JP4793161B2 - Quality inspection method and apparatus for butt welds - Google Patents

Quality inspection method and apparatus for butt welds Download PDF

Info

Publication number
JP4793161B2
JP4793161B2 JP2006220245A JP2006220245A JP4793161B2 JP 4793161 B2 JP4793161 B2 JP 4793161B2 JP 2006220245 A JP2006220245 A JP 2006220245A JP 2006220245 A JP2006220245 A JP 2006220245A JP 4793161 B2 JP4793161 B2 JP 4793161B2
Authority
JP
Japan
Prior art keywords
welding
weld
light
butt
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006220245A
Other languages
Japanese (ja)
Other versions
JP2008045935A (en
Inventor
俊文 児玉
嘉之 梅垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006220245A priority Critical patent/JP4793161B2/en
Publication of JP2008045935A publication Critical patent/JP2008045935A/en
Application granted granted Critical
Publication of JP4793161B2 publication Critical patent/JP4793161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本技術は、突合せ溶接部の良否検査方法および装置に関する。特に、鋼帯等をフラッシュバット法等で突合せ溶接する工程において、溶接によって生じる盛上がり部を除去した後に溶接部の良否を検査する、突合せ溶接部の良否検査方法および装置に関する。   The present technology relates to a quality inspection method and apparatus for a butt weld. In particular, the present invention relates to a quality inspection method and apparatus for a butt welded portion in which the quality of a welded portion is inspected after removing a raised portion caused by welding in a process of butt welding a steel strip or the like by a flash butt method or the like.

従来、冷延工程や酸洗工程では、プロセスへ鋼帯を連続的に供給するため、ルーパー等によりラインを停止させずに先行コイルと後行コイルを溶接により接続する設備、具体的にはフラッシュバット、シーム溶接、スポット溶接等の溶接機および肉盛り切削手段等の付帯装置が設けられているのが一般的である。この肉盛りは、溶接時に鋼帯突合せ部が溶融した状態で板の長手方向に押付けることに伴って、溶融金属が断面からはみ出して生じるもので、溶接直後に、肉盛りの形状に応じたバイト、砥石等の切削工具で平面状に切削するのが一般的である。   Conventionally, in the cold rolling process and pickling process, the steel strip is continuously supplied to the process, so the equipment that connects the preceding coil and the succeeding coil by welding without stopping the line with a looper or the like, specifically flash In general, a welding machine such as a butt, seam welding, spot welding, or the like and an auxiliary device such as a build-up cutting means are provided. This build-up is caused by the molten metal protruding from the cross-section as it is pressed in the longitudinal direction of the plate in a state where the steel band butt portion is melted during welding. It is common to cut into a flat shape with a cutting tool such as a cutting tool or a grindstone.

ところで、これらの溶接機によるコイル間の溶接の良否判定は、後続の工程におけるコイルの溶接部破断等のトラブルを防止する上で重要である。なぜなら、一般には接続された鋼帯も母材と同様なライン、ピンチロールや圧延ロール等を通過するため、溶接部ができるだけ母材と同様の形状になっていることが必要だからである。   By the way, the quality determination of the welding between coils by these welding machines is important in preventing troubles such as fracture of the welded portion of the coil in the subsequent process. This is because, in general, the connected steel strip also passes through the same line, pinch roll, rolling roll, and the like as the base material, so that the welded portion needs to have the same shape as the base material as much as possible.

この溶接部良否判定としては、古くから肉盛り切削後に鋼帯を一旦停止させて溶接部の表裏面を観察する目視検査、ハンマーを用いて溶接部の強度を確認するハンマーテスト、また自動検査の方法としては、特許文献1に開示されているような、溶接電力および溶接時間に基づいて判別する方法、特許文献2に開示されているような、溶接電極内に超音波探触子を埋め込んで超音波の透過強度に基づいて溶接状態の良否を判別する方法、特許文献3に開示されているような、溶接直後に測定する表面温度に基づいて溶接状態の良否を判別する方法、など種々の方法が提案されている。   For the quality judgment of welded parts, the steel strip is temporarily stopped after the build-up cutting, and a visual inspection that observes the front and back surfaces of the welded part, a hammer test that confirms the strength of the welded part using a hammer, and an automatic inspection As a method, a method of discriminating based on welding power and welding time as disclosed in Patent Document 1, an ultrasonic probe is embedded in a welding electrode as disclosed in Patent Document 2. Various methods such as a method for determining the quality of a welding state based on the transmission intensity of ultrasonic waves, a method for determining the quality of a welding state based on a surface temperature measured immediately after welding, as disclosed in Patent Document 3. A method has been proposed.

また、別な従来技術としては、溶接後の盛り上がり除去後の溶接部形状を測定し、それに基づいて溶接部の良否を判別する方法も複数提案されている。即ち、特許文献4においては、光切断法で検出する盛り上がり除去後の溶接部形状の微分波形の変動成分の大小により良否判別を行う方法が提案されており、また、特許文献5においては、突合せ溶接部の表裏面から2次元距離計でそれぞれ検出する溶接部形状と、先行、後行材の板厚情報に基づき、突合せの目違い量やビード残りを算出し良否判定に用いる方法が提案されている。   In addition, as another conventional technique, a plurality of methods for measuring the shape of the welded portion after the swell removal after welding and determining the quality of the welded portion based on the measured shape are proposed. That is, Patent Document 4 proposes a method for determining pass / fail according to the magnitude of the fluctuation component of the differential waveform of the welded portion shape after removal of the bulge detected by the optical cutting method. Based on the welded part shape detected by the two-dimensional distance meter from the front and back surfaces of the welded part and the plate thickness information of the preceding and succeeding materials, a method for calculating the amount of misalignment of the butt and the remaining bead is proposed. ing.

特開昭50−83245号公報JP-A-50-83245 特開昭52−150760号公報JP-A-52-150760 特開昭56−99082号公報JP 56-99082 A 特開平1−209307号公報JP-A-1-209307 特開平5−154510公報JP-A-5-154510

しかしながら、上記の目視検査、ハンマーテストは、溶接電極等が入り組んでいる溶接機内で作業することはできず、鋼帯を溶接部が溶接機下流側で露出する位置まで移動後、暫く停止させる必要があるために、生産効率が下がり、また良否検査は作業者の主観に依存するために再現性、客観性に欠けるという問題点があった。   However, the above visual inspection and hammer test cannot be performed in a welding machine in which welding electrodes are complicated, and it is necessary to stop the steel strip for a while after moving the steel strip to a position where the weld is exposed downstream of the welding machine. As a result, production efficiency is lowered, and the quality inspection is dependent on the subjectivity of the worker, so that there are problems of lack of reproducibility and objectivity.

