JP5440014B2 - ERW Weld Monitoring Method - Google Patents

ERW Weld Monitoring Method Download PDF

Info

Publication number
JP5440014B2
JP5440014B2 JP2009187199A JP2009187199A JP5440014B2 JP 5440014 B2 JP5440014 B2 JP 5440014B2 JP 2009187199 A JP2009187199 A JP 2009187199A JP 2009187199 A JP2009187199 A JP 2009187199A JP 5440014 B2 JP5440014 B2 JP 5440014B2
Authority
JP
Japan
Prior art keywords
welding
pipe
monitoring
luminance
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009187199A
Other languages
Japanese (ja)
Other versions
JP2011036892A (en
Inventor
能知 岡部
俊文 児玉
弘道 堀
泰康 横山
昌利 荒谷
俊介 豊田
良和 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009187199A priority Critical patent/JP5440014B2/en
Publication of JP2011036892A publication Critical patent/JP2011036892A/en
Application granted granted Critical
Publication of JP5440014B2 publication Critical patent/JP5440014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電縫管製造ライン内で溶接部を監視する電縫溶接部の監視方法に関する。   The present invention relates to a method for monitoring an electric seam welded portion that monitors a welded portion in an electric resistance welded pipe production line.

電縫管は帯材(管素材)を成形機で円筒状に成形しながら、そのV字状ギャップをなす両縁部を高周波電流通電により加熱溶融し、スクイズロールで加圧接合することにより製造される。
溶接状態はほぼ適度な温度と適度な成形具合,適正素材および運転レベルに反映される。ここで、計測可能な要素の変化を捉えて、溶接適否を判別すること、不適原因を判別することおよび投入電力量をフィードフォワード的に抑制し、さらに他の要因による変化を包括的に温度で捉えてフィードバック的に設定しようとするのが溶接監視および入熱制御の基本的な考え方である。
An electric sewing tube is manufactured by forming a strip (tube material) into a cylindrical shape with a molding machine, heating and melting both edges of the V-shaped gap by high-frequency current conduction, and pressurizing and joining with a squeeze roll. Is done.
Welding conditions are reflected in a moderate temperature, a suitable forming condition, a suitable material and an operating level. Here, by capturing changes in measurable elements, it is possible to determine whether welding is appropriate, to determine the cause of improperness, and to control input power in a feed-forward manner. The basic idea of welding monitoring and heat input control is to capture and set feedback.

図7は誘導式高周波電縫管溶接を示し、図8は接触式高周波電縫管溶接を示す。図中、3aは電磁誘導のためのワークコイル、3b,3cは接触通電のためのチップ(接触子)、2a,2bはスクイズロール、1は溶接される管素材、1b,1cはV字状ギャップを形成する縁部、1aは溶接点、3dは高周波発振装置である。
ワークコイル3aまたはチップ3b,3cはスクイズロール2a,2bの前段部に配置されており、これらにより多段の成形ロール(図示省略)によって管素材1に作られたV字状ギャップの対向する縁部1b,1cに高周波電流iを流すと、対向する縁部1b,1cが高周波電流によって加熱され溶接点1aにおいて最高温度に達するとともにスクイズロール2a,2bによって加圧接合される。
FIG. 7 shows induction type high frequency electric resistance welding pipe welding, and FIG. 8 shows contact type high frequency electric resistance welding pipe welding. In the figure, 3a is a work coil for electromagnetic induction, 3b and 3c are tips (contactors) for contact energization, 2a and 2b are squeeze rolls, 1 is a pipe material to be welded, and 1b and 1c are V-shaped. An edge portion forming a gap, 1a is a welding point, and 3d is a high-frequency oscillation device.
The work coil 3a or the chips 3b and 3c are arranged at the front stage of the squeeze rolls 2a and 2b, and thereby the opposite edges of the V-shaped gap formed in the tube material 1 by a multistage forming roll (not shown). When a high-frequency current i is passed through 1b and 1c, the opposing edges 1b and 1c are heated by the high-frequency current to reach the maximum temperature at the welding point 1a and are pressure-bonded by the squeeze rolls 2a and 2b.

