detection capability near the surface of the tube. Even if this is used, the detection sensitivity decreases when a minute defect of around 50 μm exists near the tube surface. Defects may not be detected.

これらの理由から、管表面に存在する50μm程度の微小な欠陥を検出するためには、輝度センサによる監視が必要である。
ところで、アレイUTでは、管内部の内面側から外面側まで均一の検出感度で探傷が可能である。よって、電縫鋼管溶接部の内部に存在する100μm程度の微小な欠陥を検出することが可能である。そのためには、送波用の振動子群および受波用の振動子群の振動子数を、溶接部に近いほど少なく、溶接部から遠いほど多く設定するのが好ましい。このようにすると、溶接部から近い側ほど同時励振の際の開口幅は狭くなるため、焦点距離が短くてもビーム幅が狭くなり過ぎることがなく、溶接部から遠い側ほど同時励振の際の開口幅は広くなるため、焦点距離が長くても集束係数を高めることができ検出能の劣化が生じない。従って、各振動子群からの集束特性を一定に揃えることができるため、内面側から外面側まで均一の検出感度で探傷が可能となる(特許文献2[0070]欄参照)。
For these reasons, in order to detect a minute defect of about 50 μm existing on the tube surface, monitoring with a luminance sensor is necessary.
By the way, in the array UT, flaw detection is possible with uniform detection sensitivity from the inner surface side to the outer surface side inside the tube. Therefore, it is possible to detect a minute defect of about 100 μm existing in the welded portion of the ERW steel pipe. For this purpose, it is preferable to set the number of transducers of the transmitting transducer group and the receiving transducer group to be smaller as it is closer to the welded portion and larger as it is farther from the welded portion. In this way, the closer to the welded portion, the narrower the opening width at the time of simultaneous excitation, so the beam width does not become too narrow even if the focal length is short. Since the aperture width is wide, the focusing coefficient can be increased even when the focal length is long, and the detection ability does not deteriorate. Accordingly, since the focusing characteristics from each transducer group can be made uniform, flaw detection can be performed with uniform detection sensitivity from the inner surface side to the outer surface side (see Patent Document 2 [0070] column).

一方、輝度センサは、被測定物の表面の輝度を測定する原理上、管内部の欠陥検出能力は低く、特に、肉厚が6mmを超える厚肉管については、管溶接部に存在する100μm程度の微小な内部欠陥を検出できないことがある。
これらの理由から、管溶接部の内部に存在する100μm程度の微小な欠陥を内面側から外面側まで漏らさず検出するためには、アレイUTが必要である。
On the other hand, the luminance sensor has a low defect detection capability inside the pipe in principle based on the principle of measuring the luminance of the surface of the object to be measured. Particularly, for a thick pipe having a thickness exceeding 6 mm, it is about 100 μm existing in the pipe weld. In some cases, a minute internal defect cannot be detected.
For these reasons, an array UT is required to detect minute defects of about 100 μm existing inside the pipe welded part without leaking from the inner surface side to the outer surface side.

又、本発明では、前記スパーク判定工程の判定結果と、前記輝度監視工程の監視結果とに基づいて溶接欠陥を判定する欠陥判定手段を備えることが好ましい。以下、欠陥判定手段について説明する。
(欠陥判定手段)
発明者らの検討によると、上述のようにして検出した、管のスパーク発生部位では溶接部機械特性が低下するが、スパーク光量が閾値を下回った部位でも溶接部機械特性が低下する場合もある。一方、上述のようにして検出したDS発生部位では、溶接部機械特性が低下する場合と低下しない場合とがある。
Moreover, in this invention, it is preferable to provide the defect determination means which determines a welding defect based on the determination result of the said spark determination process, and the monitoring result of the said brightness | luminance monitoring process. Hereinafter, the defect determination means will be described.
(Defect determination means)
According to the study by the inventors, the welded portion mechanical characteristics are decreased at the portion where the spark is detected as described above, but the welded portion mechanical properties may be decreased even at the portion where the amount of spark light is lower than the threshold value. . On the other hand, at the DS occurrence portion detected as described above, the welded portion mechanical characteristics may or may not decrease.

そこで、更に検討を重ねた結果、溶接部機械特性が確実に低下するのは、スパーク光量が自然光ノイズレベル上限超のピーク高さを示し、且つDS発生が検出された造管長部位であることが分かった。
そこで、本発明では、欠陥判定手段における溶接欠陥有りの判定条件として、スパークセンサで捉えたスパーク光量が自然光ノイズレベル上限超のピーク高さを示し、それとほぼ同時(前記ピーク検出時点から約5秒以内)にDSセンサがDSを検出することという条件を採用するとよい。
Therefore, as a result of further studies, the mechanical properties of the welded part are surely lowered at the pipe length portion where the spark quantity shows a peak height exceeding the upper limit of the natural light noise level and the occurrence of DS is detected. I understood.
Therefore, in the present invention, as a determination condition for the presence of a weld defect in the defect determination means, the amount of spark captured by the spark sensor indicates a peak height that exceeds the upper limit of the natural light noise level, and almost simultaneously (about 5 seconds from the peak detection time). The condition that the DS sensor detects DS is preferably adopted.

さらに、データ記憶手段の容量を節約する観点から、前記欠陥判定手段では、前記スパーク判定工程と前記輝度監視工程における双方の画像信号をリアルタイムで捉えてそれぞれ画像処理後、所定の閾値と比較する演算を行い、該演算結果に基づいて瞬時的な溶接状態の適否を判別することにより溶接欠陥を判定することが好ましい。
尚、上記実施形態の説明では、電縫溶接鋼管の製造工程に本発明を適用した場合について説明したが、本発明の溶接欠陥検出方法は、電縫鋼管以外の溶接製品(例えば溶接構造物)の溶接製造工程における溶接監視等の用途にも適用できることはいうまでもない。
Further, from the viewpoint of saving the capacity of the data storage means, the defect judgment means performs an operation for capturing both image signals in the spark judgment process and the luminance monitoring process in real time, and respectively comparing them with a predetermined threshold after image processing. It is preferable that the welding defect is determined by determining whether or not the instantaneous welding state is appropriate based on the calculation result.
In the above description of the embodiment, the case where the present invention is applied to the manufacturing process of an electric resistance welded steel pipe has been described. However, the welding defect detection method of the present invention is a welded product other than an electric resistance welded steel pipe (for example, a welded structure). Needless to say, the present invention can also be applied to applications such as welding monitoring in the welding manufacturing process.

実施例として、電縫鋼管製造ラインにおいて図1に示した形態で本発明を実施した。溶接施工時の溶接部を対象に、1水準当たりの造管長を1000mとした複数の水準について、スパークセンサで発光状態を撮像し、該撮像した画像から、自然光ノイズレベル超の光量を示した造管長部位を特定し、かつ、その特定した部位についての、DSセンサでの監視結果(輝度低下の有無)を記録すると共に、下流の検査工程においてアレイUTを用いて溶接部を全長に亘り検査した。   As an example, the present invention was implemented in the form shown in FIG. For the welded part at the time of welding construction, the light emission state was imaged with a spark sensor for a plurality of levels with a pipe forming length per level of 1000 m, and the light intensity exceeding the natural light noise level was shown from the captured images. The tube length part is specified, and the monitoring result (with or without brightness reduction) of the specified part is recorded, and the welded part is inspected over the entire length using the array UT in the downstream inspection process. .

そして、各水準の前記特定した部位について、溶接部の90°偏平試験(例えばJIS G3445に規定される偏平試験)を行い、溶接部の偏平特性(溶接部機械特性を代表する)を調査した。その結果を表1に示す。尚、上記偏平試験では、管の溶接部を通る管直径方向と直交する方向に管を押し潰してゆき、溶接部に割れが生じた時の管潰し方向の外径を求め、これの対初期外径比を偏平値とする。   And about the specified site | part of each level, the 90 degree flatness test (For example, the flatness test prescribed | regulated to JIS G3445) of a welding part was done, and the flat characteristic (representing a welding part mechanical characteristic) of a welding part was investigated. The results are shown in Table 1. In the above flattening test, the tube is crushed in a direction orthogonal to the tube diameter direction passing through the welded portion of the tube, and the outer diameter in the tube crushing direction when a crack occurs in the welded portion is determined. The outer diameter ratio is a flat value.

表1より、スパークセンサ、DSセンサ、アレイUTの何れによっても溶接欠陥無し(×)と判定された場合のみ、健全部と同等な偏平値が得られており、偏平値の高い部位、すなわち溶接部機械特性不良部(溶接欠陥部に対応する)は、スパークセンサ、DSセンサ及びアレイUTの併用により、完全に検出可能であることが分る。   From Table 1, the flat value equivalent to the sound part is obtained only when it is determined that there is no welding defect (×) by any of the spark sensor, the DS sensor, and the array UT, and the portion having a high flat value, that is, welding is obtained. It can be seen that the part mechanical characteristic defect part (corresponding to the weld defect part) can be completely detected by the combined use of the spark sensor, the DS sensor and the array UT.

Figure 0005909873
Figure 0005909873

1 帯材
1a 溶接点(被溶接部が溶接結合する点)
1b,1c 縁部
2 アンコイラー
3 ロール成形機
4 高周波加熱装置
4a ワークコイル
4d 高周波発振装置
5 スクイズロール
6 ビード切削機
7 切断機
8 管(電縫鋼管)
8W 溶接部
10 輝度センサ(DSセンサ)
11 アレイ探触子を用いた超音波探傷装置(アレイUT)
11A アレイ探触子
12 撮像装置(スパークセンサ)
13 スパークセンサの撮像領域
14 溶接線
15 DSセンサの輝度監視領域
20,40,50 閾値
21,22,41,51 データ
21a,22a ピーク
30 自然光ノイズ域
1 Band 1a Welding point (Point where welded part is welded)
1b, 1c Edge 2 Uncoiler 3 Roll forming machine 4 High-frequency heating device 4a Work coil 4d High-frequency oscillation device 5 Squeeze roll 6 Bead cutting machine 7 Cutting machine 8 Tube (Electric seam pipe)
8W weld 10 brightness sensor (DS sensor)
11 Ultrasonic flaw detector (array UT) using array probe
11A array probe 12 imaging device (spark sensor)
13 Spark sensor imaging area 14 Welding line 15 DS sensor brightness monitoring area 20, 40, 50 Threshold 21, 22, 41, 51 Data 21a, 22a Peak 30 Natural light noise area

Claims (6)

溶接施工時の溶接部を対象とし、該対象の発光状態を撮像し、該撮像した画像からスパークを判定するスパーク判定工程と、次いで前記対象の輝度を画像信号として捉えて監視する輝度監視工程とを備え、更に前記監視工程後の溶接部をアレイ探触子を用いた超音波探傷装置で検査する検査工程を備えた溶接欠陥検出方法の実施に用いる溶接欠陥検出システムであって、
前記対象の発光状態を撮像するためのスパークセンサと、前記対象の輝度を画像信号として捉えて監視し、ダークスポットであるDSを検出するDSセンサとしての輝度センサと、前記アレイ探触子を用いた超音波探傷装置であるアレイUTとを有すること、及び、
前記スパーク判定工程の判定結果と、前記輝度監視工程の監視結果とに基づいて溶接欠陥を判定する欠陥判定手段を備えたこと、及び、
前記欠陥判定手段は、前記スパーク判定工程と前記輝度監視工程における双方の画像信号をリアルタイムで捉えてそれぞれ画像処理後、所定の閾値と比較する演算を行い、該演算結果に基づいて瞬時的な溶接状態の適否を判別することにより溶接欠陥を判定すること、及び、
前記欠陥判定手段における溶接欠陥有りの判定条件として、前記スパークセンサで捉えたスパーク光量が自然光ノイズレベル上限超のピーク高さを示し、該ピーク検出時点から5秒以内に前記DSセンサがDSを検出することという条件を採用すること
を特徴とする溶接欠陥検出システム。
Targeting a welded part at the time of welding construction, imaging a light emission state of the object, a spark determination step of determining a spark from the captured image, and a luminance monitoring step of capturing and monitoring the luminance of the target as an image signal A welding defect detection system used for carrying out a welding defect detection method further comprising an inspection step of inspecting the welded portion after the monitoring step with an ultrasonic flaw detector using an array probe,
Using a spark sensor for imaging the light emission state of the target, a luminance sensor as a DS sensor that detects and monitors the brightness of the target as an image signal, and detects DS that is a dark spot, and the array probe Having an array UT which is a conventional ultrasonic flaw detector , and
Comprising a defect determination means for determining a weld defect based on the determination result of the spark determination step and the monitoring result of the luminance monitoring step; and
The defect determination means captures both image signals in the spark determination step and the luminance monitoring step in real time, performs image processing, and compares them with a predetermined threshold value. Based on the calculation results, instantaneous welding is performed. Determining weld defects by determining the suitability of the state; and
As a determination condition for the presence of a welding defect in the defect determination means, the amount of spark captured by the spark sensor indicates a peak height exceeding the upper limit of the natural light noise level, and the DS sensor detects DS within 5 seconds from the peak detection time point. A welding defect detection system characterized by adopting the condition of performing.
前記スパーク判定工程は、前記撮像した画像の画像信号から青色成分強度を抽出し、該青色成分強度が所定の閾値以上のときのみスパークが発生したと判定することを特徴とする請求項に記載の溶接欠陥検出システム。 The spark determining step, according to claim 1, wherein determining that extracts a blue component intensity from an image signal of an image of which an image is captured, is seen sparks when the blue component intensity is not smaller than a predetermined threshold value has occurred Welding defect detection system. 前記輝度センサは、溶接部の幅中心線である溶接線にほぼ直交する線状領域の輝度分布を、撮影速度1ms以下、撮影回数1000回/s以上の撮影による画像信号として捉えることを特徴とする請求項1又は2に記載の溶接欠陥検出システム。 The luminance sensor is characterized in that the luminance distribution of a linear region that is substantially orthogonal to the weld line, which is the width center line of the welded portion, is captured as an image signal by imaging at an imaging speed of 1 ms or less and an imaging frequency of 1000 times / s or more. The welding defect detection system according to claim 1 or 2 . 前記アレイUTは、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部を備えた超音波探傷装置であることを特徴とする請求項1〜の何れか1つに記載の溶接欠陥検出システム。 The array UT includes a wave transmitting unit that inputs ultrasonic waves to the weld surface of the tube axis direction welded portion of the tube body, and a wave receiving unit that receives part or all of the reflected wave reflected by the welded portion. An ultrasonic flaw detector comprising: a transmitter and a receiver, wherein the transmitter and the receiver are composed of different transducer groups on one or more flaw detection array probes arranged in a circumferential direction of the tube The welding defect detection system according to any one of claims 1 to 3 , wherein the welding defect detection system is provided. 鋼の帯材を管状に成形して形成したV字状ギャップの縁部同士を連続的に電縫溶接する電縫鋼管の製造方法において、該電縫溶接による溶接部を対象として請求項1〜の何れか1つに記載の溶接欠陥検出システムを適用することを特徴とする電縫鋼管の製造方法。 In the manufacturing method of the ERW steel pipe which continuously welds the edges of the V-shaped gap formed by forming the steel strip into a tubular shape, the welded portion by the ERW welding is targeted. 4. A method for producing an electric resistance welded steel pipe, wherein the welding defect detection system according to any one of 4 is applied. 金属材料に対して溶接を施す溶接製品の製造方法において、該溶接による溶接部を対象として請求項1〜4のいずれか1つに記載の溶接欠陥検出システムを適用することを特徴とする溶接製品の製造方法
The method of manufacturing a welded product to facilities weld the metal material, welding, characterized in that applying a welding defect detection system as claimed in any one of claims 1 to 4 as a target weld by the welding Product manufacturing method .
JP2011106935A 2011-05-12 2011-05-12 Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product Active JP5909873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106935A JP5909873B2 (en) 2011-05-12 2011-05-12 Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106935A JP5909873B2 (en) 2011-05-12 2011-05-12 Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product

Publications (2)

Publication Number Publication Date
JP2012236213A JP2012236213A (en) 2012-12-06
JP5909873B2 true JP5909873B2 (en) 2016-04-27

Family

ID=47459606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106935A Active JP5909873B2 (en) 2011-05-12 2011-05-12 Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product

Country Status (1)

Country Link
JP (1) JP5909873B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057271A (en) * 2014-09-12 2016-04-21 昭和電工パッケージング株式会社 Inspection method of exterior film for electrochemical device
CN108645909B (en) * 2018-07-24 2022-03-22 湖州新兴汽车部件有限公司 Flaw detection processing system of steel plate pipe coiling machine
KR102187764B1 (en) * 2019-05-30 2020-12-08 한국생산기술연구원 Weld penetration control method and its melting-pool behavior measuring device
CN114247977B (en) * 2021-12-28 2022-12-02 嘉兴永励精密钢管有限公司 Production device and production method of welding and drawing precision tube for automobile hollow stabilizer bar
CN115205290B (en) * 2022-09-15 2022-11-18 深圳市合成快捷电子科技有限公司 Online detection method and system for PCB production process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003275B2 (en) * 2007-05-17 2012-08-15 Jfeスチール株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP5200469B2 (en) * 2007-09-18 2013-06-05 Jfeスチール株式会社 Welding spark detection method, spark detection device, and welded product manufacturing method
JP5625292B2 (en) * 2009-09-11 2014-11-19 Jfeスチール株式会社 ERW weld monitoring system

Also Published As

Publication number Publication date
JP2012236213A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5028494B2 (en) Automatic testing method for material joints
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
WO2003093761A1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
RU2650449C1 (en) Device and a method of ultrasound defectoscopy
JP4876599B2 (en) Quality detection method and apparatus for butt welds
JP5909872B2 (en) WELDING DEFECT DETECTING METHOD AND SYSTEM, ELECTRIC SEWING TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5909874B2 (en) Welding defect detection system for ERW pipe and method for manufacturing ERW pipe
JP5625292B2 (en) ERW weld monitoring system
JP2905157B2 (en) Inspection method of high frequency welded steel pipe and its manufacturing apparatus
JP3740874B2 (en) Inspection method and apparatus for welded seam welded thin plate
JP4596325B2 (en) Ultrasonic flaw detection method and apparatus for internally finned tube
JP5881942B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JP2515460B2 (en) ERW welded pipe manufacturing method
JP6219075B2 (en) 疵 Detection method
JP2541078B2 (en) ERW pipe defect discrimination method
EP3788358A1 (en) Improved characterization and classification of spot welds by ultrasonic diagostic techniques
JP5797375B2 (en) ERW steel pipe manufacturing method
JP4793161B2 (en) Quality inspection method and apparatus for butt welds
JP3748228B2 (en) Method for judging harmful defect in ultrasonic flaw detection and method for using the judgment result
Indimath et al. Online ultrasonic technique for assessment of mash seam welds of thin steel sheets in a continuous galvanizing line
JP3557553B2 (en) Ultrasonic testing method for welded joints
JP3916603B2 (en) Ultrasonic oblique angle flaw detection method and apparatus
JP5440014B2 (en) ERW Weld Monitoring Method
JP2000271743A (en) Weld zone inspecting method, its inspecting device and welded pipe for piping

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5909873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250