また、特許文献1の方法では、溶接する鋼帯の鋼種や板厚毎の理想的溶接エネルギ効率を予め把握し、実操業においても、これらの因子毎に判別因子を切り替える必要があるので運用が複雑になるという問題点や、溶接部や溶接機の汚れや劣化による溶接効率の変化が、溶接エネルギと溶接部品質との相関に影響を与えるという問題点があった。   In the method of Patent Document 1, it is necessary to grasp in advance the ideal welding energy efficiency for each steel type and thickness of the steel strip to be welded, and even in actual operation, it is necessary to switch the discriminating factor for each of these factors. There has been a problem that it becomes complicated and a change in welding efficiency due to contamination and deterioration of the welded part and the welding machine affects the correlation between welding energy and welded part quality.

又、特許文献2の方法は、電極毎に超音波探触子を埋め込むのでコスト高になる他、透過波が極小となる時点と通電終了時点との差から判別を行うが、溶接部良否への影響因子は超音波減衰から推定される溶接部の大きさのみではないので、判別の信頼性に疑問があるという問題点があった。   In addition, the method of Patent Document 2 is costly because an ultrasonic probe is embedded for each electrode, and the determination is made based on the difference between the time when the transmitted wave becomes minimum and the time when the energization ends. Since the influence factor is not only the size of the weld estimated from the ultrasonic attenuation, there is a problem that the reliability of discrimination is questionable.

又、特許文献3の方法では、表面の最高温度およびそのばらつきでの評価となるので、目違い等による溶接不良を正確に検出できないばかりか、放射温度計の視野が溶接線からずれた場合の誤差、表面のスケール付着状況等による放射率変化の影響を大きく受けるため、信頼性の高い検出が困難であるという問題点があった。   In addition, the method of Patent Document 3 is evaluated based on the maximum temperature of the surface and its variation, so that not only a welding failure due to a misunderstanding or the like cannot be accurately detected, but also when the field of view of the radiation thermometer is deviated from the welding line. There is a problem that it is difficult to perform highly reliable detection because it is greatly affected by the change in emissivity due to errors and the state of scale adhesion on the surface.

又、特許文献4の方法では、光切断法で盛り上がり除去後の溶接部形状を算出するので、温度法などに比べ測定範囲を広く取れるという利点はあるが、光切断法で検出する鋼帯表面の形状波形は、たとえ母板部であっても散乱等の影響で微小変動(高周波成分)を含むため、微分演算によって微小変動成分も強調されてしまい、溶接部不良検出のS/Nが低下するという問題点があった。   In addition, the method of Patent Document 4 calculates the welded shape after bulge removal by the optical cutting method, so there is an advantage that a wider measurement range can be taken compared to the temperature method etc., but the steel strip surface detected by the optical cutting method Since the waveform of the waveform includes minute fluctuations (high-frequency components) due to the influence of scattering or the like even in the mother plate part, the minute fluctuation components are also emphasized by the differential operation, and the S / N for detecting defective welds is reduced. There was a problem of doing.

又、特許文献5の方法では、ビード残りを母板部の距離値と測定範囲内の最高点との差として定義しているために、最も板破断に有害な溶接不良因子である切削部縁部の段差を直接検知できず、あるいは突合せ部の曲がり等の変形を段差と誤検出してしまうこと、更に、目違いが存在しても溶接と切削が正常であれば板破断が起こらないケースもあり、目違い量が溶接部良否の主要因子たり得ない、といった問題点があった。更に、この方法で使用している2次元距離計は、一般にレーザ光の走査範囲内で対象表面の反射率変化を自動的にゲイン補正しながら測定するが、一般にビード切削後の切削部は非常に強い鏡面状態となっていて周囲の母板部とは反射率が大きく異なるため、通常の2次元距離計で切削面を含んだ溶接部の形状を正しく測定できないという問題点があった。又、突き合わせる板に目違いがある場合等に発生しうる、母板の一方が沈み込んでいる為に切削工具の刃がかからず、その反対面側は過大に突き出た母板部を削り取って減肉となって破断するような溶接不良の検出性能が十分ではない、という問題点もあった。   Further, in the method of Patent Document 5, since the bead residue is defined as the difference between the distance value of the base plate portion and the highest point in the measurement range, the cutting edge that is the most defective factor of welding failure to the plate breakage. The case where the level difference of the part cannot be detected directly, or the deformation such as the bending of the butt part is mistakenly detected as a level difference, and the plate breakage does not occur if welding and cutting are normal even if there is a mistake There was also a problem that the amount of mistaking was not the main factor for the quality of the weld. Furthermore, the two-dimensional rangefinder used in this method generally measures the reflectance change of the target surface within the scanning range of the laser beam while automatically correcting the gain, but generally the cut part after bead cutting is very Therefore, there is a problem that the shape of the welded portion including the cutting surface cannot be correctly measured with a normal two-dimensional distance meter because the mirror surface is strong and the reflectance is greatly different from that of the surrounding base plate. In addition, this may occur when there is a mistake in the plate to be abutted, etc., because one of the mother plates is sinking, the cutting tool blade will not be applied, and the opposite side will have an excessively protruding mother plate part. There has also been a problem that the detection performance of poor welding such as scraping and thinning is not sufficient.

本発明は、前記従来の問題点を解決すべくなされたもので、従来距離計方式や光切断形状計測では識別しにくい母板目違いに起因した溶接不良の確実性を高めると共に、従来の目視観察やハンマリング試験において問題であった検査員依存性を無くし、再現性、客観性を高めることを課題とする。   The present invention has been made to solve the above-described conventional problems, and improves the reliability of welding defects due to misalignment of the base plate, which is difficult to identify by the conventional distance meter method and optical cutting shape measurement, and the conventional visual inspection. The problem is to eliminate the inspector dependency that has been a problem in observation and hammering tests, and to improve reproducibility and objectivity.

本発明は、光切断法の装置構成を利用して、対象物の表面の反射率情報に着目した反射光強度の分布を、溶接線に沿って連続的に多数検出し、溶接部の光学的な反射特性に基づいて溶接部の良否判定を行おうというものである。   The present invention uses a device configuration of the light cutting method to detect a number of reflected light intensity distributions focusing on reflectance information on the surface of an object continuously along the weld line, The quality of the welded part is determined based on the proper reflection characteristics.