高周波溶接は前記縁部に高周波電流を集中通電して当該縁部を溶接温度まで加熱し、圧接する。高周波電流は2つの縁部に沿って往復するので、近接効果で縁部に集中すると同時に表皮効果によって縁部のコーナに電流が集中する。縁部の中央まで溶接温度で加熱すると、コーナが過熱されて溶けてしまい反発する電磁力と衝合点に向かって近接する材料の速度と衝合点の移動と加熱電流の変動とそれに伴う入熱変動と溶融金属の表面張力による復元作用等が相互作用する複雑なモードになり不良が出やすくなる。   In the high-frequency welding, a high-frequency current is concentratedly applied to the edge to heat the edge to the welding temperature and press-contact. Since the high-frequency current reciprocates along the two edges, the current concentrates at the edge due to the proximity effect, and at the same time, the current concentrates at the corner at the edge due to the skin effect. When heating to the center of the edge at the welding temperature, the corner is overheated and melted, repelling electromagnetic force, the speed of the material approaching the collision point, movement of the collision point, fluctuation of the heating current, and accompanying heat input fluctuation And a complex mode in which the restoring action by the surface tension of the molten metal interacts, and defects are likely to occur.

このような電縫管溶接においては、入熱の大小,管径,板厚によって溶接状態に特色のある現象が現れる。余り入熱を加えない状態では溶接点1aで溶接され、溶接点の位置はほぼ不変である。入熱を上げると、図6に示すように、溶融金属が流れる電流による電磁力で排除されて、V収束点1aで溶接されず、縁部1b,1cにおいて収束点1aの後方に溶融部4a,4bが形成される。管素材1は移動しており、溶融部4a,4bが溶接されることになる。   In such electric welded pipe welding, a phenomenon that is characteristic of the welding state appears depending on the magnitude of heat input, pipe diameter, and plate thickness. When not much heat input is applied, welding is performed at the welding point 1a, and the position of the welding point is almost unchanged. When the heat input is increased, as shown in FIG. 6, it is eliminated by the electromagnetic force due to the current flowing through the molten metal and is not welded at the V convergence point 1a, but at the edges 1b and 1c, the molten part 4a is located behind the convergence point 1a. , 4b are formed. The pipe material 1 is moving, and the melting parts 4a and 4b are welded.

上述した電縫管溶接において、溶接状態のうち溶接入熱状態を監視する従来の方法として以下の方法があった。
(1)操作員の肉眼による判断方法。(2)溶接部の温度を放射温度計を用いて計測する方法であって、全放射エネルギーを温度に換算する方法と、全放射エネルギーのうち特定の2波長のエネルギーレベルの比を用いて温度に換算する方法。(3)共振周波数の変化を電気的に検出し、入熱量の過多を判別する方法。(4)溶接後のビートの突起の形状を把握する方法。
In the above-described electric resistance welded pipe welding, the following method has been known as a conventional method for monitoring the welding heat input state among the welding states.
(1) A judgment method with the naked eye of the operator. (2) A method of measuring the temperature of a weld using a radiation thermometer, which is a method of converting total radiant energy into temperature, and using a ratio of energy levels of two specific wavelengths among the total radiant energy. How to convert to (3) A method of electrically detecting a change in resonance frequency and determining an excessive amount of heat input. (4) A method of grasping the shape of the protrusion of the beat after welding.

さらには、入熱が適正でも、縁部の成形状態にねじれがあったり、縁部が振れたりあるいはスクイズロールの加圧(アップセット)が変化すると、溶接不良となることがあり、このような条件変化をも含めて把握できる監視方法として、溶接部と溶接入側の発熱金属部を撮像手段によって走査して複数の画像として分割して捉えて、これらの画像の特長量を画像処理部によって求めて解析信号を得、この解析信号を基に溶接状態の適否を判定することにより、溶接状態の適正な判別と入熱制御を可能にする方法があった(特許文献1:[0002]〜[0013]参照)。   Furthermore, even if the heat input is appropriate, if the edge is twisted, the edge shakes, or the squeeze roll pressure (upset) changes, welding failure may occur. As a monitoring method that can be grasped including condition changes, the welded part and the heat generating metal part on the welding entrance side are scanned by the imaging means and divided into a plurality of images, and the feature amount of these images is obtained by the image processing part. There is a method for obtaining appropriate analysis of the welding state and heat input control by obtaining an analysis signal and determining whether the welding state is appropriate based on the analysis signal (Patent Document 1: [0002] to [0013]).

特開平5−318142号公報JP-A-5-318142

上述したいずれの従来技術も、溶接状態が最適になるように工夫された方法ではある。
しかしながら、従来技術の範囲内で溶接状態を最良に保ってもなお、極めて微細な溶接欠陥が生じることがある。これは、電縫溶接部に微細な異物が混入する場合と、帯材(管素材)の端部(縁部)に当て疵などが存在する場合である。すなわち、電縫成形溶接過程において管素材表面の酸化鉄や鉄などが剥離して、大気中に微量の粉塵として存在しており、電縫溶接過程においては、溶接時に発生する溶鋼がスパッタ粒として存在しているが、これらの粉塵やスパッタ粒が溶接部に稀に飛び込んだ場合に溶接欠陥を生じることがある。さらに、帯材の端部にわずかな疵が生じている部分が電縫溶接される場合にも、その疵が溶接欠陥の発生原因となることがある。これらの溶接欠陥はいずれも、その大きさが数mm以下と小さいものであり、上述の従来技術をもってしても、このような微小な外乱因子による溶接欠陥を検出することは極めて困難であった。
Any of the above-described conventional techniques is a method devised so as to optimize the welding state.
However, even with the best welding conditions within the scope of the prior art, very fine weld defects may still occur. This is a case where fine foreign matter is mixed in the electric-welded welded portion and a case where a paddle or the like is present at the end portion (edge portion) of the band material (tube material). In other words, iron oxide or iron on the surface of the tube material is peeled off during the electric seam forming welding process and exists as a small amount of dust in the atmosphere. In the electric seam welding process, the molten steel generated during welding is sputtered. Although present, when these dusts and spatter particles rarely jump into the weld, welding defects may occur. Furthermore, even when a portion where a slight wrinkle is generated at the end portion of the strip is electro-welded, the wrinkle may cause a welding defect. All of these welding defects are as small as several mm or less, and even with the above-described conventional technology, it was extremely difficult to detect welding defects caused by such minute disturbance factors. .

上述のように従来の技術では、電縫管製造ラインにおいて電縫溶接部に粉塵やスパッタ粒などの飛び込みや帯材端部の疵により発生する数mm以下の微小な溶接欠陥の検出が極めて困難であるという課題があった。   As described above, in the conventional technology, it is extremely difficult to detect minute welding defects of several mm or less that are generated due to dipping of dust or spatter particles in the ERW weld line or wrinkles at the end of the strip in the ERW pipe production line. There was a problem of being.

本発明は前記課題を解決するためになされたものであり、その要旨は以下のとおりである。
(請求項1)
帯材を管状に成形して形成したV字状ギャップの縁部同士を連続的に溶接する電縫管製造ラインの操業中に、溶接点から下流側に20〜500mm離間した位置に監視領域として予め定めた、溶接線にほぼ直交する線状領域の線長方向の輝度分布を、ラインスキャンカメラからなる輝度センサでの撮影速度1ms以下、撮影回数1000回/s以上の撮影による画像信号として捉え、これを監視しながら、撮影コマごとの輝度分布情報である瞬時輝度の総和および/または半値幅を演算し、この演算結果の経時変化データから、粉塵やスパッタの稀な飛び込みや帯材端部の微小な疵による溶接欠陥発生に対応するDSすなわちダークスポットを検出することを特徴とする電縫溶接部の監視方法。
(請求項2)
前記DSの検出時点情報を、トラッキング機能により、対応する造管長位置情報に変換して、前記溶接欠陥が発生した造管長位置を特定し、その位置情報を造管工程の下流の精整工程に通知して、この溶接欠陥部を含む管長さ部分を製品管から排除することを特徴とする請求項1に記載の電縫溶接部の監視方法。
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(Claim 1)
During operation of the ERW pipe manufacturing line that continuously welds the edges of the V-shaped gap formed by forming the strip into a tubular shape, as a monitoring region at a position spaced 20 to 500 mm downstream from the welding point The predetermined luminance distribution in the line length direction of the linear region substantially orthogonal to the welding line is captured as an image signal obtained by photographing at a photographing speed of 1 ms or less and a photographing number of 1000 times / s or more with a luminance sensor composed of a line scan camera. While monitoring this, calculate the sum and / or half-value width of the instantaneous luminance, which is the luminance distribution information for each frame, and use the time-dependent data of this calculation result to determine whether dust or spatter rarely enters or the edge of the band. A method of monitoring an electro- welded welded portion, characterized by detecting a DS, that is, a dark spot, corresponding to the occurrence of a welding defect caused by a small wrinkle .
(Claim 2)
The detection time information of the DS is converted into corresponding pipe forming length position information by the tracking function, the pipe forming length position where the welding defect has occurred is specified, and the position information is used for the refining process downstream of the pipe forming process. 2. The method for monitoring an electro-welded weld according to claim 1, wherein the pipe length portion including the weld defect is excluded from the product pipe.

本発明によれば、電縫管製造ラインにおいて電縫溶接部への粉塵やスパッタ粒などの稀な飛び込み、あるいは帯材端部に付いた微小な疵など、により発生する数mm以下程度の微小な溶接欠陥をも容易に検出できて、格段に高い品質の電縫管を提供できるようになり、品質の信頼性が向上する。   According to the present invention, in the ERW pipe production line, a minute of about several mm or less generated by rare jumps of dust or spatter particles into the ERW welded part, or minute wrinkles attached to the end of the band material. As a result, it is possible to easily detect even a welding defect, and to provide a remarkably high quality ERW pipe, thereby improving the reliability of the quality.

本発明を実施するための形態の1例を示す概略斜視図The schematic perspective view which shows one example of the form for implementing this invention 図1の例に係る概略平面図FIG. 1 is a schematic plan view according to the example of FIG. 輝度分布監視データの推移を示す模式図Schematic diagram showing the transition of luminance distribution monitoring data 造管長に対する瞬時輝度の総和の推移曲線の1例を示す線図Diagram showing an example of the transition curve of the sum of instantaneous luminance with respect to pipe length 造管長に対する瞬時輝度の半値幅の推移曲線の1例を示す線図Diagram showing one example of transition curve of half-value width of instantaneous luminance with respect to pipe length 背景技術としての溶接モードを示す説明図Explanatory drawing showing welding mode as background technology 背景技術としての誘導式高周波電縫管溶接を示す斜視図Perspective view showing induction type high frequency electric resistance welded pipe welding as background art 背景技術としての溶解式高周波電縫管溶接を示す斜視図Perspective view showing fusion type high frequency electric resistance welded welding as background technology

発明者らは、前記課題を解決するために実験・検討を重ね、次の知見を得た。
(1)粉塵やスパッタが被溶接部に稀に飛び込んで溶接欠陥が生じる際、あるいは帯材端部の微小な疵が生じている部分が電縫溶接されて溶接欠陥が生じる際に、溶接点出側の輝度の分布状態が瞬間的にダーク(暗い)側に変化する。
(2)しかし、溶接点から20mm未満の下流域では、溶接欠陥部の輝度の変化が周囲の溶融部の輝度に邪魔されるために、十分には観察できない。
(3)また、溶接点から500mm超の下流域では、溶接欠陥部の輝度の変化は少なくなり、判別が困難になる。
Inventors repeated experiment and examination in order to solve the said subject, and acquired the following knowledge.
(1) When dust or spatter rarely jumps into the welded part to cause a welding defect, or when a flaw is formed at the end of the band material and is welded to cause a welding defect. The luminance distribution state on the outgoing side instantaneously changes to the dark side.
(2) However, in the downstream region of less than 20 mm from the welding point, the change in the luminance of the weld defect portion is disturbed by the luminance of the surrounding molten portion, so that it cannot be sufficiently observed.
(3) Further, in the downstream region of more than 500 mm from the welding point, the change in the luminance of the weld defect portion is reduced, and the discrimination becomes difficult.

上記知見に基づいて、本発明では、例えば図1、図2に示すように、初期形態が帯材である管素材1を管状に成形して形成したV字状ギャップの縁部1b、1c同士を連続的に溶接する電縫管製造ラインの操業中に、溶接点1aから下流側に距離L=20〜500mmだけ離間した位置に監視領域11として予め定めた、溶接線1wにほぼ直交する線状領域の輝度分布を、輝度センサ10での撮影による画像信号として捉え、これを監視することとした。ここで、「ほぼ直交」とは、交差角度が90°±10°の範囲内であることを意味する。監視領域11として定める線状領域の長さ方向が溶接線1wとほぼ直交でないと、瞬時輝度の変化を捉えることが困難となる。   Based on the above findings, in the present invention, as shown in FIGS. 1 and 2, for example, the edges 1b and 1c of the V-shaped gap formed by forming the tube material 1 whose initial form is a strip into a tubular shape are formed. During the operation of the ERW pipe manufacturing line that continuously welds, a line substantially orthogonal to the welding line 1w, which is predetermined as the monitoring region 11 at a position separated by a distance L = 20 to 500 mm downstream from the welding point 1a. The luminance distribution of the region is captured as an image signal obtained by photographing with the luminance sensor 10 and monitored. Here, “substantially orthogonal” means that the crossing angle is within a range of 90 ° ± 10 °. If the length direction of the linear region defined as the monitoring region 11 is not substantially orthogonal to the weld line 1w, it is difficult to capture the change in instantaneous luminance.

輝度センサ10は輝度カメラとも呼ばれ、監視領域11を撮影し、該撮影した画面内の輝度分布を導出する機能を有している。このような輝度センサとしては、例えば市販のラインスキャンカメラなどが挙げられる。輝度センサ10の撮影コマごとの輝度情報(瞬時輝度)は図1に示すようにPC(パソコン)等に取り込んで画像処理することで、図3に模式的に示すように、瞬時輝度の分布曲線に相当する画像信号の経時変化データとして監視することができる。そして、この監視される経時変化データから、粉塵やスパッタの稀な飛び込みや帯材端部の微小な疵による溶接欠陥発生に対応するDS(ダークスポット)を検出することができ、該DS検出時点情報を、通常用いられるトラッキング機能により、対応する造管長位置情報に変換して、前記溶接欠陥が発生した造管長位置を特定でき、その位置情報を造管工程の下流の精整工程に通知して、この溶接欠陥部を含む管長さ部分を製品管から確実に排除することができる。   The luminance sensor 10 is also called a luminance camera and has a function of photographing the monitoring area 11 and deriving a luminance distribution in the photographed screen. An example of such a brightness sensor is a commercially available line scan camera. The luminance information (instantaneous luminance) for each photographing frame of the luminance sensor 10 is captured in a PC (personal computer) or the like as shown in FIG. 1 and image-processed, so that a distribution curve of instantaneous luminance as schematically shown in FIG. Can be monitored as time-varying data of the image signal corresponding to. The DS (dark spot) corresponding to the occurrence of welding defects due to rare jumps in dust or spatter or minute flaws at the end of the strip can be detected from the time-dependent data monitored. The information can be converted into the corresponding pipe length position information by the normally used tracking function, and the pipe length position where the welding defect has occurred can be specified, and the position information is notified to the refining process downstream of the pipe forming process. Thus, the pipe length portion including the weld defect can be surely excluded from the product pipe.

ところで、電縫溶接の速度(溶接線生成速度または造管速度)は、各種溶接法の中でも高速溶接法に分類され、100m/分を超える速度で溶接される場合がある。これらの溶接速度において、数mm以下の溶接欠陥を判別するためには、撮影速度(1撮影コマの露光時間)は1ms(=1/1000秒)以下にしなければならない。1msを超える撮影速度では、溶接欠陥部の輝度変化部以外の部分が同じ撮影コマ内にかなりの程度まで入って、DSの検出が困難となる。さらに、微小な溶接欠陥を見逃さないためには、撮影回数(撮影コマ数)は、毎秒1000回(毎秒1000コマ)以上にしなければならない。撮影回数が毎秒1000回未満の場合、溶接欠陥部が撮影コマから外れて、見逃しが発生することがある。   By the way, the speed of electric resistance welding (weld line generation speed or pipe forming speed) is classified as a high-speed welding method among various welding methods, and may be welded at a speed exceeding 100 m / min. At these welding speeds, in order to discriminate a welding defect of several mm or less, the photographing speed (exposure time of one photographing frame) must be 1 ms (= 1/1000 second) or less. When the imaging speed exceeds 1 ms, portions other than the luminance change portion of the weld defect portion enter the same imaging frame to a considerable extent, and DS detection becomes difficult. Furthermore, in order not to miss a minute welding defect, the number of times of photographing (number of photographing frames) must be 1000 times per second (1000 frames per second) or more. If the number of times of photographing is less than 1000 times per second, the weld defect part may be removed from the photographing frame, resulting in oversight.

したがって、本発明においては、電縫溶接の速度が100m/分を超える場合でも、溶接欠陥部の判別が確実にでき、かつ溶接欠陥部の見逃しが生じないように、輝度センサで監視する輝度分布は、撮影速度1ms以下、撮影回数1000回/s以上の撮影による画像信号として捉えることが好ましい。
また、輝度センサでの撮影による画像信号として捉えられる輝度分布は、実際には、必ずしも図3の模式図に示すような単純で滑らかな山形の曲線形状を示すわけではなく、大きな凹凸を多数含む複雑な曲線形状を示す場合が少なからずあり、そのような複雑な分布曲線形状の瞬時輝度データから直ちにDS検出(すなわち瞬時的な溶接状態の適否判別)を行うのは困難である。そこで発明者らは、この困難を克服するための手法を検討し、その結果、前記画像信号を処理して瞬時輝度の総和および/または半値幅を演算した結果を用いることによりDS検出が確実かつ容易となることが分った。なお、図4には、画像信号を処理・演算してなる瞬時輝度の総和の、造管長に対する推移曲線の1例を示し、また、図5には、図4と同じ画像信号を処理・演算してなる瞬時輝度の半値幅の、造管長に対する推移曲線の1例を示す。これら図4、図5の推移曲線はほぼフラットな中に明瞭な窪み部を有する形状を示しており、これにより確実かつ容易にDSの発生した造管長部位を検出できることが分る。さらに、データ記憶手段の容量を節約する観点から、前記瞬時輝度の総和および/または半値幅の演算は、リアルタイムで実行するのがよいことも分った。
Therefore, in the present invention, even when the speed of ERW welding exceeds 100 m / min, the luminance distribution monitored by the luminance sensor so that the welding defect portion can be reliably identified and the welding defect portion is not overlooked. Is preferably captured as an image signal by shooting at a shooting speed of 1 ms or less and a shooting count of 1000 times / s or more.
In addition, the luminance distribution captured as an image signal obtained by photographing with the luminance sensor does not necessarily indicate a simple and smooth mountain-shaped curve shape as shown in the schematic diagram of FIG. In many cases, a complicated curve shape is shown, and it is difficult to immediately perform DS detection (that is, instantaneous determination of suitability of the welding state) from instantaneous luminance data of such a complicated distribution curve shape. Therefore, the inventors examined a method for overcoming this difficulty, and as a result, DS detection was reliably and reliably performed by processing the image signal and using the result of calculating the sum of instantaneous luminance and / or the half-value width. I found it easier. FIG. 4 shows an example of a transition curve of the sum of instantaneous luminance obtained by processing and calculating the image signal with respect to the tube forming length, and FIG. 5 shows processing and calculation of the same image signal as in FIG. An example of the transition curve with respect to the tube forming length of the half-value width of the instantaneous luminance is shown. These transition curves in FIGS. 4 and 5 show a shape having a clear recess in a substantially flat shape, and it can be understood that the tube-forming length portion where DS is generated can be detected reliably and easily. Further, it has been found that the calculation of the sum of the instantaneous luminance and / or the half-value width is preferably performed in real time from the viewpoint of saving the capacity of the data storage means.

したがって、本発明においては、前記画像信号が複雑な曲線形状を示す場合でも、より少ない記憶手段にて確実かつ容易にDS検出(すなわち瞬時的な溶接状態の適否判別)ができるように、前記画像信号をリアルタイムで処理して瞬時輝度の総和および/または半値幅を演算し、この演算結果に基づいて瞬時的な溶接状態の適否を判別することが好ましい。   Therefore, in the present invention, even when the image signal shows a complicated curve shape, the image can be detected reliably and easily with less storage means (that is, whether the welding state is instantaneously determined). It is preferable to process the signal in real time to calculate the sum and / or the half value width of the instantaneous luminance, and to determine the suitability of the instantaneous welding state based on the calculation result.

(従来例)
従来は、初期形態がコイル状に巻かれた帯鋼である管素材を、アンコイラで直線状に展開しつつ、管状にロール成形して形成したV字状ギャップの縁部同士を連続的に、高周波誘導溶接で加熱しスクイズロールで圧接することにより溶接して、溶接管となし、その溶接部のビードをビード切削機で切削後、溶接部をシームアニーラーで熱処理し、サイザーで外径調整し、管切断機で所定の長さに切断するよう構成された電縫管製造ライン(造管ライン)を使用し、電縫溶接の速度(造管速度)=20〜120m/分の操業条件下で、外径:25.4〜180mm、肉厚:1.2mm〜9.0mmの電縫管を製造していた。
(Conventional example)
Conventionally, the edge of the V-shaped gap formed by roll forming into a tubular shape while continuously expanding a tube material, which is a steel strip wound in a coil shape in an initial form, into a linear shape, Heated by high frequency induction welding and welded by pressure welding with a squeeze roll, forming a welded pipe, cutting the bead of the weld with a bead cutting machine, heat treating the weld with a seam annealer, and adjusting the outer diameter with a sizer Then, using an electric resistance welded pipe production line (tube forming line) configured to cut to a predetermined length with a pipe cutting machine, the operating conditions of electric resistance welding speed (tube forming speed) = 20 to 120 m / min Below, an electric resistance welded tube having an outer diameter of 25.4 to 180 mm and a wall thickness of 1.2 mm to 9.0 mm was manufactured.

製品管の出荷後の品質フィードバック情報実績によると、概して造管長50km当たり1箇所の割合で、下流の精整ラインで検出できなかった数mm程度以下の微小な溶接欠陥が生じており、品質の信頼性に改善の余地があった。
(本発明例)
従来例と同じ造管ラインに対し、図2の形態にてL=200mm(スクイズロールとビード切削機との間隔範囲内)として線状の監視領域(溶接線との交差角=90°とした)を予め定め、前記造管ラインの従来例同様の操業条件下での操業中に、前記監視領域の輝度分布を、輝度センサ(前記Spyder2を使用)での撮影による画像信号として捉えるようにした。撮影速度は0.05〜5ms、撮影回数は200〜20000回/sとし、この範囲内で造管速度に応じて設定を変えた。なお、造管速度が100m/分を超える場合は、撮影速度を1ms以下、撮影回数を1000回/s以上に設定した。
According to the results of quality feedback information after shipment of product pipes, there is generally a small welding defect of about several millimeters or less that could not be detected in the downstream finishing line at a rate of 1 place per 50 km of pipe length. There was room for improvement in reliability.
(Example of the present invention)
For the same pipe making line as in the conventional example, L = 200 mm (within the interval range between the squeeze roll and the bead cutting machine) in the form of FIG. 2 and a linear monitoring region (intersection angle with the weld line = 90 °) ) Is determined in advance, and the luminance distribution of the monitoring area is captured as an image signal obtained by photographing with a luminance sensor (using the Spider 2) during operation under the same operating conditions as the conventional example of the pipe forming line. . The shooting speed was 0.05 to 5 ms, and the number of shots was 200 to 20000 times / s, and the setting was changed within this range according to the pipe making speed. When the tube forming speed exceeded 100 m / min, the shooting speed was set to 1 ms or less and the number of shootings was set to 1000 times / s or more.

かくして捉えた画像信号をリアルタイムで処理して瞬時輝度の総和を演算し、その演算結果から図4のような推移曲線を求め、これを所定の輝度閾値と比較することでDSの発生した造管長位置を特定して、下流の精整ラインに通知するようにした。
その結果、従来では検出できなかった、数mm程度以下の微小な溶接欠陥が検出可能となり、かかる微小な溶接欠陥を含む造管長部分の排除が可能となって、格段に高品質の製品管を提供できるようになり、品質の信頼性が著しく向上した。
(比較例)
本発明例において、L=10mmまたは600mmに変更し、それ以外は本発明例と同様にして、輝度分布の監視を試行したが、いずれの場合もDS検出はできなかった。
The image signal thus captured is processed in real time to calculate the sum of instantaneous luminances, a transition curve as shown in FIG. 4 is obtained from the calculation result, and this is compared with a predetermined luminance threshold value, thereby producing a tube length in which DS is generated. The position was specified and notified to the downstream finishing line.
As a result, it is possible to detect a minute weld defect of about several millimeters or less, which could not be detected in the past, and it is possible to eliminate the pipe-forming length portion including such a minute weld defect, so that a product pipe of extremely high quality can be obtained. The reliability of the quality has been significantly improved.
(Comparative example)
In the example of the present invention, L = 10 mm or 600 mm was changed, and other than that, monitoring of the luminance distribution was tried in the same manner as in the example of the present invention. However, in either case, DS could not be detected.

1 管素材(初期形態は帯材)
1a 溶接点(V収束点、収束点)
1b,1c 縁部
1w 溶接線
2a,2b スクイズロール
3a ワークコイル
3b,3c チップ
3d 高周波発振装置
4a,4b 溶融部を含む発熱金属部
10 輝度センサ
11 監視領域(溶接線にほぼ直交する線状領域)
1 Tube material (initial form is strip)
1a Welding point (V convergence point, convergence point)
1b, 1c Edge 1w Welding wire 2a, 2b Squeeze roll 3a Work coil 3b, 3c Chip 3d High frequency oscillation device 4a, 4b Heating metal part including melting part 10 Luminance sensor 11 Monitoring area (Linear area substantially orthogonal to welding line )

Claims (2)

帯材を管状に成形して形成したV字状ギャップの縁部同士を連続的に溶接する電縫管製造ラインの操業中に、溶接点から下流側に20〜500mm離間した位置に監視領域として予め定めた、溶接線にほぼ直交する線状領域の線長方向の輝度分布を、ラインスキャンカメラからなる輝度センサでの撮影速度1ms以下、撮影回数1000回/s以上の撮影による画像信号として捉え、これを監視しながら、撮影コマごとの輝度分布情報である瞬時輝度の総和および/または半値幅を演算し、この演算結果の経時変化データから、粉塵やスパッタの稀な飛び込みや帯材端部の微小な疵による溶接欠陥発生に対応するDSすなわちダークスポットを検出することを特徴とする電縫溶接部の監視方法。 During operation of the ERW pipe manufacturing line that continuously welds the edges of the V-shaped gap formed by forming the strip into a tubular shape, as a monitoring region at a position spaced 20 to 500 mm downstream from the welding point The predetermined luminance distribution in the line length direction of the linear region substantially orthogonal to the welding line is captured as an image signal obtained by photographing at a photographing speed of 1 ms or less and a photographing number of 1000 times / s or more with a luminance sensor composed of a line scan camera. While monitoring this, calculate the sum and / or half-value width of the instantaneous luminance, which is the luminance distribution information for each frame, and use the time-dependent data of this calculation result to determine whether dust or spatter rarely enters or the edge of the band. A method of monitoring an electro- welded welded portion, characterized by detecting a DS, that is, a dark spot, corresponding to the occurrence of a welding defect caused by a small wrinkle . 前記DSの検出時点情報を、トラッキング機能により、対応する造管長位置情報に変換して、前記溶接欠陥が発生した造管長位置を特定し、その位置情報を造管工程の下流の精整工程に通知して、この溶接欠陥部を含む管長さ部分を製品管から排除することを特徴とする請求項1に記載の電縫溶接部の監視方法。The detection time information of the DS is converted into corresponding pipe forming length position information by the tracking function, the pipe forming length position where the welding defect has occurred is specified, and the position information is used for the refining process downstream of the pipe forming process. 2. The method for monitoring an electro-welded weld according to claim 1, wherein the pipe length portion including the weld defect is excluded from the product pipe.
JP2009187199A 2009-08-12 2009-08-12 ERW Weld Monitoring Method Expired - Fee Related JP5440014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187199A JP5440014B2 (en) 2009-08-12 2009-08-12 ERW Weld Monitoring Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187199A JP5440014B2 (en) 2009-08-12 2009-08-12 ERW Weld Monitoring Method

Publications (2)

Publication Number Publication Date
JP2011036892A JP2011036892A (en) 2011-02-24
JP5440014B2 true JP5440014B2 (en) 2014-03-12

Family

ID=43765221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187199A Expired - Fee Related JP5440014B2 (en) 2009-08-12 2009-08-12 ERW Weld Monitoring Method

Country Status (1)

Country Link
JP (1) JP5440014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777859B1 (en) 2011-11-09 2016-09-28 Nippon Steel & Sumitomo Metal Corporation Monitoring device, method, and program for seam welding, and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815228B2 (en) * 1977-06-07 1983-03-24 新日本製鐵株式会社 High frequency electric resistance welding phenomenon monitoring device
JPS5548483A (en) * 1978-09-30 1980-04-07 Sumitomo Metal Ind Ltd Upset-value control method and upset measuring instrument of welded tube
JPH0327882A (en) * 1989-06-23 1991-02-06 Kawasaki Steel Corp Monitor for welding state of resistance welded tube

Also Published As

Publication number Publication date
JP2011036892A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
RU2607885C2 (en) Method and apparatus for longitudinal-seam welding of profiled tubes in tube-welding system
JP5332287B2 (en) ERW welding system
JP5625292B2 (en) ERW weld monitoring system
WO2018087818A1 (en) Welding monitoring apparatus and welding monitoring method
JP5125670B2 (en) A method for manufacturing ERW welded pipes with excellent welding quality.
JP5014837B2 (en) ERW steel pipe manufacturing method
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JP6762163B2 (en) Welding monitoring method and welding monitoring device for welding process of electric resistance pipe
JP5909872B2 (en) WELDING DEFECT DETECTING METHOD AND SYSTEM, ELECTRIC SEWING TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5440014B2 (en) ERW Weld Monitoring Method
Lv et al. Study on arc characteristics of different defects in pulsed micro-plasma arc welding
JP6015883B1 (en) Manufacturing method monitoring method for ERW welded pipe, manufacturing status monitoring device for ERW welded pipe, and method for manufacturing ERW welded pipe
JP5909874B2 (en) Welding defect detection system for ERW pipe and method for manufacturing ERW pipe
JP5881942B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JP4532977B2 (en) Welding method for ERW steel pipe with excellent welding quality
JP4138929B2 (en) High frequency pipe making method
JP3423034B2 (en) Apparatus for detecting the amount of pressure contact in the high-frequency electric resistance welding process
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5082746B2 (en) Manufacturing equipment and manufacturing method of square steel pipe
JP5601015B2 (en) Heat input control system for low-carbon low-alloy steel ERW pipe
JP7119561B2 (en) MONITORING METHOD, MONITORING SYSTEM AND MONITORING PROGRAM FOR ERW WELDING
RU2722957C1 (en) Method of controlling process of high-frequency welding of pipes and device for implementation thereof
JP6699116B2 (en) Upset control device and control method in electric resistance welding process
JP5797375B2 (en) ERW steel pipe manufacturing method
JP7081718B2 (en) Electric pipe welding monitoring method, electric pipe manufacturing method, electric pipe welding monitoring device, and electric pipe manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees