JP5909874B2 - Welding defect detection system for ERW pipe and method for manufacturing ERW pipe - Google Patents

Welding defect detection system for ERW pipe and method for manufacturing ERW pipe Download PDF

Info

Publication number
JP5909874B2
JP5909874B2 JP2011106936A JP2011106936A JP5909874B2 JP 5909874 B2 JP5909874 B2 JP 5909874B2 JP 2011106936 A JP2011106936 A JP 2011106936A JP 2011106936 A JP2011106936 A JP 2011106936A JP 5909874 B2 JP5909874 B2 JP 5909874B2
Authority
JP
Japan
Prior art keywords
welding
pipe
defect
steel pipe
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106936A
Other languages
Japanese (ja)
Other versions
JP2012236214A (en
Inventor
岡部 能知
能知 岡部
児玉 俊文
俊文 児玉
飯塚 幸理
幸理 飯塚
弘道 堀
弘道 堀
謙一 岩崎
謙一 岩崎
竜男 小出
竜男 小出
昌利 荒谷
昌利 荒谷
俊介 豊田
俊介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011106936A priority Critical patent/JP5909874B2/en
Publication of JP2012236214A publication Critical patent/JP2012236214A/en
Application granted granted Critical
Publication of JP5909874B2 publication Critical patent/JP5909874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、電縫鋼管の溶接欠陥の検出システム及び電縫鋼管に関する。   The present invention relates to a weld defect detection system for an ERW steel pipe and an ERW steel pipe.

電縫鋼管は帯材(鋼管素材)を成形機で円筒状に成形しながら、そのV字状ギャップをなす両縁部を高周波電流通電により加熱溶融し、スクイズロールで加圧接合することにより製造される。
溶接状態はほぼ適度な温度と適度な成形具合,適正素材および運転レベルに反映される。ここで、計測可能な要素の変化を捉えて、溶接適否を判別すること、不適原因を判別することおよび投入電力量をフィードフォワード的に抑制し、さらに他の要因による変化を包括的に温度で捉えてフィードバック的に設定しようとするのが溶接監視および入熱制御の基本的な考え方である。
ERW steel pipes are manufactured by forming a strip (steel pipe material) into a cylindrical shape with a molding machine, heating and melting both edges of the V-shaped gap by high-frequency current energization, and press-bonding with a squeeze roll Is done.
Welding conditions are reflected in a moderate temperature, a suitable forming condition, a suitable material and an operating level. Here, by capturing changes in measurable elements, it is possible to determine whether welding is appropriate, to determine the cause of improperness, and to control input power in a feed-forward manner. The basic idea of welding monitoring and heat input control is to capture and set feedback.

上述した電縫管溶接において、溶接状態のうち溶接入熱状態を監視する従来の方法として以下の方法があった。
(1)操作員の肉眼による判断方法。(2)溶接部の温度を放射温度計を用いて計測する方法であって、全放射エネルギーを温度に換算する方法と、全放射エネルギーのうち特定の2波長のエネルギーレベルの比を用いて温度に換算する方法。(3)共振周波数の変化を電気的に検出し、入熱量の過多を判別する方法。(4)溶接後のビードの突起の形状を把握する方法。
In the above-described electric resistance welded pipe welding, the following method has been known as a conventional method for monitoring the welding heat input state among the welding states.
(1) A judgment method with the naked eye of the operator. (2) A method of measuring the temperature of a weld using a radiation thermometer, which is a method of converting total radiant energy into temperature, and using a ratio of energy levels of two specific wavelengths among the total radiant energy. How to convert to (3) A method of electrically detecting a change in resonance frequency and determining an excessive amount of heat input. (4) A method of grasping the shape of the protrusion of the bead after welding.

さらには、入熱が適正でも、縁部の成形状態にねじれがあったり、縁部が振れたりあるいはスクイズロールの加圧(アップセット)が変化すると、溶接不良となることがあり、このような条件変化をも含めて把握できる監視方法として、(5)溶接部と溶接入側の発熱金属部を撮像手段によって走査して複数の画像として分割して捉えて、これらの画像の特長量を画像処理部によって求めて解析信号を得、この解析信号を基に溶接状態の適否を判定することにより、溶接状態の適正な判別と入熱制御を可能にする方法があった(例えば特許文献1)。   Furthermore, even if the heat input is appropriate, if the edge is twisted, the edge shakes, or the squeeze roll pressure (upset) changes, welding failure may occur. As a monitoring method that can be grasped including changes in conditions, (5) the welded part and the heat generating metal part on the welding entry side are scanned by the imaging means and divided into a plurality of images, and the feature quantities of these images are There is a method that enables proper discrimination of the welding state and heat input control by determining the suitability of the welding state based on the analysis signal obtained by the processing unit and determining the suitability of the welding state (for example, Patent Document 1). .

一方、欠陥の検出技術については、一般に超音波斜角探傷によって溶接部のオンライン探傷が行われている。この方法は、被検材の検査面に対して斜めに超音波を入射させ、欠陥で反射した反射波から被検材の内外表面欠陥および内部欠陥を検出するものである。例えば電縫管では通常5MHzで45°の屈折角をもつ超音波ビームによる反射法が適用され、mmオーダーの大きさの欠陥、例えば溶け込み不良、溶け落ち、介在物による割れなどの欠陥が検出されている。この超音波探傷法による検査では、数100μm程度以下の微小な溶接欠陥を検出することは困難である。これに対し、例えば特許文献2に開示されているような、アレイ探触子を用いた超音波探傷法によれば、数10μm〜数100μm程度の微小な溶接欠陥を検出することが可能である。   On the other hand, with regard to the defect detection technique, on-line flaw detection is generally performed on welds by ultrasonic oblique flaw detection. In this method, ultrasonic waves are incident obliquely on the inspection surface of the test material, and internal and external surface defects and internal defects of the test material are detected from reflected waves reflected by the defects. For example, a reflection method using an ultrasonic beam having a refraction angle of 45 ° at 5 MHz is usually applied to an electric resistance tube, and defects of the order of mm, for example, defects such as poor penetration, melt-down, and cracks due to inclusions are detected. ing. In the inspection by this ultrasonic flaw detection method, it is difficult to detect a minute welding defect of about several hundred μm or less. On the other hand, for example, according to the ultrasonic flaw detection method using an array probe as disclosed in Patent Document 2, it is possible to detect minute welding defects of about several tens of μm to several hundreds of μm. .

特開平5−318142号公報JP-A-5-318142 特開2008−286640号公報JP 2008-286640 A

上述した(1)〜(5)の従来技術は、溶接状態が最適になるように工夫された方法ではある。
しかしながら、従来技術の範囲内で溶接状態を最良に保ってもなお、極めて微細な溶接欠陥が生じることがある。これは、電縫溶接部に微細な異物が混入する場合と、帯材(管素材)の端部(縁部)に当て疵などが存在する場合である。すなわち、電縫成形溶接過程において管素材表面の酸化鉄や鉄などが剥離して、大気中に微量の粉塵として存在しており、電縫溶接過程においては、溶接時に発生する溶鋼がスパッタ粒として存在しているが、これらの粉塵やスパッタ粒が溶接部に稀に飛び込んだ場合に溶接欠陥を生じることがある。さらに、帯材の端部にわずかな疵が生じている部分が電縫溶接される場合にも、その疵が溶接欠陥の発生原因となることがある。これらの溶接欠陥はいずれも、その大きさが数10μm〜数100μm程度と微細であり、また、発生位置は溶接線に沿って管体内面から外面までの範囲内でデタラメに分布する可能性があった。
The prior arts (1) to (5) described above are methods devised so that the welding state is optimized.
However, even with the best welding conditions within the scope of the prior art, very fine weld defects may still occur. This is a case where fine foreign matter is mixed in the electric-welded welded portion and a case where a paddle or the like is present at the end portion (edge portion) of the band material (tube material). In other words, iron oxide or iron on the surface of the tube material is peeled off during the electric seam forming welding process and exists as a small amount of dust in the atmosphere. In the electric seam welding process, the molten steel generated during welding is sputtered. Although present, when these dusts and spatter particles rarely jump into the weld, welding defects may occur. Furthermore, even when a portion where a slight wrinkle is generated at the end portion of the strip is electro-welded, the wrinkle may cause a welding defect. All of these weld defects are as small as several tens of μm to several hundreds of μm, and the occurrence positions may be distributed in a range from the inner surface to the outer surface of the tube along the weld line. there were.

前記アレイ探触子を用いた超音波探傷法では、原理上、管体表面近傍の欠陥検出能力は低いことから、50μm前後の微小な欠陥が管体表面近傍に存在する場合には検出感度が低下して、検出できないことがある。
つまり、従来技術では、電縫鋼管溶接部に稀に発生する管体表面近傍の50μm前後の微小な溶接欠陥を検出する技術は確立されておらず、かかる微小な溶接欠陥を有する電縫鋼管が製品の中に稀に混入する事態を防ぎ難いという課題があった。
In principle, the ultrasonic flaw detection method using the array probe has a low defect detection capability in the vicinity of the surface of the tube body. Therefore, when a minute defect of about 50 μm exists in the vicinity of the tube surface, the detection sensitivity is high. It may drop and be undetectable.
That is, in the prior art, a technique for detecting a minute welding defect of around 50 μm near the surface of the pipe rarely generated in the welded portion of the ERW steel pipe has not been established, and an ERW steel pipe having such a minute welding defect has not been established. There has been a problem that it is difficult to prevent rarely mixed products.

本発明は前記課題を解決するためになされたものであり、その要旨は次のとおりである。
(1)帯材を管状に成形して形成したV字状ギャップの縁部同士を連続的に溶接して製造される電縫鋼管の前記溶接の際に生じる溶接欠陥を検出するための、電縫鋼管の溶接欠陥の検出システムであって、溶接後ビード切削前の間に溶接部の輝度を輝度センサで監視し、該輝度センサで撮影された輝度分布の画像信号を処理・演算してなる瞬時輝度の総和および/または半値幅の造管長に対する推移曲線からダークスポットの発生した造管長部位を検出するとともに、その後、前記ビード切削よりも下流側で、溶接部をアレイ探触子を用いた超音波探傷装置で検査することを特徴とする電縫鋼管の溶接欠陥の検出システム。
(2)前記アレイ探触子を用いた超音波探傷装置は、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部を備えた超音波探傷装置であることを特徴とする前項(1)に記載の電縫鋼管の溶接欠陥の検出システム。
(3)前項(1)または(2)に記載の電縫鋼管の溶接欠陥の検出システムを適用した電縫鋼管の製造方法であって、その溶接部の、管体外面位置から管体肉厚の1/4だけ内側に入った位置までの部分における溶接欠陥の大きさが50μm未満、残りの部分における溶接欠陥の大きさが100μm未満である電縫鋼管とすることを特徴とする電縫鋼管の製造方法
The present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows.
(1) An electric wire for detecting a welding defect that occurs during the welding of an ERW steel pipe manufactured by continuously welding edges of a V-shaped gap formed by forming a strip into a tubular shape. A detection system for weld defects in a sewn steel pipe, wherein the brightness of a welded portion is monitored by a brightness sensor before welding and before bead cutting, and an image signal of a brightness distribution photographed by the brightness sensor is processed and calculated. From the transition curve for the sum of instantaneous luminance and / or the half-width pipe length, the pipe length part where the dark spot was generated was detected, and then the welded portion was used downstream of the bead cutting using an array probe. A welding defect detection system for ERW pipes, which is inspected with an ultrasonic flaw detector.
(2) An ultrasonic flaw detection apparatus using the array probe includes a wave transmitting unit that applies ultrasonic waves to a welding surface of a welded portion in a tube axis direction of a tubular body, and one of reflected waves reflected by the welded portion. Different transducer groups on one or two or more flaw detection array probes in which the transmitting part and the receiving part are arranged in the circumferential direction of the tube The system for detecting a weld defect in an ERW steel pipe according to (1) above, wherein the system is an ultrasonic flaw detector provided with a transmission / reception unit comprising:
(3) A method of manufacturing an ERW steel pipe to which the weld defect detection system for an ERW steel pipe according to (1) or (2) above is applied, wherein the thickness of the pipe body from the position of the outer surface of the pipe body An electric resistance welded steel pipe having a weld defect size of less than 50 μm in a portion up to a position inside by 1/4 of that and a weld defect size of less than 100 μm in the remaining portion. Manufacturing method .

本発明によれば、電縫鋼管溶接部に稀に発生する管体表面近傍の50μm前後の微小な溶接欠陥を精度よく検出することが可能となり、かつ、管体内部の数10μm〜数100μmの溶接欠陥も検出されるので、電縫鋼管の品質の信頼性が向上する。   According to the present invention, it is possible to accurately detect a minute welding defect of around 50 μm near the surface of a tubular body that rarely occurs in an ERW steel pipe welded portion, and several tens of μm to several 100 μm inside the tubular body. Since welding defects are also detected, the reliability of the quality of the ERW steel pipe is improved.

本発明の実施形態の1例を示す電縫鋼管製造ラインの模式図Schematic diagram of an ERW steel pipe production line showing an example of an embodiment of the present invention 輝度センサによる溶接部の監視状況の1例を示す模式図Schematic diagram showing an example of the monitoring status of the welded part by the brightness sensor 輝度分布監視データの推移を示す模式図Schematic diagram showing the transition of luminance distribution monitoring data 造管長に対する瞬時輝度の総和の推移曲線の1例を示す線図Diagram showing an example of the transition curve of the sum of instantaneous luminance with respect to pipe length 造管長に対する瞬時輝度の半値幅の推移曲線の1例を示す線図Diagram showing one example of transition curve of half-value width of instantaneous luminance with respect to pipe length アレイUTの原理を従来UTと比較して示す説明図Explanatory drawing showing the principle of array UT in comparison with conventional UT

図1は、本発明の実施形態の1例を示す電縫鋼管製造ラインの模式図である。このラインでは、初期形態がコイル状である帯材1をアンコイラー2で払い出し、ロール成形機3で管状に成形し、形成したV字状ギャップの縁部同士を、高周波加熱装置4で融点以上に加熱し、スクイズロール5で圧接することにより溶接して管8となし、ビード切削機6で溶接部の外面ビードを切削したのち、管8を切断機7で所定の長さに切断する。帯材1としては鋼帯(熱延鋼帯もしくは冷延鋼帯)あるいは該鋼帯を条切りしたものが用いられる。図1の例では、高周波加熱装置4として直接通電加熱式の装置を示したが、これに限らず、誘導加熱式の装置であってもよい(例えば図2参照)。なお、高周波電流の通電部分を含む通材方向範囲内の管素材ないし管の内面側に、図示しないインピーダを装入して電縫溶接を行う場合もある。   FIG. 1 is a schematic view of an ERW steel pipe production line showing an example of an embodiment of the present invention. In this line, the strip 1 having a coil shape in the initial form is discharged with an uncoiler 2 and formed into a tubular shape with a roll forming machine 3, and the edges of the formed V-shaped gap are brought to the melting point or higher with a high-frequency heating device 4. After being heated and welded by pressing with a squeeze roll 5 to form a pipe 8, the outer surface bead of the welded part is cut with a bead cutting machine 6, and then the pipe 8 is cut into a predetermined length with a cutting machine 7. As the strip 1, a steel strip (hot rolled steel strip or cold rolled steel strip) or a material obtained by cutting the steel strip is used. In the example of FIG. 1, a direct current heating type device is shown as the high-frequency heating device 4, but the present invention is not limited to this, and an induction heating type device may be used (for example, see FIG. 2). Note that there may be a case where electric resistance welding is performed by inserting an impeller (not shown) on the inner side of the pipe material or the pipe in the passing direction range including the energized portion of the high-frequency current.

本発明では、上記のようなラインにおいて、溶接後ビード切削前の間に(スクイズロールからビード切削機までの間のいずれかの箇所で)溶接部の輝度を輝度センサ10で監視する。さらに、その後、前記ビード切削機よりも下流側で、溶接部をアレイ探触子を用いた超音波探傷装置11(以下、アレイUTともいう)で検査する。なお、図1の例では、アレイUT11による検査を切断後の管8に対して行う形態(オフラインで検査する形態)を示したが、これに限らず、アレイUT11による検査をビード切削後切断前の管8に対して行う形態(オンラインで検査する形態)としてもよい。   In the present invention, the brightness sensor 10 monitors the brightness of the welded portion in the above-described line before welding bead cutting after welding (anywhere between the squeeze roll and the bead cutting machine). Furthermore, after that, the welded portion is inspected by an ultrasonic flaw detector 11 (hereinafter also referred to as array UT) using an array probe on the downstream side of the bead cutting machine. In the example of FIG. 1, the form in which the inspection by the array UT11 is performed on the cut tube 8 (offline inspection form) is shown, but not limited thereto, the inspection by the array UT11 is performed after bead cutting and before cutting. It is good also as a form (form to test | inspect on-line) with respect to this pipe | tube 8. FIG.

発明者らは、輝度センサを用いた溶接部監視実験を行い、その結果、粉塵やスパッタが被溶接部に稀に飛び込んで溶接欠陥が生じる際、あるいは帯材端部の微小な疵が生じている部分が電縫溶接されて溶接欠陥が生じる際に、溶接点出側の輝度の分布状態が瞬間的にダーク(暗い)側に変化することを見出した。
輝度センサによる溶接部の監視状況の1例を図2に示す。輝度センサ10は輝度カメラとも呼ばれ、溶接点13からビード切削機6までの間の溶接部14の外面側長手方向を横切るように設けた監視領域12を撮影し、該撮影した画面内の輝度分布を導出する機能を有している。このような輝度センサとしては、例えば市販のラインスキャンカメラなどが挙げられる。輝度センサ10の撮影コマごとの輝度情報(瞬時輝度)はPC(パソコン)等に取り込んで画像処理することで、図3に模式的に示すように、瞬時輝度の分布曲線に相当する画像信号の経時変化データとして監視することができる。そして、この監視される経時変化データから、粉塵やスパッタの稀な飛び込みや帯材端部の微小な疵による溶接欠陥発生に対応するDS(ダークスポット)を検出することができ、該DS検出時点情報を、通常用いられるトラッキング機能により、対応する造管長位置情報に変換して、前記溶接欠陥が発生した造管長位置を特定でき、その位置情報を造管工程の下流の精整工程に通知して、この溶接欠陥部を含む管長さ部分を製品管から確実に排除することができる。なお、図2において、1b,1cはV字状ギャップの縁部、iは高周波電流である。
The inventors conducted a weld monitoring experiment using a luminance sensor, and as a result, dust and spatter rarely jumped into the welded part, resulting in welding defects, or minute flaws at the end of the band material. It was found that when the welded part is electro-welded and a welding defect occurs, the luminance distribution state on the welding point output side instantaneously changes to the dark side.
An example of the monitoring status of the welded portion by the luminance sensor is shown in FIG. The luminance sensor 10 is also called a luminance camera, and images a monitoring region 12 provided so as to cross the longitudinal direction on the outer surface side of the welded portion 14 between the welding point 13 and the bead cutting machine 6, and the luminance in the captured screen It has a function to derive the distribution. An example of such a brightness sensor is a commercially available line scan camera. The luminance information (instantaneous luminance) for each photographing frame of the luminance sensor 10 is captured and processed by a PC (personal computer) or the like, so that an image signal corresponding to the instantaneous luminance distribution curve is schematically shown in FIG. It can be monitored as aging data. The DS (dark spot) corresponding to the occurrence of welding defects due to rare jumps in dust or spatter or minute flaws at the end of the strip can be detected from the time-dependent data monitored. The information can be converted into the corresponding pipe length position information by the normally used tracking function, and the pipe length position where the welding defect has occurred can be specified, and the position information is notified to the refining process downstream of the pipe forming process. Thus, the pipe length portion including the weld defect can be surely excluded from the product pipe. In FIG. 2, 1b and 1c are edges of the V-shaped gap, and i is a high-frequency current.

溶接欠陥部の輝度変化をより確実に検出するためには、監視領域12を溶接点13から下流側に20〜200mm離間した位置に設けるのが好ましい。
電縫溶接の速度が100m/分を超える場合でも、溶接欠陥部の判別が確実にでき、かつ溶接欠陥部の見逃しが生じないように、輝度センサで監視する輝度分布は、撮影速度1ms以下、撮影回数1000回/s以上の撮影による画像信号として捉えることが好ましい。
In order to detect the change in luminance of the weld defect more reliably, the monitoring region 12 is preferably provided at a position 20 to 200 mm away from the welding point 13 on the downstream side.
Even when the speed of ERW welding exceeds 100 m / min, the luminance distribution monitored by the luminance sensor is less than 1 ms for the imaging speed so that the welding defect can be reliably identified and the welding defect is not overlooked. It is preferable to capture the image signal as a result of shooting at a shooting count of 1000 times / s or more.

輝度センサでの撮影による画像信号として捉えられる輝度分布は、実際には、必ずしも図3の模式図に示すような単純で滑らかな山形の曲線形状を示すわけではなく、大きな凹凸を多数含む複雑な曲線形状を示す場合が少なからずあり、そのような複雑な分布曲線形状の瞬時輝度データから直ちにDS検出(すなわち瞬時的な溶接状態の適否判別)を行うのは困難である。そこで発明者らは、この困難を克服するための手法を検討し、その結果、前記画像信号を処理して瞬時輝度の総和および/または半値幅を演算した結果を用いることによりDS検出が確実かつ容易となることが分った。なお、図4には、画像信号を処理・演算してなる瞬時輝度の総和の、造管長に対する推移曲線の1例を示し、また、図5には、図4と同じ画像信号を処理・演算してなる瞬時輝度の半値幅の、造管長に対する推移曲線の1例を示す。これら図4、図5の推移曲線はほぼフラットな中に明瞭な窪み部を有する形状を示しており、これにより確実かつ容易にDSの発生した造管長部位を検出できることが分る。   In reality, the luminance distribution captured as an image signal obtained by photographing with a luminance sensor does not necessarily indicate a simple and smooth mountain-shaped curve as shown in the schematic diagram of FIG. In many cases, the curve shape is shown, and it is difficult to immediately detect the DS from the instantaneous luminance data of such a complicated distribution curve shape (that is, to determine whether the welding state is instantaneous or not). Therefore, the inventors examined a method for overcoming this difficulty, and as a result, DS detection was reliably and reliably performed by processing the image signal and using the result of calculating the sum of instantaneous luminance and / or the half-value width. I found it easier. FIG. 4 shows an example of a transition curve of the sum of instantaneous luminance obtained by processing and calculating the image signal with respect to the tube forming length, and FIG. 5 shows processing and calculation of the same image signal as in FIG. An example of the transition curve with respect to the tube forming length of the half-value width of the instantaneous luminance is shown. These transition curves in FIGS. 4 and 5 show a shape having a clear recess in a substantially flat shape, and it can be understood that the tube-forming length portion where DS is generated can be detected reliably and easily.

一方、監視領域12よりも下流側では、上述のようにアレイUT11を用いて溶接部をオフラインまたはオンラインで検査する。前述のように、アレイUTによれば、数10μm〜数100μm程度の微小な溶接欠陥を検出することが可能である。図6は、アレイUT11の原理を従来UTと比較して示す説明図であり、このようなアレイUTを用いることで、従来UTのφ0.5mm〜1.0mm程度に比べ、格段に微細な、例えばφ250μm以下の溶接欠陥を検出できる。   On the other hand, on the downstream side of the monitoring region 12, the welded portion is inspected offline or online using the array UT11 as described above. As described above, according to the array UT, it is possible to detect a minute welding defect of about several tens of μm to several hundreds of μm. FIG. 6 is an explanatory view showing the principle of the array UT11 in comparison with the conventional UT, and by using such an array UT, it is much finer than the conventional UT of about φ0.5 mm to 1.0 mm. For example, a welding defect of φ250 μm or less can be detected.

図6に例示したアレイUTは、好適な形態として、管体(管8)の管軸方向溶接部14の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部を備えた超音波探傷装置である。   The array UT illustrated in FIG. 6 has, as a suitable form, a wave transmission unit that inputs ultrasonic waves to the welding surface of the tube axis direction welded portion 14 of the tube body (tube 8), and a reflected wave reflected by the welded portion. Receiving part for receiving a part or all of the above, and the transmitting part and the receiving part are different vibrations on one or more array probes for flaw detection arranged in the circumferential direction of the tube It is an ultrasonic flaw detector provided with a transmission / reception unit comprising a group of children.

なお、より好適な形態のアレイUTとしては、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部と、管体の肉厚分布を測定するための肉厚測定用探触子と、該肉厚測定用探触子で測定した肉厚分布に基づいて、前記探傷用アレイ探触子を用いて、管体の厚さ方向に走査するための超音波の伝播経路を算出する伝播経路算出手段と、算出された伝播経路に基づいて、前記探傷用アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更する、又は、前記探傷用アレイ探触子の角度を変更するように制御して、管体の厚さ方向に走査する制御を行なう制御部と、を備えた形態のもの(特許文献2に記載の発明)が挙げられる。   Note that the array UT having a more preferable form is configured to receive a ultrasonic wave incident on the welding surface of the welded portion in the tube axis direction of the tubular body and a part or all of the reflected wave reflected by the welded portion. A transmitting / receiving unit comprising a group of different transducers on one or more array probes for flaw detection, wherein the transmitting unit and the receiving unit are arranged in the circumferential direction of the tube. A thickness measuring probe for measuring the thickness distribution of the tube, and based on the thickness distribution measured by the thickness measuring probe, using the flaw detection array probe, Propagation path calculation means for calculating an ultrasonic propagation path for scanning in the thickness direction of the tubular body, and based on the calculated propagation path, the transmitting unit and receiving wave on the flaw detection array probe The thickness of the tube by controlling the transducer group corresponding to the part or changing the angle of the flaw detection array probe Those in a form and a control unit for controlling the scanning (the invention described in Patent Document 2) are mentioned.

このさらなる好適形態のアレイUTによれば、内面に増肉部分が発生している電縫鋼管などの溶接部の肉厚内部に位置する数100μm程度以下の微小な欠陥を、内面から外面まで漏れなく検出できるようになるため、溶接鋼管の溶接部の機械的特性に影響を及ぼす微小欠陥が発生しないように溶接プロセスを改善したり、欠陥が流出しないように製造工程で選別できるようになり、溶接鋼管の品質を飛躍的に高めることができ、従来以上に過酷な使用条件で使用できるようになる(特許文献2に記載の発明の効果欄参照)。   According to this further preferred embodiment of the array UT, a minute defect of about several hundreds μm or less located inside the thickness of a welded portion such as an electric resistance welded steel pipe having a thickened portion on the inner surface leaks from the inner surface to the outer surface. Because it becomes possible to detect without defects, it becomes possible to improve the welding process so that micro defects that affect the mechanical properties of the welded part of the welded steel pipe do not occur, or to select in the manufacturing process so that defects do not flow out, The quality of the welded steel pipe can be drastically improved, and it can be used under conditions that are severer than before (see the effect column of the invention described in Patent Document 2).

なお、さらにより一層好ましくは、送波用の振動子群および受波用の振動子群の振動子数を、溶接部に近いほど少なく、溶接部から遠いほど多く設定する。このようにすると、溶接部から近い側ほど同時励振の際の開口幅は狭くなるため、焦点距離が短くてもビーム幅が狭くなりすぎることがなく、溶接部から遠い側ほど同時励振の際の開口幅は広くなるため、焦点距離が長くても集束係数を高めることができ検出能の劣化が生じない。したがって、各振動子群からの集束特性を一定に揃えることができるため、溶接部内部の内面側から外面側まで均一の検出感度で探傷が可能となる。   Even more preferably, the number of transducers of the transducer group for transmission and the transducer group for reception is set to be smaller as it is closer to the welded portion and larger as it is farther from the welded portion. In this way, the opening width at the time of simultaneous excitation becomes narrower toward the side closer to the welded portion, so that the beam width does not become too narrow even if the focal length is short, and the side farther from the welded portion becomes closer to the time of simultaneous excitation. Since the aperture width is wide, the focusing coefficient can be increased even when the focal length is long, and the detection ability does not deteriorate. Accordingly, since the focusing characteristics from each transducer group can be made uniform, flaw detection can be performed with uniform detection sensitivity from the inner surface side to the outer surface side inside the welded portion.

本発明において、輝度センサとアレイUTのいずれか一方ではなく、両方を用いることが必要である理由は次のとおりである。
一般に、管を使用する際には、管の肉厚方向中央部ではなく、表面に応力は集中しやすい(管の表面にひずみは加わりやすい)。よって、管の表面に欠陥が存在する方が割れの感受性は高くなり、微小な疵であっても機械的特性は劣化しやすく、使用上の問題になりやすい。すなわち、溶接部に欠陥が存在する場合、管の肉厚方向中央部に比べて、同じ大きさの欠陥であっても、疵が管の肉厚方向中央部に存在していれば使用上の問題になりにくいが、疵が管の表面近傍に存在する場合には、使用時に割れ等の問題が生じやすいことになる。
In the present invention, the reason why it is necessary to use both of the luminance sensor and the array UT instead of either is as follows.
In general, when a tube is used, stress tends to concentrate on the surface rather than the central portion in the thickness direction of the tube (strain is easily applied to the surface of the tube). Therefore, if there is a defect on the surface of the tube, the susceptibility to cracking is high, and even if it is a minute flaw, the mechanical characteristics are likely to deteriorate, which is likely to be a problem in use. That is, when there is a defect in the welded part, even if it is a defect of the same size compared to the central part in the thickness direction of the pipe, if the flaw is present in the central part in the thickness direction of the pipe, Although it does not become a problem, when a ridge exists in the vicinity of the surface of the pipe, problems such as cracking are likely to occur during use.

発明者らは、欠陥の存在形態、すなわち欠陥の位置や大きさが、溶接部の機械的特性に及ぼす影響について詳細に調査した。その結果、100μm以上の大きさの欠陥が管の溶接部の内部に存在すると、機械的特性は劣化すること、100μm未満の欠陥が管の溶接部の内部に存在しても、機械的特性に影響を及ぼさないこと、50μm以上の欠陥が管の溶接部の表面近傍に存在する場合には、機械的特性は劣化すること、50μm未満の欠陥が管の溶接部の表面近傍に存在しても機械的特性に影響を及ぼさないこと、を発見した。   The inventors have investigated in detail the influence of the presence form of defects, that is, the position and size of the defects, on the mechanical properties of the weld. As a result, if a defect having a size of 100 μm or more exists inside the welded portion of the pipe, the mechanical properties deteriorate, and even if a defect of less than 100 μm exists inside the welded portion of the tube, the mechanical properties are reduced. It has no effect, and when a defect of 50 μm or more exists near the surface of the welded part of the pipe, the mechanical properties deteriorate, and even if a defect of less than 50 μm exists near the surface of the welded part of the pipe It was discovered that it does not affect the mechanical properties.

ところで、輝度センサは、被測定物の表面の輝度を測定する原理上、特に、管の溶接部表面近傍の欠陥検出能力は高く、管の溶接部表面近傍では約30μm程度の欠陥を十分に検出することができる。
一方、アレイUTは、原理上、管の表面近傍の欠陥検出能力は低く、これを用いても、50μm前後の微小な欠陥が管表面近傍に存在する場合、検出感度は低下するために、当該欠陥を検出できないことがある。
By the way, the brightness sensor has a high defect detection capability in the vicinity of the surface of the welded part of the pipe, especially in principle for measuring the brightness of the surface of the object to be measured, and sufficiently detects a defect of about 30 μm near the surface of the welded part of the pipe. can do.
On the other hand, the array UT, in principle, has a low defect detection capability near the surface of the tube. Even if this is used, the detection sensitivity decreases when a minute defect of around 50 μm exists near the tube surface. Defects may not be detected.

これらの理由から、管表面に存在する50μm程度の微小な欠陥を検出するためには、輝度センサによる監視が必要である。
ところで、アレイUTでは、管内部の内面側から外面側まで均一の検出感度で探傷が可能である。よって、電縫鋼管溶接部の内部に存在する100μm程度の微小な欠陥を検出することが可能である。そのためには、送波用の振動子群および受波用の振動子群の振動子数を、溶接部に近いほど少なく、溶接部から遠いほど多く設定するのが好ましい。このようにすると、溶接部から近い側ほど同時励振の際の開口幅は狭くなるため、焦点距離が短くてもビーム幅が狭くなり過ぎることがなく、溶接部から遠い側ほど同時励振の際の開口幅は広くなるため、焦点距離が長くても集束係数を高めることができ検出能の劣化が生じない。従って、各振動子群からの集束特性を一定に揃えることができるため、内面側から外面側まで均一の検出感度で探傷が可能となる(特許文献2[0070]欄参照)。
For these reasons, in order to detect a minute defect of about 50 μm existing on the tube surface, monitoring with a luminance sensor is necessary.
By the way, in the array UT, flaw detection is possible with uniform detection sensitivity from the inner surface side to the outer surface side inside the tube. Therefore, it is possible to detect a minute defect of about 100 μm existing in the welded portion of the ERW steel pipe. For this purpose, it is preferable to set the number of transducers of the transmitting transducer group and the receiving transducer group to be smaller as it is closer to the welded portion and larger as it is farther from the welded portion. In this way, the closer to the welded portion, the narrower the opening width at the time of simultaneous excitation, so the beam width does not become too narrow even if the focal length is short. Since the aperture width is wide, the focusing coefficient can be increased even when the focal length is long, and the detection ability does not deteriorate. Accordingly, since the focusing characteristics from each transducer group can be made uniform, flaw detection can be performed with uniform detection sensitivity from the inner surface side to the outer surface side (see Patent Document 2 [0070] column).

一方、輝度センサは、被測定物の表面の輝度を測定する原理上、管内部の欠陥検出能力は低く、特に、肉厚が6mmを超える厚肉管については、管溶接部に存在する100μm程度の微小な内部欠陥を検出できないことがある。
これらの理由から、管溶接部の内部に存在する100μm程度の微小な欠陥を内面側から外面側まで漏らさず検出するためには、アレイUTが必要である。
On the other hand, the luminance sensor has a low defect detection capability inside the pipe in principle based on the principle of measuring the luminance of the surface of the object to be measured. Particularly, for a thick pipe having a thickness exceeding 6 mm, it is about 100 μm existing in the pipe weld. In some cases, a minute internal defect cannot be detected.
For these reasons, an array UT is required to detect minute defects of about 100 μm existing inside the pipe welded part without leaking from the inner surface side to the outer surface side.

本発明では、輝度センサとアレイUTを組み合わせることにより、管溶接部の外面近傍、例えば管溶接部の管体外面位置から管体肉厚の1/4だけ内側に入った位置までの部分、における溶接欠陥の大きさが50μm以上である電縫鋼管を排除でき、また、管溶接部の内部、例えば管溶接部において管体外面位置から管体肉厚の1/4だけ内側に入った位置までの部分を除いた残りの部分、における溶接欠陥の大きさが100μm以上である電縫鋼管を排除できるので、本発明項(3)記載の電縫鋼管、すなわち、管溶接部の管体外面位置から管体肉厚の1/4だけ内側に入った位置までの部分における溶接欠陥の大きさが50μm未満、残りの部分における溶接欠陥の大きさが100μm未満である電縫鋼管のみを確実に提供できるようになり、品質の信頼性が格段に向上する。   In the present invention, by combining the brightness sensor and the array UT, in the vicinity of the outer surface of the pipe welded portion, for example, the portion from the outer surface position of the pipe welded portion to the position inside the pipe wall thickness by 1/4. ERW steel pipes with a weld defect size of 50 μm or more can be eliminated, and the inside of the pipe welded part, for example, from the pipe outer surface position to the position inside the pipe wall thickness by 1/4 of the pipe wall thickness. Since the electric resistance welded steel pipe having a weld defect size of 100 μm or more in the remaining portion excluding the portion can be excluded, the position of the outer surface of the welded steel pipe according to the item (3) of the present invention, that is, the pipe welded portion. Only the ERW steel pipe with a weld defect size of less than 50 μm in the part from the inner wall to a position inside the pipe wall by a quarter of the wall thickness and less than 100 μm in the remaining part is reliably provided. You can The reliability of the quality is significantly improved.

実施例では、熱延鋼帯を条切りした帯鋼の帯幅端部に微小な疵やスパッタ等の各種の人工疵を設けた帯材を用い、図1に示した電縫鋼管製造ライン(ただし、高周波加熱装置4は図2の誘導加熱式の装置を使用する)において電縫溶接実験を行い、その際、人工疵部を含む溶接部を輝度センサ10で監視するとともに、アレイUT11で検査した。得られた電縫鋼管について、溶接部の90°偏平試験(例えばJIS G3445に規定されるへん平試験(環状試験片の場合)に準拠した試験であり、溶接部を通る管直径線が偏平方向に対して90°になるように管を配置して試験する)を行い溶接部の偏平特性を調査するとともに、溶接部(被溶接部が溶接結合したその結合界面であり管周方向にほぼ直交している)を切り出してそこに存在する溶接欠陥をSEM(走査電子顕微鏡)観察して該溶接欠陥の大きさを調査した。その結果を表1に示す。表1では各水準において、輝度センサ、アレイUTの各々の欠陥検出結果が、欠陥有りであった場合を○、欠陥無しであった場合を×とした。   In the embodiment, a band material in which various artificial ridges such as fine ridges and spatters are provided at the end of the strip width obtained by slicing a hot-rolled steel strip, the ERW steel pipe production line shown in FIG. However, the high-frequency heating device 4 uses the induction heating type device of FIG. 2) and performs an electric resistance welding experiment. At that time, the welded portion including the artificial scissors is monitored by the luminance sensor 10 and inspected by the array UT11. did. The obtained ERW steel pipe is a test conforming to a 90 ° flattening test (for example, a flattening test (in the case of an annular test piece) specified in JIS G3445) of the welded portion, and the pipe diameter line passing through the welded portion is in the flattening direction. The tube is placed at 90 ° with respect to the test, and the flat characteristics of the welded portion are investigated, and the welded portion (the welded portion of the welded portion is the joint interface, almost perpendicular to the pipe circumferential direction) And welding defects existing there were observed by SEM (scanning electron microscope) to investigate the size of the welding defects. The results are shown in Table 1. In Table 1, at each level, the defect detection result of each of the luminance sensor and the array UT is indicated as “◯” when there is a defect, and “X” when there is no defect.

表1より、溶接部の偏平値(偏平にして溶接部に割れが生じたときの偏平方向の管外径/偏平にする前の管外径)の高い部分、すなわち不良部は、輝度センサとアレイUTを組み合わせることにより、完全に検出可能であることがわかる。   From Table 1, the flat part of the welded part (the pipe outer diameter in the flattening direction when flattened and cracked in the welded part / the pipe outer diameter before flattening), that is, the defective part, It can be seen that the detection is completely possible by combining the arrays UT.

Figure 0005909874
Figure 0005909874

1 帯材
2 アンコイラー
3 ロール成形機
4 高周波加熱装置
5 スクイズロール
6 ビード切削機
7 切断機
8 管(電縫鋼管)
10 輝度センサ
11 アレイ探触子を用いた超音波探傷装置(アレイUT)
12 監視領域
13 溶接点(被溶接部が溶接結合する点)
14 溶接部
15 アレイ探触子
DESCRIPTION OF SYMBOLS 1 Strip 2 Uncoiler 3 Roll forming machine 4 High frequency heating device 5 Squeeze roll 6 Bead cutting machine 7 Cutting machine 8
DESCRIPTION OF SYMBOLS 10 Brightness sensor 11 Ultrasonic flaw detector (array UT) using array probe
12 Monitoring area 13 Welding point (Point where welded part is welded)
14 Welded part 15 Array probe

Claims (3)

帯材を管状に成形して形成したV字状ギャップの縁部同士を連続的に溶接して製造される電縫鋼管の前記溶接の際に生じる溶接欠陥を検出するための、電縫鋼管の溶接欠陥の検出システムであって、溶接後ビード切削前の間に溶接部の輝度を輝度センサで監視し、該輝度センサで撮影された輝度分布の画像信号を処理・演算してなる瞬時輝度の総和および/または半値幅の造管長に対する推移曲線からダークスポットの発生した造管長部位を検出するとともに、その後、前記ビード切削よりも下流側で、溶接部をアレイ探触子を用いた超音波探傷装置で検査することを特徴とする電縫鋼管の溶接欠陥の検出システム。   An electric resistance welded steel pipe for detecting a welding defect that occurs during the welding of an electric resistance welded pipe manufactured by continuously welding the edges of a V-shaped gap formed by forming a strip into a tubular shape. A welding defect detection system that monitors the brightness of a welded part by a brightness sensor before welding and after bead cutting, and processes and calculates an image signal of the brightness distribution photographed by the brightness sensor. From the transition curve for the total and / or half width of the tube length, the tube length portion where the dark spot is generated is detected, and then the ultrasonic inspection using the array probe is performed on the welded portion downstream of the bead cutting. A welding defect detection system for an ERW steel pipe characterized by inspecting with an apparatus. 前記アレイ探触子を用いた超音波探傷装置は、管体の管軸方向溶接部の溶接面に対して超音波を入射する送波部と、溶接部で反射した反射波の一部又は全部を受波する受波部とを有し、前記送波部及び受波部が、管体周方向に配置された一又は二以上の探傷用アレイ探触子上の異なる振動子群からなる送受信部を備えた超音波探傷装置であることを特徴とする請求項1に記載の電縫鋼管の溶接欠陥の検出システム。   The ultrasonic flaw detection apparatus using the array probe includes a wave transmitting portion that makes ultrasonic waves incident on a welding surface of a tube axial direction weld portion of a tubular body, and a part or all of a reflected wave reflected by the weld portion. Receiving and receiving, wherein the transmitting and receiving portions are composed of different transducer groups on one or more array detectors for flaw detection arranged in the circumferential direction of the tube It is an ultrasonic flaw detector provided with the part, The detection system of the weld defect of the electric resistance welded steel pipe according to claim 1 characterized by things. 請求項1または2に記載の電縫鋼管の溶接欠陥の検出システムを適用した電縫鋼管の製造方法であって、その溶接部の、管体外面位置から管体肉厚の1/4だけ内側に入った位置までの部分における溶接欠陥の大きさが50μm未満、残りの部分における溶接欠陥の大きさが100μm未満である電縫鋼管とすることを特徴とする電縫鋼管の製造方法A method of manufacturing an ERW steel pipe to which the weld defect detection system for an ERW steel pipe according to claim 1 or 2 is applied, wherein the welded portion is inside by 1/4 of a pipe wall thickness from a pipe outer surface position. A method for producing an ERW steel pipe , characterized in that the size of the weld defect in the portion up to the position where it enters is less than 50 μm and the size of the weld defect in the remaining portion is less than 100 μm.
JP2011106936A 2011-05-12 2011-05-12 Welding defect detection system for ERW pipe and method for manufacturing ERW pipe Active JP5909874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106936A JP5909874B2 (en) 2011-05-12 2011-05-12 Welding defect detection system for ERW pipe and method for manufacturing ERW pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106936A JP5909874B2 (en) 2011-05-12 2011-05-12 Welding defect detection system for ERW pipe and method for manufacturing ERW pipe

Publications (2)

Publication Number Publication Date
JP2012236214A JP2012236214A (en) 2012-12-06
JP5909874B2 true JP5909874B2 (en) 2016-04-27

Family

ID=47459607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106936A Active JP5909874B2 (en) 2011-05-12 2011-05-12 Welding defect detection system for ERW pipe and method for manufacturing ERW pipe

Country Status (1)

Country Link
JP (1) JP5909874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689239A (en) * 2016-09-12 2019-04-26 杰富意钢铁株式会社 Electric resistance welding covering steel pipe and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085354A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Manufacturing method of electric resistance welded steel pipe excellent in characteristics of welded part
CN109702037B (en) * 2019-01-28 2024-03-22 东莞彩龙五金弹簧制造有限公司 Cylinder stamping workpiece shaping welding unloading all-in-one

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314114A (en) * 1998-04-28 1999-11-16 Sumitomo Metal Ind Ltd Device for detecting position of seam part of electric resistance welded tube
JP4910769B2 (en) * 2007-02-28 2012-04-04 Jfeスチール株式会社 Pipe quality control method and manufacturing method
JP5200469B2 (en) * 2007-09-18 2013-06-05 Jfeスチール株式会社 Welding spark detection method, spark detection device, and welded product manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689239A (en) * 2016-09-12 2019-04-26 杰富意钢铁株式会社 Electric resistance welding covering steel pipe and its manufacturing method

Also Published As

Publication number Publication date
JP2012236214A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
US9839979B2 (en) System for evaluating weld quality using eddy currents
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JP5909874B2 (en) Welding defect detection system for ERW pipe and method for manufacturing ERW pipe
JP5625292B2 (en) ERW weld monitoring system
JP2905157B2 (en) Inspection method of high frequency welded steel pipe and its manufacturing apparatus
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5909872B2 (en) WELDING DEFECT DETECTING METHOD AND SYSTEM, ELECTRIC SEWING TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5797375B2 (en) ERW steel pipe manufacturing method
US20210312604A1 (en) Improved characterization and classification of spot welds by ultrasonic diagostic techniques
Forejtová et al. Non-destructive inspection by infrared thermography of resistance spot welds used in automotive industry
JP6219075B2 (en) 疵 Detection method
Indimath et al. Online ultrasonic technique for assessment of mash seam welds of thin steel sheets in a continuous galvanizing line
JP2541078B2 (en) ERW pipe defect discrimination method
JP5440014B2 (en) ERW Weld Monitoring Method
JP5881942B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JPS60205356A (en) Ultrasonic flaw detecting method of steel tube weld zone
JPH05223788A (en) Method for diagnosing soundness of weld on sheet
KR100325353B1 (en) An apparatus and method of estimating welding quality by detecting width of the heat effective region in a flash butt welding device
JP2020012752A (en) Spot weld inspection method
JP5601015B2 (en) Heat input control system for low-carbon low-alloy steel ERW pipe
JP2022169938A (en) Method of evaluating butt-welded part of steel pipe
JP2015085354A (en) Manufacturing method of electric resistance welded steel pipe excellent in characteristics of welded part
Shell et al. Technique development for field inspection of cracking in seam welded ducts
JP2000111328A (en) Method for inspecting welding part of welding pipe
Romito et al. Total Focusing Method for the Ultrasonic Testing of drawn arc stud welding

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5909874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250