これを実現させるためには、溶接ビード切削直後のビード部に、そのビード部と略直交方向に延びるスリット光(レーザ・スポット光を高速走査することにより見かけ上、スリット光とみなす光も含む)を照射し、その拡散反射光(乱反射光)を画像として撮像して、その反射光の位置と輝度をそれぞれ検出する。これは、ビード切削直後の切削帯は鏡面状態になっているため、反射光は鏡面反射成分が強く、殆どが正反射方向となり、拡散反射光成分は少なく、その光量は少なくなり、その一方で、溶接部でない母材部(素材部)は、ランダムな表面状態であるため拡散反射成分が強く、拡散反射光の光量が多くなるからである。従って、光切断法と同様に、スリット光を鋼板に対して所定入射角度の斜め方向に照射させて、拡散反射方向からカメラ等の撮像装置で観察(撮像)すると、スリット光の反射像の輝度分布は、母材部(素材部)で明るく、切削部では暗くなり、その違いは明瞭に識別可能である。   In order to realize this, slit light extending in a direction substantially orthogonal to the bead portion immediately after the welding bead cutting (including light that is apparently considered as slit light by high-speed scanning of the laser spot light). , The diffuse reflected light (diffuse reflected light) is captured as an image, and the position and brightness of the reflected light are detected. This is because the cutting band immediately after bead cutting is in a mirror state, so the reflected light has a strong specular reflection component, most of it is in the regular reflection direction, the diffuse reflection component is small, and the amount of light is small. This is because the base material part (raw material part) that is not a welded part has a random surface state and thus has a strong diffuse reflection component and an increased amount of diffuse reflected light. Therefore, as with the light cutting method, when the slit light is irradiated in an oblique direction with a predetermined incident angle with respect to the steel sheet and observed (imaged) from the diffuse reflection direction with an imaging device such as a camera, the brightness of the reflected image of the slit light The distribution is bright at the base material portion (raw material portion) and dark at the cutting portion, and the difference can be clearly identified.

そして、前記のスリット光の拡散反射光を溶接線に沿って多数採取し、それぞれの輝度信号を並べて画像とすることで、溶接ビード切削部の内部に輝度の高い領域が存在すれば、それを目違いに起因した削り残しである、といった従来の目視点検での着眼点に即した判定方法を結びつけることができる。   Then, by collecting a large number of diffuse reflection lights of the slit light along the welding line and arranging the respective luminance signals as an image, if there is a high luminance area inside the weld bead cutting part, It is possible to combine a determination method in conformity with the point of interest in the conventional visual inspection, such as the uncut material caused by the misunderstanding.

本発明は、上記のような研究結果に基づいてなされたもので、突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する方法において、溶接線に対して略直交方向のスリット光を、溶接線方向に走査して照射し、前記スリット光の溶接部で反射した拡散反射光強度分布を、溶接線方向の複数位置で各々検出し、その複数位置で検出した拡散反射光強度分布の各々について、第1の所定強度以下となる位置で囲まれる範囲を設定し、その範囲内で、第2の所定強度以上、かつ、所定幅以上となる孤立領域の有無を検出する処理を、溶接線方向の複数位置について連続的に行い、前記孤立領域が所定数以上連続して有った場合に、溶接不良と判定するようにして、前記課題を解決したものである。 The present invention has been made on the basis of the above research results, and in a method for inspecting the quality of a welded portion after removing a raised portion after butt welding, slit light in a direction substantially orthogonal to the weld line is used. , irradiated by scanning the weld line direction, the diffuse reflection light intensity distribution reflected by the welded portion of the slit light, respectively detected at a plurality of positions of the weld line direction, of the detected diffuse reflection light intensity distribution at the plurality of positions For each, a range surrounded by a position that is less than or equal to the first predetermined intensity is set, and within the range, a process for detecting the presence or absence of an isolated region that is greater than or equal to the second predetermined intensity and greater than or equal to the predetermined width is performed by welding. The above-described problem is solved by continuously performing a plurality of positions in the line direction and determining that there is a welding defect when there are a predetermined number or more of the isolated regions continuously .

本発明は、又、突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する突合せ溶接部の良否検査装置であって、溶接線に対して、略直交方向のスリット光を照射する光源と、該スリット光の、溶接線方向の複数位置における拡散反射光の強度分布を各々検出する受光手段と、該受光した複数の拡散反射光の強度分布の各々について、第1の所定強度以下となる位置で囲まれる範囲を設定し、その範囲内で第2の所定強度以上、かつ、所定幅以上となる孤立領域の有無を検出する孤立領域検出手段と、該孤立領域検出手段で検出した孤立領域が所定数以上連続して有った場合に、溶接不良と判定する判定手段と、を備えたことを特徴とする突合せ溶接部の良否検査装置を提供するものである。 The present invention is also a butt-welding part quality inspection device for inspecting the quality of a welded part after removing a raised part after butt welding, and a light source for irradiating slit light in a substantially orthogonal direction with respect to a welding line When, of the slit light, light receiving means for respectively detecting the intensity distribution of the diffuse reflected light at a plurality of positions of the weld line direction, for each of the intensity distributions of the plurality of diffuse reflected light receiving optical, and following a first predetermined intensity An isolated area detecting means for detecting the presence or absence of an isolated area having a second predetermined intensity or more and a predetermined width or more within the range, and an isolated area detected by the isolated area detecting means. The present invention provides a quality inspection device for a butt-welded portion, comprising: a determination unit that determines a welding failure when a predetermined number of regions are continuously present.

本発明は、溶接盛り上り部除去後の溶接線を含む領域内の光学反射特性に着目して溶接不良を検出するようにしたので、従来距離計方式や光切断形状計測では識別しにくい母板目違いに起因した溶接不良の確実性を高めることが出来る。又、これらの検査は数値指標により自動的に行うので、従来の目視観察やハンマリング試験において問題であった検査員依存性は無く、再現性、客観性に優れている。   In the present invention, since welding failure is detected by paying attention to the optical reflection characteristics in the region including the weld line after the weld bulge is removed, the mother board that is difficult to identify by the conventional distance meter method or optical cutting shape measurement. It is possible to increase the certainty of poor welding due to misunderstanding. In addition, since these inspections are automatically performed by numerical indexes, there is no inspector dependency which has been a problem in conventional visual observation and hammering tests, and excellent reproducibility and objectivity.

以下、図面を参照しながら、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明にかかる方法を適用した突合せ溶接部の良否検査装置の構成の一例を示す概略図である。図1において、1は測定ヘッド、2は画像処理装置、3は表示装置、30は被測定物(ここでは鋼帯)である。   FIG. 1 is a schematic diagram showing an example of a configuration of a quality inspection device for a butt weld to which the method according to the present invention is applied. In FIG. 1, 1 is a measuring head, 2 is an image processing device, 3 is a display device, and 30 is an object to be measured (here, a steel strip).

測定ヘッド1は、溶接部の光切断画像を採取するもので、その構成の一例としては、レーザ光源(以下、単に光源とも称する)10、光源レンズ11、カメラ(撮像手段)12、受光レンズ13、ミラー14等により構成され、光源の波長や入射角度等の好適な測定条件は、本発明者らが出願した特開2004−117053号公報に開示されているようなものを準用すればよい。光源10からの光の入射角αおよびカメラ(撮像手段)12の光軸の角度βとすると、正反射光を受光する角度を除いた、拡散反射光を受光する条件において、(α+β)が略90°であることが好ましい。又、光源10としては、点状に集束したスポット光を反射ミラー等により高速に扇状または平行に走査させるスキャン光を用いても良いが、好適には、光源からの放射光を線状に集束させるためのシリンドリカルレンズを用いて、これら光源とレンズを一体化したスリット光源を用いれば構造が簡素化される。なお、スリット光10Sの短辺幅は溶接の段差に比べて十分小さいことが好ましい。ここで、点光源を走査させる方式を採用した場合には、少なくとも走査一周期以上の期間は、光源10を点灯し、カメラ12の撮像周期(露光時間)は、その期間以上とする必要がある。   The measurement head 1 collects a light-cut image of a welded portion, and examples of its configuration include a laser light source (hereinafter also simply referred to as a light source) 10, a light source lens 11, a camera (imaging means) 12, and a light receiving lens 13. The measurement conditions such as the wavelength of the light source and the incident angle, which are configured by the mirror 14 and the like, may be applied mutatis mutandis as disclosed in Japanese Patent Application Laid-Open No. 2004-117053 filed by the present inventors. Assuming that the incident angle α of the light from the light source 10 and the angle β of the optical axis of the camera (imaging means) 12 are (α + β) under the condition of receiving diffusely reflected light except for the angle of receiving regularly reflected light. 90 ° is preferred. Further, as the light source 10, scan light that scans spot light focused in a dot shape at high speed in a fan shape or in parallel with a reflection mirror or the like may be used. Preferably, the light emitted from the light source is linearly focused. If a cylindrical light source is used and a slit light source in which these light source and lens are integrated is used, the structure is simplified. In addition, it is preferable that the short side width | variety of the slit light 10S is small enough compared with the level | step difference of welding. Here, when a method of scanning a point light source is employed, it is necessary to turn on the light source 10 for a period of at least one scanning period and to set the imaging period (exposure time) of the camera 12 to be equal to or longer than that period. .

なお、光源10と撮像手段12と溶接部の位置関係は図2に示すとおりで、光源10から照射されるスリット光10Sは、溶接部30Wの溶接線方向(例えば、連続ラインにおける鋼板搬送方向の直交方向である幅方向に対応する)に略直交方向に照射されるような位置関係となっている。   Note that the positional relationship among the light source 10, the imaging means 12, and the welded portion is as shown in FIG. 2, and the slit light 10S emitted from the light source 10 is in the direction of the weld line of the welded portion 30W (for example, in the direction of conveying the steel plate in the continuous line). (Corresponding to the width direction, which is the orthogonal direction), the positional relationship is such that the light is irradiated in a substantially orthogonal direction.

また装置の使用環境を勘案して、測定ヘッド1は、光路をさえぎらない開口部16、17を除いて密閉構造とし、図示しない空冷等の冷却手段により溶接の熱等から機器を防護することが望ましい。更に、測定ヘッド1は溶接線に沿った複数箇所での溶接部の光切断画像を採取するので、図示しない移動機構により突合せ溶接部に概一定ギャップで正対したまま鋼帯3の幅方向に移動できるようになっていることが望ましい。   In consideration of the operating environment of the apparatus, the measuring head 1 can have a sealed structure except for the openings 16 and 17 that do not block the optical path, and the apparatus can be protected from the heat of welding by cooling means such as air cooling (not shown). desirable. Furthermore, since the measuring head 1 collects light-cut images of the welded portion at a plurality of locations along the weld line, the measuring head 1 faces the butt welded portion in the width direction of the steel strip 3 while facing the butt welded portion with a substantially constant gap. It is desirable to be able to move.

前記画像処理装置2は、測定ヘッド1の動作を制御し、また溶接部30Wの各位置で測定ヘッド1が採取した光切断画像群から、溶接部30Wの3次元的な形状および輝度分布画像を生成、また判別するもので、例えば、図1に示したように、光源電源4、カメラ電源5、画像データ変換回路6、画像処理回路7、画像合成回路8、判定回路9等で構成することができる。   The image processing device 2 controls the operation of the measuring head 1 and also obtains a three-dimensional shape and luminance distribution image of the welded portion 30W from the light cut image group collected by the measuring head 1 at each position of the welded portion 30W. For example, as shown in FIG. 1, the light source power supply 4, the camera power supply 5, the image data conversion circuit 6, the image processing circuit 7, the image composition circuit 8, the determination circuit 9, etc. Can do.

このうち、光源電源4、カメラ電源5は、それぞれ光源10、カメラ12に所定の駆動電力を供給するものであり、公知の電源回路で機器に応じた電圧、容量のものを使用すればよい。   Among these, the light source power source 4 and the camera power source 5 supply predetermined driving power to the light source 10 and the camera 12, respectively, and a known power source circuit having a voltage and capacity corresponding to the device may be used.

画像データ変換回路6は、カメラ12の各画素で受光した反射強度の輝度情報(電圧)を、それぞれ2次元の画素位置に対応した数値列に変換する画像入力手段である。   The image data conversion circuit 6 is image input means for converting the luminance information (voltage) of the reflection intensity received by each pixel of the camera 12 into a numerical string corresponding to each two-dimensional pixel position.

前記画像処理回路7は、輝度分布算出部7A、輝度データメモリ7Bで構成される。輝度分布算出部7Aは、画像データ変換回路6から撮像した画像データを入力して、スリット光10Sが被検査物(3)表面において反射し、観察される拡散反射光強度(輝度)分布データを算出し、輝度データメモリ7Bに記憶する。反射光強度分布データの具体的な算出方法は、特に限定されるものではないが、例えば、特開2003−322513号公報に開示された方法を利用すればよい。具体的には、スリット光の拡散反射光をCCDカメラなどの二次元撮像手段で撮像し、図3に示すような2次元の光切断画像を得る。図3の二次元メッシュの左下隅の画素をX=X1、Y=Y1とし、幅方向にX軸、溶接線方向にY軸をとり、各画素の座標をX=Xi(i=1、2、・・・、m)、Y=Yj(j=1、2、・・、n)、画素の輝度をI(Xi,Yj)とし、画像X方向の各座標位置において、Y方向の輝度分布のうちの最大値(最大輝度)を算出すればよい。   The image processing circuit 7 includes a luminance distribution calculation unit 7A and a luminance data memory 7B. The luminance distribution calculation unit 7A receives the image data taken from the image data conversion circuit 6, and the slit light 10S is reflected on the surface of the inspection object (3), and the diffused reflected light intensity (luminance) distribution data observed is observed. Calculate and store in the luminance data memory 7B. Although the specific calculation method of reflected light intensity distribution data is not specifically limited, For example, what is necessary is just to utilize the method disclosed by Unexamined-Japanese-Patent No. 2003-322513. Specifically, the diffuse reflected light of the slit light is picked up by a two-dimensional image pickup means such as a CCD camera to obtain a two-dimensional light cut image as shown in FIG. The pixel at the lower left corner of the two-dimensional mesh in FIG. 3 is X = X1, Y = Y1, the X axis in the width direction and the Y axis in the weld line direction, and the coordinates of each pixel are X = Xi (i = 1, 2). ,..., M), Y = Yj (j = 1, 2,..., N), the luminance of the pixel is I (Xi, Yj), and the luminance distribution in the Y direction at each coordinate position in the image X direction. Of these, the maximum value (maximum luminance) may be calculated.

前記画像合成回路8は、画像データ変換回路6が出力する、輝度データメモリ7Bに記憶されたスリット光10Sの輝度分布をそれぞれ連ねて、輝度分布画像を生成するものであり、メモリ等の記憶手段で構成することが出来る。   The image composition circuit 8 generates a luminance distribution image by connecting the luminance distributions of the slit light 10S output from the image data conversion circuit 6 and stored in the luminance data memory 7B. Can be configured.

前記判定回路9は、画像合成回路8に蓄積された輝度分布画像データに基づき溶接点良否の判別を行うもので、例えば、図4に示すように、切削位置探索回路91、未切削部検出回路92、未切削部発生領域計数回路93、切削不良判別回路94から構成される。これらのいずれも、比較回路等の論理演算素子で構成してもよいし、それに相当するプログラム演算機能を備えた計算機により構成してもよい。   The determination circuit 9 determines whether or not the welding point is good based on the luminance distribution image data stored in the image synthesis circuit 8. For example, as shown in FIG. 4, a cutting position search circuit 91, an uncut portion detection circuit 92, an uncut portion generation area counting circuit 93, and a cutting defect discrimination circuit 94. Any of these may be configured by a logical operation element such as a comparison circuit, or may be configured by a computer having a program operation function corresponding thereto.

前記切削位置探索回路91は、輝度分布データの輝度変化に基づいてビード周縁部(ビード切削領域端部の周辺部)の領域範囲を算出する。溶接線方向に走査して測定する各測定位置の輝度分布データにおいて、中央部付近で輝度が減少している領域の境界部をビード切削部として算出するものであるが、適切な閾値設定と中央から左右方向への探索法などで算出する。   The cutting position search circuit 91 calculates a region range of the bead peripheral portion (periphery portion of the bead cutting region end) based on the luminance change of the luminance distribution data. In the luminance distribution data at each measurement position measured by scanning in the welding line direction, the boundary part of the area where the luminance is reduced near the center is calculated as the bead cutting part. The calculation is performed using a search method in the horizontal direction.

前記未切削部検出回路92は、前記ビード周辺部の領域範囲の中に、所定の輝度よりも低い輝度減少領域が複数発生しているか否か(あるいは、所定の輝度より高くなる領域が有るか否か)を検出する。正常であれば、輝度減少領域は1つであるが、複数有る場合には、未切削部の異常候補(所定の輝度より高い領域については、正常時は無いが、1つ以上存在する場合は異常)となる。検出方法は、所定輝度である閾値を交差するか否かや、その数をカウントする等で実現することが出来る。   The uncut portion detection circuit 92 determines whether or not a plurality of brightness reduction regions lower than a predetermined luminance are generated in the region range of the peripheral portion of the bead (or whether there is a region higher than the predetermined luminance). ) Is detected. If it is normal, there is one luminance decrease region. However, if there are a plurality of regions, an abnormal candidate for an uncut portion (in a region higher than a predetermined luminance, there is no normal state, but there are one or more Abnormal). The detection method can be realized by, for example, counting whether or not a threshold having a predetermined luminance is crossed.

前記未切削部発生領域計数回路93は、前記未切削部検出回路92の出力を溶接線に沿って計数し、連続したN回の測定で未切削が発生した場合にカウントを進めるもので、このNは、操業の知見や実績との突合せにより決定されるべきものであるが、後述する実施例ではN=3とした。   The uncut portion generation area counting circuit 93 counts the output of the uncut portion detection circuit 92 along the weld line, and advances the count when uncut occurs in N consecutive measurements. N should be determined by matching with operational knowledge and results, but in the examples described later, N = 3.

前記切削不良判別回路94は、前記未切削部発生領域計数回路92の出力が閾値Tを超えていれば不良信号を出力する。この閾値Tも、操業実績との突合せにより決定されるべきものであるが、後述する実施例ではT=1とした。   The cutting failure determination circuit 94 outputs a failure signal if the output of the uncut portion generation area counting circuit 92 exceeds a threshold value T. This threshold value T should also be determined by matching with the operation results, but T = 1 in the examples described later.

そして、表示装置3は、前記切削不良判別回路94の出力に従って画面や音等で作業員に注意を喚起するか、図示しない信号線を経由して外部の操業管理装置(ビジネスコンピュータ等)に不良情報を送信するものであり、公知の警報機、CRT装置、通信装置等で構成することが出来る。   Then, the display device 3 alerts the operator with a screen, sound, etc. according to the output of the cutting failure determination circuit 94, or fails in an external operation management device (business computer, etc.) via a signal line (not shown). Information is transmitted, and can be constituted by a known alarm device, CRT device, communication device, or the like.

以下に、本発明における判定回路9の動作を、図を用いて説明する。   Hereinafter, the operation of the determination circuit 9 according to the present invention will be described with reference to the drawings.

測定ヘッド1が溶接部30Wのある箇所において検出した光切断画像を、画像処理回路7により処理した結果得られる輝度分布の一例は図5の通りである。図5において、横軸は溶接線に略直交する座標方向、縦軸は輝度の相対値であり、溶接線方向の任意の位置において測定した輝度分布である。図5の例においては、突合せる鋼帯の一方に意図的に波打ちを生じさせ部分的に突合せ不良が生成するようにして溶接し、盛り上り除去後に測定を行った。この際、波打ちによって、本測定例の測定面側では、板幅中央部付近に削り残し不良が発生した。その結果、図5の(ア)のように中央部付近での反射輝度が周辺の母材部とほぼ同程度に大きくなった。これは、本来切削されるべき部位に未切削領域が発生して、この領域の表面性状が鏡面状態でなく、拡散状態になっているためで、この反射光のうち、拡散反射成分を捉えているためである。   An example of the luminance distribution obtained as a result of processing the light section image detected by the measuring head 1 at a certain location of the welded portion 30W by the image processing circuit 7 is as shown in FIG. In FIG. 5, the horizontal axis is the coordinate direction substantially orthogonal to the weld line, the vertical axis is the relative value of luminance, and is the luminance distribution measured at an arbitrary position in the weld line direction. In the example of FIG. 5, welding was performed so as to intentionally cause undulation in one of the steel strips to be abutted and partially generate a butt defect, and measurement was performed after removing the swell. At this time, due to the undulation, an uncut defect occurred near the center of the plate width on the measurement surface side in this measurement example. As a result, as shown in FIG. 5A, the reflection luminance in the vicinity of the central portion was increased to approximately the same level as that of the surrounding base material portion. This is because an uncut region is generated at the site to be cut, and the surface property of this region is not in a mirror state but in a diffuse state. Therefore, the diffuse reflection component of this reflected light is captured. Because it is.

図5のような輝度信号は、測定ヘッド1が溶接線に沿って移動する各所において採取されて、各位置ごとに出力されるが、そのデータを画像合成回路8に入力すると、図6のような輝度分布画像が生成される。図6は、上から下に(或いは下から上に)順番に、図5の輝度分布を横方向1ラインに並べたものである。ここで、図6の明るい箇所は輝度が高く、暗い箇所は輝度が低いことを表している。なお、画像合成回路8で合成しなくとも、図5の輝度分布データが、測定ヘッド1が溶接線に沿って移動する各位置において採取する毎に出力され、判定回路9にデータを出力するようにしてもよい。   The luminance signal as shown in FIG. 5 is collected at each location where the measuring head 1 moves along the welding line and is output at each position. When the data is input to the image composition circuit 8, the luminance signal as shown in FIG. A brightness distribution image is generated. FIG. 6 shows the luminance distribution of FIG. 5 arranged in one line in the horizontal direction in order from top to bottom (or from bottom to top). Here, the bright portion in FIG. 6 indicates that the luminance is high, and the dark portion indicates that the luminance is low. It should be noted that the luminance distribution data of FIG. 5 is output every time the measurement head 1 moves along the welding line without being synthesized by the image synthesis circuit 8 and is output to the determination circuit 9. It may be.

次に判定回路9の動作のうち、切削位置探索回路91の動作を図7(輝度分布データ)、図8(流れ図)に従って説明する。   Next, among the operations of the determination circuit 9, the operation of the cutting position search circuit 91 will be described with reference to FIG. 7 (luminance distribution data) and FIG. 8 (flow diagram).

まず、(1)図7に例示する輝度分布データの全体の輝度の平均値Mを算出する(図8のステップS1)。   First, (1) the average luminance value M of the entire luminance distribution data illustrated in FIG. 7 is calculated (step S1 in FIG. 8).

そして、(2)輝度が(1)で求めた平均値Mを下回る画素範囲の重心位置(または、平均値を下回る画素の平均値)を算出し、その座標点をAとする(ステップS2)。このA点は、輝度変化探索の開始点であり、ここから図の左側方向、右側方向に座標を移動して変化点を探索するための点である。   Then, (2) the barycentric position of the pixel range in which the luminance is less than the average value M obtained in (1) (or the average value of the pixels below the average value) is calculated, and the coordinate point is set to A (step S2). . This point A is a starting point for the luminance change search, and is a point for searching for the changing point by moving the coordinates from here to the left and right in the figure.

そして、(3)輝度分布の(1)で求めた平均値Mより輝度が下回るうちでの最小輝度を求め、その輝度値をVとする(ステップS3)。   Then, (3) the minimum luminance is obtained while the luminance is lower than the average value M obtained in (1) of the luminance distribution, and the luminance value is set to V (step S3).

これに対して、(2)で求めたA点に対し、(4)左側の領域での最大輝度を求め、その輝度値をLとし(ステップS4)、(5)右側の領域での最大輝度を求め、その輝度値をRとする(ステップS5)。   On the other hand, with respect to the point A obtained in (2), (4) the maximum luminance in the left region is obtained and the luminance value is set to L (step S4), and (5) the maximum luminance in the right region. And the luminance value is R (step S5).

この、V、L、Rを元に、左側の変化点を算出するための輝度閾値TL、右側の変化点を算出するための輝度閾値TRを求め、その値に基づいて変化点を決定する。   Based on these V, L, and R, a luminance threshold TL for calculating the left change point and a luminance threshold TR for calculating the right change point are obtained, and the change point is determined based on these values.

(6)例えばTL=(V+L)/2 とし、点Aから左側に移動して、各座標に対応する輝度値がTLを最後に超えた座標点を輝度変化点PLとする(ステップS6)。   (6) For example, TL = (V + L) / 2 is set, and the coordinate point where the luminance value corresponding to each coordinate has finally exceeded TL is moved to the left side from the point A, and is set as the luminance change point PL (step S6).

(7)同様に、例えばTR=(V+R)/2 とし、点Aから右側に移動して、各座標に対応する輝度値がTRを最後に超えた座標点を輝度変化点PRとする。   (7) Similarly, TR = (V + R) / 2, for example, and the coordinate point where the luminance value corresponding to each coordinate has finally exceeded TR is defined as the luminance change point PR by moving to the right from the point A.

そして、PLとPRの範囲をビード周辺部の領域範囲(切削範囲)と設定し、未切削部検出回路92において、この領域範囲に未切削部が有るか否かを検出することになる。   Then, the range of PL and PR is set as the region range (cutting range) of the bead peripheral portion, and the uncut portion detection circuit 92 detects whether or not there is an uncut portion in this region range.

その後、未切削部検出回路92においては、切削位置探索回路91で設定した領域範囲の中に、未切削部検出用の閾値を超え、かつ、その閾値を超える領域(幅)が所定値以上となる箇所が有るか否かを検出する。具体的な検出方法としては、例えば、輝度分布における各アドレスの輝度が、未切削部検出用輝度閾値を超えているかかどうかを検出し、超えた場合にカウント値をインクリメント、超えない場合はカウント値を0(ゼロ)リセットする。そして、そのカウント値が所定値以上になった場合に、未切削部があると判定し、未切削部発生領域計数回路93に未切削部有り信号(例えば、値“1”)を出力する。また、未切削部があると判定されなかった場合は、未切削部無し信号(例えば、値“2”)を出力する。   Thereafter, in the uncut portion detection circuit 92, the region (width) exceeding the threshold for detecting the uncut portion within the region range set by the cutting position search circuit 91 is equal to or greater than a predetermined value. It is detected whether or not there is a place. As a specific detection method, for example, it is detected whether or not the luminance of each address in the luminance distribution exceeds the luminance threshold value for detecting an uncut portion, and if it exceeds, the count value is incremented. Reset the value to 0 (zero). When the count value is equal to or greater than a predetermined value, it is determined that there is an uncut portion, and an uncut portion presence signal (for example, a value “1”) is output to the uncut portion generation area counting circuit 93. If it is not determined that there is an uncut portion, an uncut portion signal (for example, a value “2”) is output.

そして、未切削部発生領域計数回路93では、未切削部検出回路92からの、未切削部有りの信号の入力をカウントアップして、第1のカウント値とする。なお、この第1のカウント値が所定値以上連続してインクリメントするか否かもチェック(上述の「連続したN回の測定」での、例えば、N=3がここでの所定値に該当)する。そして、第1のカウント値がインクリメントされて、所定値に一致した場合は、第2のカウント値をインクリメントする。逆に、所定値に達しない場合は、第1のカウント値を0(ゼロ)リセットする。また、第2のカウント値は、第1のカウント値がインクリメントされて、所定値に一致する、との条件に合致した場合にインクリメントするようにする。   Then, the uncut portion generation area counting circuit 93 counts up the input of the signal indicating that there is an uncut portion from the uncut portion detection circuit 92 and sets it as the first count value. It is also checked whether or not the first count value is continuously incremented by a predetermined value or more (for example, N = 3 corresponds to the predetermined value here in the above-mentioned “continuous N measurements”). . Then, when the first count value is incremented and matches the predetermined value, the second count value is incremented. Conversely, if the predetermined value is not reached, the first count value is reset to 0 (zero). Further, the second count value is incremented when the first count value is incremented and the condition that the second count value matches the predetermined value is met.

このようにして、処理された例を以下に示す。ここにおいて未切削部検出回路92、および未切削部発生領域計数回路93が本測定例の測定位置毎に出力したデータの推移は、図9に示すように、輝度分布画像中の未切削部((イ)部)の生成・消滅に応じた出力となっている。この図9の測定例においては未切削部発生領域計数回路93の出力は2であり、溶接不良であると正しく判定された。   An example processed in this way is shown below. Here, the transition of the data output by the uncut portion detection circuit 92 and the uncut portion generation area counting circuit 93 for each measurement position in this measurement example is the uncut portion ( The output corresponds to the generation / disappearance of part (b). In the measurement example of FIG. 9, the output of the uncut portion generation region counting circuit 93 is 2, and it was correctly determined that the welding was defective.

次に、比較のために熟練作業員が溶接良好と判定した第2のビード切削後の突合せ溶接部に対して本実施形態の装置を用いた測定を行った。この測定例による画像合成回路8が出力する輝度分布画像は図10のようであった。図10の測定例では未切削部発生領域計数回路93の出力が0であり、図10の突合せ溶接部は無害と正しく判定された。   Next, for comparison, measurement using the apparatus of the present embodiment was performed on the butt weld after the second bead cutting, which was determined by a skilled worker to be good welding. The luminance distribution image output from the image synthesis circuit 8 according to this measurement example is as shown in FIG. In the measurement example of FIG. 10, the output of the uncut portion occurrence area counting circuit 93 was 0, and the butt weld of FIG. 10 was correctly determined to be harmless.

なお、以上の説明においては板幅全体について未切削部の判定を行うようにしたが、圧延ラインの構成によって、溶接部の板幅両端を切り落とすノッチング作業を行う場合には、予め知れる板幅両端を検査対象から除外して良い。又、本検査装置の光源、カメラ等の機器は、光切断形状測定に基く測定と兼用することが可能であるので、本発明による検査と従来の切削段差形状による検査を併用すれば、一層信頼の高い検査が可能となる。   In the above description, the uncut portion is determined for the entire plate width. However, when the notching operation is performed to cut off both ends of the plate width of the welded portion according to the configuration of the rolling line, both ends of the plate width known in advance are known. May be excluded from inspection. In addition, since the light source, camera, and other devices of this inspection apparatus can be used for measurement based on light cutting shape measurement, it is more reliable if the inspection according to the present invention and the inspection with the conventional cutting step shape are used in combination. High inspection is possible.

又、前記実施形態で説明した画像処理回路7以降の構成は、近年行われているコンピュータ応用装置に倣って、コンピュータプログラムにより実現しCPUやメモリ等で実装してもよい。光源10も、レーザに限定されない。   Further, the configuration after the image processing circuit 7 described in the above embodiment may be realized by a computer program and implemented by a CPU, a memory, or the like, following a computer application apparatus performed in recent years. The light source 10 is not limited to a laser.

本発明の実施形態の構成の一例を示す、一部断面図を含むブロック図1 is a block diagram including a partial cross-sectional view illustrating an example of a configuration of an embodiment of the present invention. 同じく要部を抽出して示す斜視図The perspective view which extracts and shows the principal part similarly 同じくカメラで撮像した光切断画像の例を示す図The figure which shows the example of the light section image which was similarly imaged with the camera 同じく判定回路の詳細構成の一例を示す図The figure which similarly shows an example of the detailed structure of a determination circuit 同じく突合せ部反りにより切削不良が発生した溶接部に対して、測定した輝度分布のデータの例を示す図The figure which shows the example of the data of the luminance distribution measured with respect to the welding part which the cutting defect generate | occur | produced by the butt part curvature similarly 同じく溶接線方向に輝度分布データを蓄積した画像データの例を示す図The figure which shows the example of the image data which similarly accumulated the brightness distribution data in the weld line direction 同じく切削位置探索回路の動作を説明する図The figure explaining operation of a cutting position search circuit similarly 同じく切削位置探索回路の動作の処理手順を示す流れ図Similarly, a flowchart showing the processing procedure of the operation of the cutting position search circuit 本発明の測定例の動作を説明するグラフThe graph explaining the operation of the measurement example of the present invention 正常溶接部に対して、溶接線方向に輝度分布データを蓄積した画像データの例を示す図The figure which shows the example of the image data which accumulate | stored luminance distribution data in the weld line direction with respect to a normal weld part

符号の説明Explanation of symbols

1…測定ヘッド
2…画像処理装置
3…表示装置
4…光源電源
5…カメラ電源
6…画像データ変換回路
7…画像処理回路
8…画像合成回路
9…判定回路
10…レーザ光源
10S…スリット光
12…カメラ
30…被測定物
30W…突合せ溶接部
DESCRIPTION OF SYMBOLS 1 ... Measuring head 2 ... Image processing apparatus 3 ... Display apparatus 4 ... Light source power supply 5 ... Camera power supply 6 ... Image data conversion circuit 7 ... Image processing circuit 8 ... Image composition circuit 9 ... Determination circuit 10 ... Laser light source 10S ... Slit light 12 ... Camera 30 ... Object to be measured 30W ... Butt weld

Claims (2)

突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する方法において、
溶接線に対して略直交方向のスリット光を、溶接線方向に走査して照射し、
前記スリット光の溶接部で反射した拡散反射光強度分布を、溶接線方向の複数位置で各々検出し、
その複数位置で検出した拡散反射光強度分布の各々について、第1の所定強度以下となる位置で囲まれる範囲を設定し、
その範囲内で、第2の所定強度以上、かつ、所定幅以上となる孤立領域の有無を検出する処理を、溶接線方向の複数位置について連続的に行い、
前記孤立領域が所定数以上連続して有った場合に、溶接不良と判定することを特徴とする、突合せ溶接部の良否検査方法。
In the method of inspecting the quality of the welded part after removing the raised part after butt welding,
Slit light in a direction substantially perpendicular to the weld line is scanned and irradiated in the weld line direction,
Diffuse reflected light intensity distribution reflected at the welded portion of the slit light is detected at each of a plurality of positions in the welding line direction,
For each of the diffuse reflected light intensity distributions detected at the plurality of positions, a range surrounded by a position that is equal to or lower than the first predetermined intensity is set.
Within that range, the process of detecting the presence or absence of an isolated region that is greater than or equal to the second predetermined intensity and greater than or equal to the predetermined width is continuously performed for a plurality of positions in the weld line direction,
A quality inspection method for a butt-welded portion, wherein a defective weld is determined when a predetermined number or more of the isolated regions are continuously present .
突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する突合せ溶接部の良否検査装置であって、
溶接線に対して、略直交方向のスリット光を照射する光源と、
該スリット光の、溶接線方向の複数位置における拡散反射光の強度分布を各々検出する受光手段と、
該受光した複数の拡散反射光の強度分布の各々について、第1の所定強度以下となる位置で囲まれる範囲を設定し、その範囲内で第2の所定強度以上、かつ、所定幅以上となる孤立領域の有無を検出する孤立領域検出手段と、
該孤立領域検出手段で検出した孤立領域が所定数以上連続して有った場合に、溶接不良と判定する判定手段と、
を備えたことを特徴とする、突合せ溶接部の良否検査装置。
A quality inspection device for a butt weld that inspects the quality of the weld after removing the raised portion after butt welding,
A light source that irradiates slit light in a substantially orthogonal direction with respect to the welding line;
Light receiving means for each detection of said slit light, the intensity distribution of diffuse reflected light at a plurality of positions of the weld line direction,
For each of the received intensity distributions of the plurality of diffusely reflected lights, a range surrounded by a position that is equal to or lower than the first predetermined intensity is set, and the second predetermined intensity or higher and the predetermined width or higher are set within the range. An isolated region detecting means for detecting the presence or absence of an isolated region;
A determination unit that determines a welding failure when there are a predetermined number or more of isolated regions continuously detected by the isolated region detection unit;
An apparatus for inspecting the quality of a butt weld, characterized by comprising:
JP2006220245A 2006-08-11 2006-08-11 Quality inspection method and apparatus for butt welds Expired - Fee Related JP4793161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220245A JP4793161B2 (en) 2006-08-11 2006-08-11 Quality inspection method and apparatus for butt welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220245A JP4793161B2 (en) 2006-08-11 2006-08-11 Quality inspection method and apparatus for butt welds

Publications (2)

Publication Number Publication Date
JP2008045935A JP2008045935A (en) 2008-02-28
JP4793161B2 true JP4793161B2 (en) 2011-10-12

Family

ID=39179828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220245A Expired - Fee Related JP4793161B2 (en) 2006-08-11 2006-08-11 Quality inspection method and apparatus for butt welds

Country Status (1)

Country Link
JP (1) JP4793161B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011012729A1 (en) * 2011-03-01 2012-09-06 SmartRay GmbH Optical test method using intensity curve
JP6003341B2 (en) * 2012-07-27 2016-10-05 Jfeスチール株式会社 Steel plate processing state evaluation method and steel plate processing state evaluation apparatus
CN112834528A (en) * 2021-01-06 2021-05-25 深圳格兰达智能装备股份有限公司 3D defect detection system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108705A (en) * 1980-12-26 1982-07-06 Kawasaki Steel Corp Method and device for monitor of bead cut form at welded part on inner surface of welded tube
JPH01209307A (en) * 1988-02-17 1989-08-23 Nippon Steel Corp Method for inspecting surface configuration of welded portion
JP3060523B2 (en) * 1990-11-01 2000-07-10 富士ゼロックス株式会社 Circumferential surface flaw inspection method and device
JP3381420B2 (en) * 1994-11-29 2003-02-24 松下電器産業株式会社 Projection detection device
JPH08220001A (en) * 1995-02-17 1996-08-30 Nippon Steel Corp Surface-flam inspecting method
ES2215208T3 (en) * 1996-10-10 2004-10-01 Elpatronic Ag PROCEDURE AND DEVICE FOR THE OPTICAL VERIFICATION OF A WELDING SEWING.
JP3844863B2 (en) * 1997-11-21 2006-11-15 株式会社トプコン Surface inspection method and apparatus
US7286234B2 (en) * 2001-12-13 2007-10-23 Kokusai Gijutsu Kaihatsu Co. Ltd. Copper foil inspection device copper foil inspection method defect inspection device and defeat inspection method
JP3858792B2 (en) * 2002-09-24 2006-12-20 Jfeスチール株式会社 Method and apparatus for detecting bead shape of electric resistance welded pipe

Also Published As

Publication number Publication date
JP2008045935A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
EP1500904B1 (en) Method of and device for measuring bead cutting shape of electric welded tube
US8946595B2 (en) Apparatus and method for determining shape of end of welding bead
JP4531396B2 (en) Method and apparatus for evaluating workpiece joints
JP4876599B2 (en) Quality detection method and apparatus for butt welds
JP2009520984A (en) Steel plate welded part online detection device and method
US20210187657A1 (en) Method and device for monitoring a joining seam during joining by means of a laser beam
JPH0571932A (en) Quality-inspection device of welding bead
KR101026720B1 (en) High-speed laser vision sensor system, high-speed image processing method and weld bead inspection mehtod using the same
KR20140031138A (en) Shape inspection apparatus and method of bar steel
JP4793161B2 (en) Quality inspection method and apparatus for butt welds
JP2010149146A (en) Laser processing apparatus
JP2021058927A (en) Laser welding quality detecting method and laser welding quality detecting device
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
KR101439758B1 (en) Apparatus and method of inspecting defect of laser welding
JP2003322513A (en) Measuring method and device for bead cut shape of electric resistance welded tube
JP5187121B2 (en) Laser processing apparatus and laser processing method
CN115476062A (en) Laser outer light path light beam monitoring system and method
CN209754273U (en) Laser welding detection equipment
JP5133651B2 (en) Laser welding evaluation method
JP2008196866A (en) Weld crack detection method and device
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP2004093195A (en) Weld bead cut shape measuring method of electro-resistance-welded tube and measuring device
JP6693612B1 (en) Laser beam abnormality detection method and laser processing apparatus
JPH11138278A (en) Machining laser beam emitting device with machining defect discriminating mechanism
JP2006226834A (en) Surface inspection device and surface inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees