JP3858792B2 - Method and apparatus for detecting bead shape of electric resistance welded pipe - Google Patents

Method and apparatus for detecting bead shape of electric resistance welded pipe Download PDF

Info

Publication number
JP3858792B2
JP3858792B2 JP2002277802A JP2002277802A JP3858792B2 JP 3858792 B2 JP3858792 B2 JP 3858792B2 JP 2002277802 A JP2002277802 A JP 2002277802A JP 2002277802 A JP2002277802 A JP 2002277802A JP 3858792 B2 JP3858792 B2 JP 3858792B2
Authority
JP
Japan
Prior art keywords
bead
profile
pipe
coordinates
erw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002277802A
Other languages
Japanese (ja)
Other versions
JP2004117053A (en
Inventor
俊文 児玉
平 鈴木
能知 岡部
泰昌 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002277802A priority Critical patent/JP3858792B2/en
Priority to MYPI20031453A priority patent/MY137246A/en
Priority to DE60334373T priority patent/DE60334373D1/en
Priority to PCT/JP2003/005168 priority patent/WO2003093761A1/en
Priority to US10/507,350 priority patent/US7236255B2/en
Priority to KR1020047016653A priority patent/KR100685206B1/en
Priority to EP03719173A priority patent/EP1500904B1/en
Priority to TW092109761A priority patent/TW587153B/en
Publication of JP2004117053A publication Critical patent/JP2004117053A/en
Application granted granted Critical
Publication of JP3858792B2 publication Critical patent/JP3858792B2/en
Priority to US11/802,133 priority patent/US7471400B2/en
Priority to US12/113,440 priority patent/US7619750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電縫溶接管の溶接ビード形状の検出方法および検出装置に関する。なお、本発明にいうビード形状はビード位置をも含む意味とする。
【0002】
【従来の技術】
一般に、電縫溶接管(以下、本文中では略して「電縫管」と称している箇所がある)、例えば電縫鋼管は、鋼帯等の金属帯(金属板を含む)を管状に成型しながら長手方向に搬送し、該鋼帯等の金属帯の両幅端を高周波誘導加熱圧接や抵抗加熱圧接等の手段で長手方向に連続的に突き合わせ溶接することによって製造されている。
【0003】
この電縫管の溶接部には、圧接による盛り上がり、すなわち溶接ビード(以下、略して「ビード」と称している箇所もある)が管内外面に生じる。このビードは管製造の過程で切削されるものの、このビードの切削前の盛り上がり形状(幅、高さ等)が最終製品段階での溶接部強度と関係を持つことが従来より知られている。このため、従来より溶接工程において作業員が溶接後のビードを目で見ながら溶接電流等を調節しているが、このような作業形態では適切とされるビードの形状が作業員のそのときの主観に委ねられることから、作業員間での差異や時間的なばらつきが発生し、普遍性、再現性が低下するという問題があった。このため、種々の方法によってビードを自動検知する試みがなされている。従来の鋼管溶接ビード検出方法あるいは装置に関する発明は、機械的方法、渦流センサーを用いた方法、光学的方法などが提案されている。
【0004】
【特許文献1】
特公昭59−2593号公報
【0005】
【特許文献2】
特開2000-176642号公報
【0006】
【特許文献3】
特開平5−133940号公報
【0007】
【特許文献4】
特開平5−18904号公報
【0008】
【特許文献5】
特開平9−72851号公報
【0009】
【特許文献6】
特開昭60−135705号公報
【0010】
機械的方法としては、例えば特許文献1に、走行するパイプの外面溶接部の振れを接触式ローラーで検知する方法が提案されている。
【0011】
また、渦流センサーを用いた方法としては、特許文献2において、同心円筒状に配置された送信コイルおよび受信コイルの内部で同心円の軸まわりを等速円運動する磁芯を設けた検出ヘッドを溶接ビード上方に立てて近接配置し、磁芯が溶接ビード上を通過する際の受信コイルのインピーダンス変化から磁芯の1回転あたり2回の通過タイミングを検出し、これらの通過タイミング相互間の所要時間を演算し比較することで、溶接ビード中心位置を検出する溶接ビードの中心位置検出方法が提案されている。
【0012】
また、特許文献3においては、渦流センサーを略一方向に延在させる形で複数配置し、順次、励磁、被励磁、検出の役割を各渦流センサー間で切り換えていくことで被検体を走査し、検出波形からビード位置を検出する方法が提案されている。
【0013】
また、光学的方法としては、特許文献4に開示されているような、管表面を撮像し、溶接部や母材部固有の信号波形特徴量を抽出して予め記憶してある特徴量と符号させることでそれらを識別する方法や、特許文献5に開示されているような、鋼管を周方向に回転させつつ管表面に扇状光を照射または点状光を走査した扇状光を照射しながらITVカメラ等により管表面を撮像し、その映像信号をノイズ除去、傾き等修正した画像に修正処理した後、該画像に基づいて円弧当てはめ法により円弧を当てはめた円弧画像と実画像との差分を求め、その差分データが予め設定したしきい値を超えた場合に溶接ビードと判断するとともに、同時にそのしきい値を超えている範囲の幅を予め設定した溶接ビード幅の許容範囲と符号させることで当該溶接ビード位置とする、鋼管の溶接ビード検出方法が提案されている。
【0014】
また、特許文献6においては、一般的な溶接ビード位置および形状の自動測定技術として、溶接ビードを上面および側面から撮像し、撮像部からのアナログ画像情報を灰調レベルのディジタル情報に変換し、このディジタル画像情報に基づいて溶接ビードの幅および高さ等を検出するビード形状自動測定装置が提案されている。
【0015】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示のような接触式ローラーによる方法の場合、ビードの高さが長手方向にほぼ一定でその凹凸が比較的急峻であることが必要であり、ビードの凹凸が非常に滑らかな場合やビードの高さが低い場合、ビードの高さが長手方向に一定でない場合などには正確な検出ができない。
【0016】
また、特許文献2に開示の同心円筒状コイル内同心円運動磁心による方法の場合は、被検体である電縫管の搬送中にシームねじれ部が検出装置位置を通過したり、あるいは蛇行が発生した場合に被検体である電縫管と検出装置である同心円筒状コイルや同心円運動磁心との位置関係がずれてしまい、正確な溶接ビード位置の検出ができなくなる。
【0017】
また、特許文献3に開示の励磁、被励磁および検出コイル略一方向複数配置法では、ビード以外に管表面に付着した異物や表面の凹凸などでも反応しやすいため誤検出を避けることが難しく、また電縫管のような各種のサイズのものを対象とする場合、それらの形状の違いに合わせて複数の検出ヘッドを用意せねばならず、装置の製作コストが増大する。
【0018】
また、これらの渦流方式共通の問題として、位置検出を行った溶接ビードの形状を評価するには別途形状測定手段を設けねばならず、装置の製作コストが増大するという問題がある。
【0019】
上記した種々の方法に比べ、特許文献4や、特許文献5に開示のような光学的方法では、非接触での検出が可能であり、ビードの位置検出だけでなく同一の装置構成でビード形状をも評価可能である等の利点がある。しかしながら、上記した従来の光学的方法においては、種々の問題があった。
【0020】
即ち、特許文献4に開示の溶接部母材部特徴量抽出による方法においては、ビード部と他の部分(母材部:以降、素管部)の明るさの違いを検出する方法が主であるが、ビード部の明るさ(輝度)は溶接条件や素管の板厚に大きく依存するため、安定した検出が困難であるほか、特にビード部の輝度が低いとビードが識別できない場合がある、という問題があった。
【0021】
また、特許文献5に開示の鋼管回転画像円弧当てはめによる方法では、鋼管を周方向に回転させる必要があるが、電縫鋼管の溶接段階では鋼管は母材である鋼帯と連続している場合が多く回転が不可能な問題があるほか、画像処理段階で4点のデータから2つの円弧を算出しているため、ノイズ処理を行ったとしても、一般に画像データに見られがちなぎざぎざ形状の影響を受けやすく、算出されるビード位置に誤差が発生しやすい問題もあり、さらに被検体である電縫管の真円度は悪い場合が少なくなく、2点の垂直二等分線上に管の中心部が存在するという円の幾何学上の性質を利用するこの方法では検出誤差の発生を抑えるのに限界がある、という問題があった。
【0022】
また、特許文献6のカメラ撮像方法においては、ビード位置の特定方法として1ライン分画像濃淡が急激に変化する点を探索するものとしているため、ビード部の輝度が低い場合や、素管部の表面性状によってはビード位置を特定できない場合があるという問題があった。
【0023】
さらに、これらの検出方法の他に、特許文献5中に記載されているとおり、当業者によっては、光切断法や光学的距離計測法によってビード位置を含む鋼管表面のプロフィールを計測し、そのプロフィールデータを処理することによりビード位置を検出する方法が容易に想起される。しかし、この場合、プロフィールデータを処理する方法として、ビード部ではプロフィールに急激な変化が発生することを前提として何らかの微分処理を施すのが一般的であるが、近年の溶接技術の進歩でビードの立ち上がりは滑らかになってきている一方で、このような微分処理では光学的なプロフィール計測で発生しやすい微小なノイズが強調されてしまい、ビード位置の検出が逆に困難になる。
【0024】
この発明は、以上説明してきたような従来技術の問題を解決するべくなされたもので、スリット光あるいは点状光走査により検出される所謂光切断法による電縫管の形状データから、輝度やプロフィールデータのノイズの影響を受けることなくビード形状を正確に検出できる方法及び装置を提供することを目的とする。
【0025】
【課題を解決するための手段】
即ち、請求項1の発明は、電縫溶接管の溶接部にスリット光を照射あるいは点状光を走査し、溶接部表面に照射されたスリット光の像あるいは走査された点状光の軌跡の像を前記スリット光の照射方向と異なる角度から撮像手段により撮像して得られる画像に所定の画像処理を施す光切断法により該電縫溶接管のビード形状を検出する電縫溶接管のビード形状検出方法において、電縫溶接管のプロフィールから所定の算出式により仮のビード頂点の座標を算出し、該電縫溶接管のプロフィールを2次関数で近似して第1の近似曲線を求め、該電縫溶接管のプロフィールと前記第1の近似曲線との前記仮のビード頂点を挟んだ2つの交点の座標を算出し、前記仮のビード頂点の座標と前記仮のビード頂点を挟んだ2つの交点の座標とから所定の算出式によりビードの仮の存在範囲を算出し、前記電縫溶接管のプロフィールから前記ビードの仮の存在範囲を除いた素管部形状を2次以上の偶数次多項式で近似して第2の近似曲線を求め、前記電縫溶接管のプロフィールと前記第2の近似曲線の偏差が所定の閾値より大となる領域のうちで、前記仮のビード頂点の座標を含む領域をビードとして特定することを特徴とする、電縫溶接管のビード形状検出方法であり、
請求項2の発明は、電縫溶接管の溶接部にある角度を以ってスリット光を照射あるいは点状光を走査する投光手段と、前記投光手段が溶接部に照射された像を、前記ある角度と異なる角度から撮像する撮像手段と、前記撮像手段により得られる画像に所定の画像処理を施すことにより該電縫溶接管のプロフィールを算出するプロフィール算出手段と、該電縫溶接管のプロフィールから所定の算出式により仮のビード頂点の座標を算出する仮頂点算出手段と、該電縫溶接管のプロフィールを2次関数として所定の回帰式により近似する第1の回帰演算手段と、前記第1の回帰演算手段の出力と、前記プロフィール算出手段の出力とから前記仮のビード頂点を挟んだ2つの交点の座標を算出する交点算出手段と、前記交点の座標と前記仮のビード頂点の座標とから所定の算出式によりビードの仮の存在範囲を算出する第1の範囲算出手段と、前記のようにして算出したビードの仮の存在範囲を除いた範囲の電縫溶接管のプロフィールを2次以上の偶数次多項式で近似する第2の回帰演算手段と、前記第2の回帰演算手段の出力と前記電縫溶接管のプロフィールとの偏差が所定の閾値より大となる領域のうちで、前記仮のビード頂点の座標を含むものを溶接ビードの範囲として出力する第2の範囲算出手段と、を備えたことを特徴とする、電縫溶接管のビード形状検出装置である。
【0026】
【発明の実施の形態】
電縫管製造において、切削前の溶接ビードの幅は、管の外径の1/10〜1/5程度であり、溶接ビードのある位置は予め概略知る事ができる。その理由は、一般的な電縫管製造ラインでは母材である鋼帯等の金属帯コイルの巻き出しから管の成型および溶接までは材料である金属帯が連続していて成型ロール等でその位置や向きが拘束されているため、管の水平方向の移動(パスラインの変動)、捻れ等が発生したとしても、それは高々ビード幅と同程度にしかならないからである。ここにおいてビード部は管周上どの位置にあっても良いが、以下では簡便のため略頂上部付近にあるものとする。勿論この仮定によって一般性は何ら失われない。
【0027】
ここにおいて、ビード部を含み、ビード幅より十分広い範囲の管形状(以降、電縫溶接管のプロフィール)を適切な方法で検出し、検出された電縫溶接管のプロフィールを2次関数で近似すれば、その近似曲線は素管部だけでなく上に凸なビード部の形状を同時に近似しようとするため、素管部のプロフィールより上、ビード部の頂点部分より下を通る曲線となる。この曲線を第1の近似曲線とする。ここで、ビード部の概略の頂点位置Xcを別な手法で求め、その概略の頂点位置から左右に探索して第1の近似曲線と電縫溶接管のプロフィールが交差する点Xl,Xrを求め、Xl、XrおよびXcの座標から概略のビード範囲R(Xl’〜Xr’)を求めることができる。
【0028】
ここで、第1の近似曲線を2次関数に限定しているが、これは、管の形状はビード部の頂点に関して実質的に左右対称であるから偶数次多項式等の偶関数で近似すればよいところ、4次以上の多項式で近似した場合、近似曲線に変曲点が発生してビード部が強調されてしまい、素管部との交点算出に好ましくない影響が出るため、これを避けるというのがその理由である。
【0029】
そして、幅方向座標(X座標)においてRを除いた範囲のプロフィールを2次以上の偶数次多項式にて近似すれば、素管部形状をかなり良い精度で近似することができる。これを第2の近似曲線とする。
【0030】
この根拠となるのは図9のグラフであり、これは楕円の上半分の曲線を2次、4次、6次、8次の多項式で回帰した場合の多項式の次数と近似誤差のRMS(二乗平均の平方根)の関係を表しており、2次以上の偶数次多項式、好適には4次以上の偶数次多項式により、楕円の形状を十分な精度で回帰できることを示す。
【0031】
この性質を利用して、十分な精度で近似された素管部のプロフィールとビード部も含んだ電縫溶接管のプロフィールを比較して、その偏差がある閾値より大きくなる範囲のうち、ビード頂点の座標を含む領域を、ビードとして特定することができる。
【0032】
以上の演算においては、近似曲線として多項式を用いたので、最小二乗法を用いれば、回帰演算は加算、乗算および行列演算のみで行うことができる。つまり、従来技術で問題であった真円の仮定や微分演算等を何ら用いないため、ノイズの影響を受けず、また、ノイズ除去のための移動平均や座標毎のノイズデータ除去作業等の手間のかかる処理も不要である。
【0033】
【実施例】
以下、図面を参照しながら本発明の実施例について説明する。
【0034】
図1は、本発明にかかる電縫溶接管のビード検出装置の装置構成例を示す概略図である。図1において、200は電縫管、10は投光手段、20は撮像手段、30はプロフィール算出装置、40はプロフィールデータ処理装置、50は表示装置である。
【0035】
そして、図2はプロフィールデータ処理装置40の内部構成を示す構成図である。図2において、100は仮頂点算出回路、110は第1の回帰演算回路、120は交点算出回路、130は第1の範囲算出回路、140は第2の回帰演算回路、150は偏差算出回路、160は第2の範囲算出回路である。
【0036】
図1において、投光手段10としてはレーザーやランプ等の発光素子が放射する光をシリンドリカルレンズ等で線状に収束させたスリット光源か、照射位置で点状に収束するような光をミラー等で幅方向に走査するような走査点光源を用いればよいが、好適には半導体発光素子(LED)とレンズ系を一体にした小型のスリット光源を用いるのが望ましく、スリットの短辺幅も溶接ビードの高さに比べ十分小さいことが望ましく、好適には50μm以下であることが望ましい。最終的には被測定部位の形状は後述の光切断画像処理により1本の線として算出されるので、これは必須というわけではないが可及的に小さい方がよい。
【0037】
撮像手段20としては、ITVカメラや、PSD(光学的位置検出素子)を利用することができるが、後続の画像処理装置へのデータ変換のしやすさを考慮すると、CCDカメラを用いるのが好適である。また、図1では省略しているが、照射光を結像させるためのレンズ機構、受光光量を適切な範囲に調節する絞りやシャッター機構などは一般的に適切なものを選択して装着すればよい。ここで、光源として点光源を走査させる方式を採用した場合には、少なくとも1回は幅方向の全範囲を走査する間照射しつづける必要があることはいうまでもない。この条件を満たし、かつ走査が完了する間に管およびビード形状が変化しなければ、採取された画像はスリット光の場合も点光源平面走査の場合も同等となるので、以下ではスリット光源の場合のみを説明する。
【0038】
光源である投光手段10からの入射角αおよび撮像手段20の配置角度すなわち撮像角度βは、(α+β)が略90°であることが望ましく、撮像手段20であるカメラの画素数および視野は、ビード部の幅および必要な分解能に基づいて決定すればよい。本発明では光源からのスリット光照射角度α=60°、撮像角度β=30°、視野の範囲を幅(横)×高さ(縦)=(25mm×20mm)、画素数は横×縦=640×480画素を好適値として用いた。これにより、幅方向の分解能は、
25/640=0.0391(mm)
また、高さ方向の分解能は、
20/480*cos(60°)/sin(60°+30°)=0.0209(mm)となり、本実施例においては、幅方向(管周方向)40μm、高さ方向(管軸方向)20μmの分解能でビード形状を検出可能である。
【0039】
プロフィール算出装置30は、図3に例示するような管表面に写るスリット光の像を適切な画像処理手段により1本の線に変換し、さらに光源および撮像装置の配置から、すなわち照射角度αや撮像角度βから幾何計算により、スリット光の像すなわち擬似的な断面プロフィールを管の肉厚断面方向の真のプロフィールすなわち電縫溶接管のプロフィールデータを算出するものである。ここにおいて画像処理手段としては一般に細線化処理を行うものを用いればよいが、好適には発明者らが先に特願2002−128497(出願時未公開)において提案した細線化処理手段を用いるのがよい。また、本発明の目的であるビード形状検出のためには管のプロフィールデータとしては簡単のため先述の幾何計算の部分を省略しても別段差支えない。
【0040】
次に、以下、プロフィールデータ処理装置40内部の各部について説明する。先述のようにしてスリット光の照射によってできる擬似的な断面プロフィール、あるいは電縫溶接管のプロフィール(共に細先化処理後のものとする)中、ビード部を横断する方向(幅方向)にX軸をとると、プロフィールはX座標に対応した高さのデータ群として表すことができる。
【0041】
ここにおいて、仮頂点算出回路100は、溶接ビードの頂点位置Xc0を算出するものであるから、たとえばプロフィールデータの荷重平均(重心位置)を算出するように構成すればよい。
【0042】
これは、ある幅方向(X軸方向)座標について、輝度とそれを示す画素の縦軸座標を掛け算した値を縦軸方向に加算していき、それを参与した画素数で割った平均値を求め、さらに他の幅方向(X軸方向)座標についても同じように平均値を求めて幅方向(X軸方向)にその平均値を連ねていき、さらにそれらの中から縦軸の最大値を示すX座標を求めるようにすることである。
【0043】
あるいはより簡単に、ある幅方向(X軸方向)座標について最大輝度を示す画素を、幅方向(X軸方向)に連ねていき、それらの中から縦軸の最大値を示すX座標を求めるようにしてもよい。
【0044】
また、第1の回帰演算回路110は、図4に示すようなプロフィールデータを2次関数で回帰するものであるので、公知な回帰演算、好適には最小2乗演算則を実施するように構成すればよい。この第1の回帰演算回路110がプロフィールデータを2次関数で近似した第1の近似曲線は図5に示すとおりである。
【0045】
ここで、図4では、縦軸の示すビードの高さとして相対値を使用している。この相対値とは、先述の通り、本発明の目的であるビード形状検出のためには電縫溶接管のプロフィールデータとして簡単のため幾何計算の部分を省略したものを用いても別段差支えないことと関連し、幾何計算の部分を省略した値、という意味である(以下、同じ)。
【0046】
交点算出回路120は、図5に示すようにプロフィールデータと第1の近似曲線が交差する点のうち、頂点Xc0の左側、右側でそれぞれ最も近い2点を選び、それぞれXl、Xrとする。
【0047】
第1の範囲算出回路130は、交点算出回路120が算出したXl、Xrと、頂点の値Xc0に基づいて、下記の素管部回帰に用いる座標の範囲を算出する。たとえば、頂点と交点の3:2外分点
Xl’=(3Xl−Xc0)/2
Xr’=(3Xr−Xc0)/2
により、R: x<Xl’,x>Xr’
を算出するように構成すればよく、この外分比は例えば経験上平均的なビードの立ち上がりの滑らかさを考慮して適宜決めればよい。
【0048】
第2の回帰演算回路140は、前述のようにして算出されたxの範囲Rにおいて第1の回帰演算回路と同様な最小二乗多項式回帰演算を行うように構成すればよい。ただし、第2の回帰演算回路140においては算出する多項式の次数は2次以上の偶数次多項式であり、好適には4次以上の多項式となるように構成するのが望ましい。こうして第2の近似曲線が得られる。ところでこの第2の近似曲線は先程xの範囲Rから外れたXl’≦x≦Xr’の領域にも補完的に延伸する。
【0049】
偏差算出回路150は、電縫溶接管のプロフィールデータの存在するX座標の全体(光切断画像として画像視野の中に捕らえることのできるという意味での全体)にわたって、前記の第2の回帰演算回路が出力する第2の近似曲線と、電縫溶接管のプロフィールデータとの偏差を算出するものであり、多項式演算回路と減算回路とで構成することができる。
【0050】
そして、第2の範囲算出回路160は上記の偏差算出回路150の出力が所定の閾値を超える範囲を算出し、この範囲のうちで頂点Xc0を含む部分をビードの仮の存在範囲として出力するもので、しきい値回路と比較回路とで構成することができる。
【0051】
以降、本実施例の動作について、データを用いて説明する。
【0052】
投光手段10から管表面にスリット光を照射し、撮像装置20によって撮像した光切断画像は図3のようであり、この光切断画像に対してプロフィール算出装置30が算出するビード部を含んだ電縫溶接管のプロフィールデータを細線化処理したものは図4のようになる。仮頂点算出回路100はこのプロフィールデータに対して最大値演算、あるいは加重平均(重心演算)等の手法により頂点を算出する。図4に記入したXc0は、このようにして算出したビードの頂点の位置である。
【0053】
第1の回帰演算回路110は、プロフィール全体の2次式による最小二乗回帰演算を行い、その結果、図5のような2次関数が出力され、同様に図5に記入したXl、Xr、Xl’、Xr’は、交点算出回路120、範囲算出回路130がそれぞれ上で説明したように算出したX座標の位置である。
【0054】
第2の回帰演算回路140は、範囲算出回路130が設定したX座標の範囲についてプロフィールデータの第2の近似曲線を算出する。この実施例では回帰次数の好適例として4次で回帰するものとした。その結果得られた第2の近似曲線は図6の太線のようになる。
【0055】
偏差算出回路150は、図6の太線と電縫溶接管のプロフィールデータとの偏差e(x)を算出し、その結果を図7のように求める。
【0056】
そして、第2の範囲算出回路160は、この偏差e(x)が予め設定したしきい値を超える範囲を探索し、そのうち、頂点座標Xc0を含むX座標の範囲を算出する。本実施例ではしきい値の好適例として0.05を用いた。その結果は図7に記入した矢印の範囲を示している。
【0057】
本発明の妥当性の確認のため、本実施例の装置と同一の投光手段および撮像手段の配置において光源の発光を止め、露光時間を長くしてビードを撮影した写真と、本発明によるビード形状の画像出力を比較してみることにした。結果は図8のようであるが、算出したビード形状(図8の下部に示す)とよく一致していることがわかる。
【0058】
以上説明した実施例において、プロフィール算出装置30およびプロフィールデータ処理装置40の内部構成回路の一部あるいは全部は、ディジタルコンピュータ内のソフトウェアあるいはROM化プログラムとして実現してもよいことは当然である。また、本発明適用の対象は鋼管のみならず、銅、アルミ、その他の金属管であってももちろんよい。
【0059】
【発明の効果】
以上説明したように、本発明では管の回転等の大がかりな動作や微分等の複雑な演算処理を行うことなく、スリット光投光あるいは点光源走査による光切断法により検出される電縫溶接管の形状データから、形状の仮定や微分演算等を伴わない回帰演算によりビード形状を検出するようにしたので、ビードの輝度が変化した場合や素管部の真円度が低下したような場合でも確実にビード形状を検出することができる。また、非接触の光学的検出手段とデータ演算手段のみからビード形状を検出するので、客観性や再現性の高い検出が可能になる。更にビード形状を単に表示するだけでなく、その傾向を連続記録したり、また、特定されたビード形状の情報を利用して更に高度なビード形状解析に利用するなど、高度な操業に役立てることができるなど、優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明にかかる電縫溶接管の溶接ビード検出装置の要部の構成を示す概略図
【図2】同じくプロフィールデータ処理装置を構成する演算回路群の構成を示すブロック図
【図3】同じく電縫管のビード付近の光切断画像の例を示す図
【図4】同じく電縫管のビード付近の光切断画像を細線化処理したプロフィールデータを示す図
【図5】同じく第1の回帰演算回路が出力する、プロフィールデータ全体に対する回帰演算で算出した2次関数の第1の近似曲線の様子を示す図
【図6】同じく第2の回帰演算回路が算出した、第1の範囲算出回路の範囲に対して最小2乗回帰演算の結果得られた4次関数の第2の近似曲線の様子を示す図
【図7】同じく偏差算出回路が算出した、前記の4次関数とプロフィールデータとの偏差e(x)のプロット図
【図8】本実施例と、同一光学系配置で溶接ビードの実体を撮影した写真を比較して示す図
【図9】楕円の上半分の曲線を2次、4次、6次、8次の多項式で回帰した場合の多項式の次数と近似誤差のRMS(二乗平均の平方根)の関係を示した図
【符号の説明】
10…投光手段
20…撮像手段
30…プロフィール算出装置
40…プロフィールデータ処理装置
100…仮頂点算出回路
110…第1の回帰演算回路
120…交点算出回路
130…第1の範囲算出回路
140…第2の回帰演算回路
150…偏差算出回路
160…第2の範囲算出回路
200…電縫管
210…ビード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for detecting a weld bead shape of an electric resistance welded pipe. The bead shape referred to in the present invention includes the bead position.
[0002]
[Prior art]
In general, ERW welded pipe (hereinafter referred to as “ERW pipe” for short in the text), for example, ERW steel pipe is formed by forming a metal band (including a metal plate) such as a steel band into a tubular shape. While being conveyed in the longitudinal direction, both width ends of the metal strip such as the steel strip are continuously butt welded in the longitudinal direction by means such as high frequency induction heating pressure welding or resistance heating pressure welding.
[0003]
In the welded portion of the electric resistance welded pipe, a bulge by pressure welding, that is, a weld bead (hereinafter, also referred to as “bead” for short) occurs on the inner and outer surfaces of the pipe. Although this bead is cut in the course of pipe manufacture, it is conventionally known that the raised shape (width, height, etc.) of this bead before cutting is related to the weld strength at the final product stage. For this reason, conventionally, in the welding process, the worker adjusts the welding current and the like while visually observing the bead after welding. Since it is left to the subjectivity, there is a problem that differences between workers and temporal variations occur, and universality and reproducibility deteriorate. For this reason, attempts have been made to automatically detect beads by various methods. As for the invention related to the conventional method or apparatus for detecting a welded steel pipe bead, a mechanical method, a method using an eddy current sensor, an optical method, and the like have been proposed.
[0004]
[Patent Document 1]
Japanese Patent Publication No.59-2593
[0005]
[Patent Document 2]
JP 2000-176642 A
[0006]
[Patent Document 3]
JP-A-5-133940
[0007]
[Patent Document 4]
Japanese Patent Laid-Open No. 5-18904
[0008]
[Patent Document 5]
Japanese Patent Laid-Open No. 9-72851
[0009]
[Patent Document 6]
JP-A-60-135705
[0010]
As a mechanical method, for example, Patent Document 1 proposes a method of detecting runout of an outer surface welded portion of a traveling pipe with a contact roller.
[0011]
In addition, as a method using an eddy current sensor, in Patent Document 2, a detection head provided with a magnetic core that moves circularly around a concentric axis within a concentric cylindrical transmission coil and a reception coil is welded. Standing above the bead, it is placed in close proximity, and the passage timing of the magnetic core is detected twice from the change in impedance of the receiving coil when the magnetic core passes over the weld bead, and the required time between these passage timings There has been proposed a method for detecting the center position of a weld bead in which the center position of the weld bead is detected by calculating and comparing.
[0012]
In Patent Document 3, a plurality of eddy current sensors are arranged so as to extend substantially in one direction, and the subject is scanned by sequentially switching the roles of excitation, excitation, and detection between the eddy current sensors. A method for detecting a bead position from a detected waveform has been proposed.
[0013]
Further, as an optical method, as disclosed in Patent Document 4, a pipe surface is imaged, and a signal waveform feature quantity specific to a welded part or a base material part is extracted and stored in advance. ITV while irradiating fan-shaped light or irradiating fan-shaped light on the tube surface while rotating the steel pipe in the circumferential direction as disclosed in Patent Document 5 The tube surface is imaged with a camera, etc., and the video signal is corrected to an image that has been corrected for noise removal, inclination, etc., and then the difference between the arc image fitted with the arc by the arc fitting method and the actual image is obtained based on the image. In addition, when the difference data exceeds a preset threshold value, it is determined as a weld bead, and at the same time, the width of the range exceeding the threshold value is encoded as a preset allowable range of the weld bead width. The melt The bead position, the weld bead detection method of the steel pipe have been proposed.
[0014]
In Patent Document 6, as a general technique for automatically measuring the position and shape of a weld bead, the weld bead is imaged from the upper surface and the side surface, and analog image information from the imaging unit is converted into digital information at an ash tone level. An automatic bead shape measuring device that detects the width and height of a weld bead based on the digital image information has been proposed.
[0015]
[Problems to be solved by the invention]
However, in the case of a method using a contact roller as disclosed in Patent Document 1, it is necessary that the height of the bead is substantially constant in the longitudinal direction and the unevenness thereof is relatively steep, and the unevenness of the bead is very smooth. If the bead height is low or the bead height is not constant in the longitudinal direction, accurate detection cannot be performed.
[0016]
In addition, in the case of the method using the concentric circular magnetic core in the concentric cylindrical coil disclosed in Patent Document 2, the seam twisted portion passed through the detection device position or the meandering occurred during the transportation of the electric sewing tube as the subject. In this case, the positional relationship between the electric sewing tube as the subject and the concentric cylindrical coil or the concentric circular magnetic core as the detection device is shifted, so that it is impossible to accurately detect the weld bead position.
[0017]
In addition, in the excitation, excitation, and detection coil substantially one-way multiple arrangement method disclosed in Patent Document 3, it is difficult to avoid erroneous detection because it easily reacts with foreign matters attached to the tube surface or irregularities on the surface other than the beads, Further, when various sizes such as an electric sewing tube are used as a target, a plurality of detection heads must be prepared according to the difference in their shapes, which increases the manufacturing cost of the apparatus.
[0018]
In addition, as a problem common to these eddy current methods, there is a problem in that a separate shape measuring means must be provided in order to evaluate the shape of the weld bead subjected to position detection, and the manufacturing cost of the apparatus increases.
[0019]
Compared to the various methods described above, the optical methods disclosed in Patent Literature 4 and Patent Literature 5 can perform non-contact detection, and not only bead position detection but also the bead shape with the same apparatus configuration. There is an advantage that it can be evaluated. However, the above-described conventional optical method has various problems.
[0020]
In other words, the method based on the feature extraction of the weld base material part disclosed in Patent Document 4 is mainly a method for detecting a difference in brightness between the bead part and other parts (base material part: hereinafter referred to as a raw pipe part). However, since the brightness (brightness) of the bead part greatly depends on the welding conditions and the thickness of the tube, it is difficult to detect stably. In addition, the bead may not be identified particularly if the brightness of the bead part is low. There was a problem.
[0021]
In addition, in the method using the steel tube rotation image arc fitting disclosed in Patent Document 5, it is necessary to rotate the steel pipe in the circumferential direction, but the steel pipe is continuous with the base steel strip at the welding stage of the ERW steel pipe. In addition, there are many problems that cannot be rotated, and since two arcs are calculated from four points of data at the image processing stage, even if noise processing is performed, the jagged shape that is generally found in image data There is also a problem that errors are likely to occur in the calculated bead position, and the roundness of the ERW tube, which is the subject, is often poor, and the tube is placed on two vertical bisectors. This method, which utilizes the geometric property of a circle having a central portion, has a problem in that there is a limit in suppressing the occurrence of detection errors.
[0022]
Further, in the camera imaging method of Patent Document 6, since the point where the image density for one line changes suddenly is searched as a method for specifying the bead position, when the brightness of the bead part is low, There is a problem that the bead position cannot be specified depending on the surface properties.
[0023]
Furthermore, in addition to these detection methods, as described in Patent Document 5, depending on a person skilled in the art, a profile of a steel pipe surface including a bead position is measured by a light cutting method or an optical distance measurement method, and the profile is obtained. A method for detecting the bead position by processing the data is easily recalled. However, in this case, as a method of processing the profile data, it is common to perform some differentiation processing on the assumption that a sudden change occurs in the profile in the bead portion. On the other hand, while the rise is becoming smoother, such differential processing emphasizes minute noise that is likely to occur in optical profile measurement, making it difficult to detect the bead position.
[0024]
The present invention has been made to solve the problems of the prior art as described above. From the shape data of the electric sewing tube by the so-called light cutting method detected by slit light or spot light scanning, the brightness and profile are obtained. It is an object of the present invention to provide a method and apparatus capable of accurately detecting a bead shape without being affected by data noise.
[0025]
[Means for Solving the Problems]
That is, the invention of claim 1 irradiates the welded part of the ERW welded tube with slit light or scans with spot light, and images of the slit light irradiated on the surface of the welded part or the trajectory of the scanned spot light. A bead shape of an electric resistance welded pipe that detects the bead shape of the electric resistance welded pipe by an optical cutting method that performs predetermined image processing on an image obtained by imaging the image from an angle different from the irradiation direction of the slit light. In the detection method, the coordinates of the temporary bead apex are calculated from the profile of the ERW weld pipe by a predetermined calculation formula, the profile of the ERW weld pipe is approximated by a quadratic function to obtain a first approximate curve, Calculate the coordinates of two intersection points between the temporary bead apex of the profile of the ERW weld pipe and the first approximate curve, and calculate the coordinates of the temporary bead apex and the two of the temporary bead apex From the coordinates of the intersection A bead tentative existence range is calculated from the equation, and the shape of the pipe part excluding the bead tentative existence range from the profile of the ERW weld pipe is approximated by an even-order polynomial of second or higher order to obtain a second An approximate curve is obtained, and an area including the coordinates of the provisional bead apex is specified as a bead among areas where the deviation between the profile of the ERW weld pipe and the second approximate curve is greater than a predetermined threshold. A method for detecting the bead shape of an electric resistance welded pipe, characterized by:
According to a second aspect of the present invention, there is provided light projecting means for irradiating slit light or scanning spot light at an angle on a welded portion of an ERW weld pipe, and an image obtained by irradiating the welded portion with the light projecting means. Imaging means for imaging from an angle different from the certain angle, profile calculation means for calculating a profile of the electric resistance welded pipe by performing predetermined image processing on an image obtained by the imaging means, and the electric resistance welding pipe A temporary vertex calculation means for calculating the coordinates of the temporary bead vertex from the profile of the above, and a first regression calculation means for approximating the profile of the ERW weld pipe as a quadratic function by a predetermined regression expression; Intersection calculation means for calculating the coordinates of two intersection points sandwiching the temporary bead vertex from the output of the first regression calculation means and the output of the profile calculation means; the coordinates of the intersection points and the temporary bead A first range calculating means for calculating a provisional existence range of the beads from the coordinates of the points by a predetermined calculation formula; and a range of the electric resistance welded pipe in a range excluding the provisional existence range of the beads calculated as described above. A second regression calculation means for approximating the profile with a second-order or higher-order even polynomial, and a region where the deviation between the output of the second regression calculation means and the profile of the ERW weld pipe is greater than a predetermined threshold value. Of these, a bead shape detection device for an electro-welded pipe, comprising: a second range calculation unit that outputs a value including the coordinates of the provisional bead apex as a weld bead range.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
In the manufacture of ERW pipe, the width of the weld bead before cutting is about 1/10 to 1/5 of the outer diameter of the pipe, and the position of the weld bead can be roughly known in advance. The reason for this is that in the general ERW pipe production line, the metal band that is the material is continuous from the unwinding of the metal band coil such as the steel band that is the base material to the molding and welding of the pipe. This is because the position and orientation are constrained, so that even if horizontal movement of the tube (changes in the pass line), twisting, etc. occur, it is only as high as the bead width. Here, the bead portion may be located at any position on the circumference of the pipe. Of course, no generality is lost by this assumption.
[0027]
Here, the pipe shape including the bead part and sufficiently wider than the bead width (hereinafter referred to as ERW weld pipe profile) is detected by an appropriate method, and the detected ERW weld pipe profile is approximated by a quadratic function. In this case, the approximate curve is a curve that passes above the profile of the raw tube portion and below the apex portion of the bead portion in order to simultaneously approximate not only the raw tube portion but also the shape of the upwardly protruding bead portion. This curve is defined as a first approximate curve. Here, the approximate vertex position Xc of the bead portion is obtained by another method, and the points Xl and Xr at which the first approximate curve intersects the profile of the ERW weld pipe are obtained by searching from the approximate vertex position to the left and right. , Xl, Xr, and Xc, an approximate bead range R (Xl ′ to Xr ′) can be obtained.
[0028]
Here, the first approximate curve is limited to a quadratic function, but this is because the shape of the tube is substantially symmetric with respect to the apex of the bead portion, so that it can be approximated by an even function such as an even-order polynomial. In the meantime, when approximating with a fourth-order or higher order polynomial, an inflection point occurs in the approximate curve and the bead part is emphasized, and this has an unfavorable influence on the calculation of the intersection with the raw pipe part. That is the reason.
[0029]
If the profile in the range excluding R in the width direction coordinate (X coordinate) is approximated by a second-order or higher-order even-order polynomial, the shape of the tube part can be approximated with considerably good accuracy. This is the second approximate curve.
[0030]
The basis of this is the graph of FIG. 9, which shows the RMS of the polynomial and the approximation error when the upper half curve of the ellipse is regressed with a second, fourth, sixth and eighth order polynomial. The average square root) relationship is shown, and it is shown that the shape of an ellipse can be regressed with sufficient accuracy by an even-order polynomial of second or higher order, preferably an even-order polynomial of fourth or higher order.
[0031]
Using this property, the profile of the base pipe part approximated with sufficient accuracy is compared with the profile of the ERW welded pipe including the bead part. A region including the coordinates of can be specified as a bead.
[0032]
In the above calculation, a polynomial is used as the approximate curve. Therefore, if the least square method is used, the regression calculation can be performed only by addition, multiplication, and matrix calculation. In other words, since it does not use any assumption of the perfect circle or differential calculation that was a problem in the prior art, it is not affected by noise, and it also takes time and effort for noise data removal work such as moving average for noise removal and coordinates Such processing is also unnecessary.
[0033]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0034]
FIG. 1 is a schematic view showing a device configuration example of a bead detection device for an electric resistance welded pipe according to the present invention. In FIG. 1, 200 is an electric sewing tube, 10 is a light projecting means, 20 is an imaging means, 30 is a profile calculation device, 40 is a profile data processing device, and 50 is a display device.
[0035]
FIG. 2 is a configuration diagram showing the internal configuration of the profile data processing device 40. In FIG. 2, 100 is a temporary vertex calculation circuit, 110 is a first regression calculation circuit, 120 is an intersection calculation circuit, 130 is a first range calculation circuit, 140 is a second regression calculation circuit, and 150 is a deviation calculation circuit, Reference numeral 160 denotes a second range calculation circuit.
[0036]
In FIG. 1, the light projecting means 10 is a slit light source in which light emitted from a light emitting element such as a laser or a lamp is linearly converged by a cylindrical lens or the like, or light that converges in a point shape at an irradiation position is mirrored. However, it is desirable to use a small slit light source that integrates a semiconductor light emitting element (LED) and a lens system, and the short side width of the slit is also welded. It is desirable that the height be sufficiently smaller than the height of the bead, and it is desirable that it is 50 μm or less. Ultimately, the shape of the part to be measured is calculated as a single line by light-cutting image processing, which will be described later, so this is not essential, but it should be as small as possible.
[0037]
As the imaging means 20, an ITV camera or PSD (optical position detection element) can be used, but a CCD camera is preferably used in consideration of ease of data conversion to a subsequent image processing apparatus. It is. Although not shown in FIG. 1, a lens mechanism for forming an image of irradiation light, a diaphragm and a shutter mechanism for adjusting the amount of received light to an appropriate range, and the like can be generally selected and mounted. Good. Here, when a method of scanning a point light source as the light source is adopted, it goes without saying that it is necessary to continue irradiation while scanning the entire range in the width direction at least once. If the tube and bead shape do not change while satisfying this condition and scanning is completed, the acquired image will be the same for both slit light and point light source plane scanning. I will explain only.
[0038]
The incident angle α from the light projecting means 10 that is a light source and the arrangement angle of the imaging means 20, that is, the imaging angle β is preferably (α + β) approximately 90 °, and the number of pixels and the field of view of the camera that is the imaging means 20 are The width may be determined based on the width of the bead portion and the necessary resolution. In the present invention, the slit light irradiation angle α = 60 ° from the light source, the imaging angle β = 30 °, the field of view is width (horizontal) × height (vertical) = (25 mm × 20 mm), and the number of pixels is horizontal × vertical = 640 × 480 pixels were used as the preferred value. As a result, the resolution in the width direction is
25/640 = 0.0391 (mm)
The resolution in the height direction is
20/480 * cos (60 °) / sin (60 ° + 30 °) = 0.0209 (mm). In this embodiment, the resolution in the width direction (tube circumferential direction) is 40 μm and the height direction (tube axis direction) is 20 μm. The bead shape can be detected.
[0039]
The profile calculation device 30 converts an image of slit light reflected on the tube surface as illustrated in FIG. 3 into a single line by an appropriate image processing means, and further, from the arrangement of the light source and the imaging device, that is, the irradiation angle α and the like. The geometrical calculation is performed from the imaging angle β to calculate the image of the slit light, that is, the pseudo cross-sectional profile, the true profile in the thickness cross-sectional direction of the pipe, that is, the profile data of the ERW welded pipe. Here, as the image processing means, it is generally possible to use an apparatus that performs thinning processing, but preferably the thinning processing means previously proposed by the inventors in Japanese Patent Application No. 2002-128497 (not disclosed at the time of filing) is used. Is good. In addition, for detecting the bead shape, which is the object of the present invention, the profile data of the pipe is simple, so that the step of geometric calculation described above may be omitted, so that another step can be supported.
[0040]
Next, each part in the profile data processing apparatus 40 will be described below. In the pseudo cross-sectional profile formed by slit light irradiation as described above, or the profile of the ERW welded pipe (both are assumed to be after the tapering process), X in the direction (width direction) crossing the bead portion. Taking the axis, the profile can be represented as a data group of height corresponding to the X coordinate.
[0041]
Here, the provisional vertex calculation circuit 100 calculates the weld bead vertex position Xc0, and may be configured to calculate, for example, the load average (center of gravity position) of profile data.
[0042]
For a certain width direction (X-axis direction) coordinate, the value obtained by multiplying the luminance and the vertical axis coordinate of the pixel indicating it is added in the vertical axis direction, and the average value divided by the number of participating pixels is Obtain the average value for other width direction (X-axis direction) coordinates in the same way, and connect the average values in the width direction (X-axis direction). The X coordinate shown is to be obtained.
[0043]
Or, more simply, the pixels indicating the maximum luminance with respect to a certain width direction (X-axis direction) coordinate are connected in the width direction (X-axis direction), and the X coordinate indicating the maximum value of the vertical axis is obtained from them. It may be.
[0044]
Further, since the first regression calculation circuit 110 regresses profile data as shown in FIG. 4 with a quadratic function, the first regression calculation circuit 110 is configured to execute a known regression calculation, preferably a least square calculation rule. do it. A first approximate curve obtained by approximating the profile data with a quadratic function by the first regression calculation circuit 110 is as shown in FIG.
[0045]
Here, in FIG. 4, a relative value is used as the height of the bead indicated by the vertical axis. As described above, this relative value is easy for the profile data of the ERW welded pipe for the purpose of detecting the bead shape, which is the object of the present invention. Is a value obtained by omitting the geometric calculation part (hereinafter the same).
[0046]
As shown in FIG. 5, the intersection calculation circuit 120 selects the two closest points on the left and right sides of the vertex Xc0 from the points where the profile data and the first approximate curve intersect, and sets them as Xl and Xr, respectively.
[0047]
The first range calculation circuit 130 calculates a range of coordinates used for the following tube segment regression based on Xl and Xr calculated by the intersection calculation circuit 120 and the vertex value Xc0. For example, the 3: 2 outer dividing point between the vertex and the intersection
Xl '= (3X1-Xc0) / 2
Xr '= (3Xr-Xc0) / 2
R: x <Xl ′, x> Xr ′
The external ratio may be determined appropriately in consideration of, for example, the average smoothness of the bead rise.
[0048]
The second regression calculation circuit 140 may be configured to perform the same least square polynomial regression calculation as the first regression calculation circuit in the range R of x calculated as described above. However, in the second regression calculation circuit 140, the order of the polynomial to be calculated is an even-order polynomial of 2nd order or higher, and is preferably configured to be a polynomial of 4th order or higher. A second approximate curve is thus obtained. By the way, this second approximated curve extends complementarily to the region of Xl ′ ≦ x ≦ Xr ′ that deviates from the range R of x.
[0049]
The deviation calculation circuit 150 is the second regression calculation circuit described above over the entire X coordinate where the profile data of the ERW welded pipe exists (in the sense that it can be captured in the image field as a light cut image). The deviation between the second approximated curve output from the profile data of the ERW welded pipe and the profile data of the ERW welded pipe is calculated, and can be constituted by a polynomial arithmetic circuit and a subtraction circuit.
[0050]
The second range calculation circuit 160 calculates a range in which the output of the deviation calculation circuit 150 exceeds a predetermined threshold, and outputs a portion including the vertex Xc0 in this range as a temporary existence range of beads. Thus, a threshold circuit and a comparator circuit can be used.
[0051]
Hereinafter, the operation of the present embodiment will be described using data.
[0052]
The light section image irradiated with slit light from the light projecting means 10 and imaged by the imaging device 20 is as shown in FIG. 3, and the bead portion calculated by the profile calculation device 30 is included for this light section image. FIG. 4 shows a thinning process of profile data of an electric resistance welded pipe. The temporary vertex calculation circuit 100 calculates a vertex for the profile data by a technique such as maximum value calculation or weighted average (centroid calculation). Xc0 entered in FIG. 4 is the position of the apex of the bead calculated in this way.
[0053]
The first regression calculation circuit 110 performs a least square regression calculation based on a quadratic expression of the entire profile, and as a result, a quadratic function as shown in FIG. 5 is output. Similarly, Xl, Xr, and Xl entered in FIG. ', Xr' is the position of the X coordinate calculated by the intersection calculation circuit 120 and the range calculation circuit 130 as described above.
[0054]
The second regression calculation circuit 140 calculates a second approximate curve of profile data for the range of the X coordinate set by the range calculation circuit 130. In this embodiment, it is assumed that the fourth order regression is performed as a suitable example of the regression order. The second approximate curve obtained as a result is as shown by the thick line in FIG.
[0055]
The deviation calculation circuit 150 calculates the deviation e (x) between the thick line in FIG. 6 and the profile data of the ERW welded pipe, and obtains the result as shown in FIG.
[0056]
Then, the second range calculation circuit 160 searches for a range in which the deviation e (x) exceeds a preset threshold value, and calculates an X coordinate range including the vertex coordinate Xc0. In this embodiment, 0.05 is used as a preferred example of the threshold value. The result shows the range of the arrow entered in FIG.
[0057]
In order to confirm the validity of the present invention, a photograph of a bead photographed by stopping the light emission of the light source and extending the exposure time in the same arrangement of the light projection means and the image pickup means as the apparatus of the present embodiment, and the bead according to the present invention I decided to compare the image output of shapes. Although the result is as shown in FIG. 8, it can be seen that the result is in good agreement with the calculated bead shape (shown in the lower part of FIG. 8).
[0058]
In the embodiment described above, it is natural that some or all of the internal configuration circuits of the profile calculation device 30 and the profile data processing device 40 may be realized as software in a digital computer or ROMized program. Of course, the present invention is applicable not only to steel pipes but also to copper, aluminum, and other metal pipes.
[0059]
【The invention's effect】
As described above, according to the present invention, an electro-welded pipe that is detected by a light cutting method using slit light projection or point light source scanning without performing a large operation such as rotation of the pipe or complicated calculation processing such as differentiation. Since the bead shape is detected from the shape data by the regression calculation that does not involve the assumption of the shape or the differential operation, etc., even when the brightness of the bead changes or the roundness of the blank tube part decreases The bead shape can be reliably detected. Further, since the bead shape is detected only from the non-contact optical detection means and the data calculation means, detection with high objectivity and reproducibility becomes possible. In addition to simply displaying the bead shape, it can be used for advanced operations such as continuously recording the trend, and using the specified bead shape information for more advanced bead shape analysis. It has an excellent effect.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a main part of a weld bead detection device for an electric resistance welded pipe according to the present invention.
FIG. 2 is a block diagram showing the configuration of an arithmetic circuit group that also constitutes the profile data processing apparatus.
FIG. 3 is a view showing an example of a light section image near the bead of the ERW tube
FIG. 4 is a view showing profile data obtained by thinning the light section image near the bead of the ERW tube.
FIG. 5 is a diagram showing a state of a first approximate curve of a quadratic function calculated by regression calculation for the entire profile data, similarly output from the first regression calculation circuit;
FIG. 6 is a diagram showing a state of a second approximate curve of a quaternary function obtained as a result of the least square regression calculation with respect to the range of the first range calculation circuit, similarly calculated by the second regression calculation circuit;
FIG. 7 is a plot of deviation e (x) between the quaternary function and profile data calculated by the deviation calculating circuit.
FIG. 8 is a diagram showing a comparison between the present embodiment and a photograph in which the actual bead is photographed with the same optical system arrangement;
FIG. 9 is a diagram showing the relationship between the degree of polynomial and the RMS (root mean square) of approximation error when the upper half curve of the ellipse is regressed with a second-order, fourth-order, sixth-order, and eighth-order polynomial;
[Explanation of symbols]
10 ... Projection means
20: Imaging means
30 ... Profile calculation device
40 ... Profile data processing device
100: Temporary vertex calculation circuit
110: First regression calculation circuit
120 ... Intersection calculation circuit
130... First range calculation circuit
140: Second regression operation circuit
150: Deviation calculation circuit
160... Second range calculation circuit
200: Electric pipe
210 ... Bead

Claims (2)

電縫溶接管の溶接部にスリット光を照射あるいは点状光を走査し、溶接部表面に照射されたスリット光の像あるいは走査された点状光の軌跡の像を前記スリット光の照射方向と異なる角度から撮像手段により撮像して得られる画像に所定の画像処理を施す光切断法により該電縫溶接管のビード形状を検出する電縫溶接管のビード形状検出方法において、
電縫溶接管のプロフィールから所定の算出式により仮のビード頂点の座標を算出し、
該電縫溶接管のプロフィールを2次関数で近似して第1の近似曲線を求め、
該電縫溶接管のプロフィールと前記第1の近似曲線との前記仮のビード頂点を挟んだ2つの交点の座標を算出し、
前記仮のビード頂点の座標と前記仮のビード頂点を挟んだ2つの交点の座標とから所定の算出式によりビードの仮の存在範囲を算出し、
前記電縫溶接管のプロフィールから前記ビードの仮の存在範囲を除いた素管部形状を2次以上の偶数次多項式で近似して第2の近似曲線を求め、
前記電縫溶接管のプロフィールと前記第2の近似曲線の偏差が所定の閾値より大となる領域のうちで、前記仮のビード頂点の座標を含む領域をビードとして特定することを特徴とする、電縫溶接管のビード形状検出方法。
Irradiating the welded portion of the ERW welded tube with slit light or scanning with spot light, and the slit light image or the scanned spot light trajectory image on the surface of the welded portion is defined as the irradiation direction of the slit light. In the bead shape detection method for an electric resistance welded pipe, the bead shape of the electric resistance welded pipe is detected by an optical cutting method in which predetermined image processing is performed on an image obtained by imaging with imaging means from different angles.
Calculate the coordinates of the temporary bead apex from the profile of the ERW welded pipe using a predetermined formula.
A first approximate curve is obtained by approximating the profile of the ERW weld pipe with a quadratic function,
Calculating the coordinates of two intersections of the ERW welded pipe profile and the first approximate curve with the provisional bead apex sandwiched between them,
From the coordinates of the temporary bead vertices and the coordinates of two intersection points sandwiching the temporary bead vertices, a temporary existence range of the beads is calculated by a predetermined calculation formula,
Approximating the shape of the pipe part excluding the temporary existence range of the bead from the profile of the electric resistance welded pipe with a second-order or higher-order even-order polynomial to obtain a second approximate curve,
Among the regions where the deviation between the profile of the ERW weld pipe and the second approximate curve is greater than a predetermined threshold, the region including the coordinates of the provisional bead apex is specified as a bead, A method for detecting the bead shape of an ERW welded pipe.
電縫溶接管の溶接部にある角度を以ってスリット光を照射あるいは点状光を走査する投光手段と、
前記投光手段が溶接部に照射された像を、前記ある角度と異なる角度から撮像する撮像手段と、
前記撮像手段により得られる画像に所定の画像処理を施すことにより該電縫溶接管のプロフィールを算出するプロフィール算出手段と、
該電縫溶接管のプロフィールから所定の算出式により仮のビード頂点の座標を算出する仮頂点算出手段と、
該電縫溶接管のプロフィールを2次関数として所定の回帰式により近似する第1の回帰演算手段と、
前記第1の回帰演算手段の出力と、前記プロフィール算出手段の出力とから前記仮のビード頂点を挟んだ2つの交点の座標を算出する交点算出手段と、
前記交点の座標と前記仮のビード頂点の座標とから所定の算出式によりビードの仮の存在範囲を算出する第1の範囲算出手段と、
前記のようにして算出したビードの仮の存在範囲を除いた範囲の電縫溶接管のプロフィールを2次以上の偶数次多項式で近似する第2の回帰演算手段と、
前記第2の回帰演算手段の出力と前記電縫溶接管のプロフィールとの偏差が所定の閾値より大となる領域のうちで、前記仮のビード頂点の座標を含むものを溶接ビードの範囲として出力する第2の範囲算出手段と、
を備えたことを特徴とする、電縫溶接管のビード形状検出装置。
A light projecting means for irradiating slit light or scanning spot light at an angle in the welded portion of the ERW pipe;
An imaging unit that captures an image of the light projecting unit irradiated on the welded portion from an angle different from the certain angle;
Profile calculating means for calculating a profile of the electric resistance welded pipe by applying predetermined image processing to an image obtained by the imaging means;
Provisional vertex calculation means for calculating the coordinates of the provisional bead vertex from the profile of the ERW weld pipe by a predetermined calculation formula;
First regression calculation means for approximating the profile of the ERW weld pipe as a quadratic function by a predetermined regression equation;
An intersection calculation means for calculating coordinates of two intersections sandwiching the temporary bead vertex from the output of the first regression calculation means and the output of the profile calculation means;
A first range calculating means for calculating a temporary existence range of beads by a predetermined calculation formula from the coordinates of the intersection and the coordinates of the temporary bead vertex;
A second regression calculation means for approximating the profile of the electric resistance welded pipe in a range excluding the temporary existence range of the beads calculated as described above by an even-order polynomial of second order or higher;
Among the regions where the deviation between the output of the second regression calculation means and the profile of the ERW weld pipe is greater than a predetermined threshold, the one including the coordinates of the temporary bead apex is output as the weld bead range. Second range calculating means for
An apparatus for detecting a bead shape of an electric resistance welded pipe, comprising:
JP2002277802A 2002-04-30 2002-09-24 Method and apparatus for detecting bead shape of electric resistance welded pipe Expired - Fee Related JP3858792B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002277802A JP3858792B2 (en) 2002-09-24 2002-09-24 Method and apparatus for detecting bead shape of electric resistance welded pipe
MYPI20031453A MY137246A (en) 2002-04-30 2003-04-17 Method and instrument for measuring bead cutting shape of electric welded tube
PCT/JP2003/005168 WO2003093761A1 (en) 2002-04-30 2003-04-23 Method and instrument for measuring bead cutting shape of electric welded tube
US10/507,350 US7236255B2 (en) 2002-04-30 2003-04-23 Method and instrument for measuring bead cutting shape of electric welded tube
KR1020047016653A KR100685206B1 (en) 2002-04-30 2003-04-23 Method and instrument for measuring bead cutting shape of electric welded tube
EP03719173A EP1500904B1 (en) 2002-04-30 2003-04-23 Method of and device for measuring bead cutting shape of electric welded tube
DE60334373T DE60334373D1 (en) 2002-04-30 2003-04-23 METHOD AND DEVICE FOR MEASURING THE BURGLARY CUTTING SHAPE OF AN ELECTRICALLY WELDED TUBE
TW092109761A TW587153B (en) 2002-04-30 2003-04-25 Measurement method and device for bead cutting shape in electric resistance welded pipes
US11/802,133 US7471400B2 (en) 2002-04-30 2007-05-21 Measurement method and device for bead cutting shape in electric resistance welded pipes
US12/113,440 US7619750B2 (en) 2002-04-30 2008-05-01 Measurement method and device for bead cutting shape in electric resistance welded pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277802A JP3858792B2 (en) 2002-09-24 2002-09-24 Method and apparatus for detecting bead shape of electric resistance welded pipe

Publications (2)

Publication Number Publication Date
JP2004117053A JP2004117053A (en) 2004-04-15
JP3858792B2 true JP3858792B2 (en) 2006-12-20

Family

ID=32273293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277802A Expired - Fee Related JP3858792B2 (en) 2002-04-30 2002-09-24 Method and apparatus for detecting bead shape of electric resistance welded pipe

Country Status (1)

Country Link
JP (1) JP3858792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724122B2 (en) 2010-02-25 2014-05-13 Toyota Jidosha Kabushiki Kaisha Bead inspection method, and bead inspection apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591201B2 (en) * 2004-09-29 2010-12-01 Jfeスチール株式会社 Electric seam tube seam position detection method and apparatus, and electric seam tube manufacturing method and equipment
JP4543386B2 (en) * 2005-03-25 2010-09-15 住友金属工業株式会社 Method and apparatus for detecting outer surface flaws of pipe material
JP4793161B2 (en) * 2006-08-11 2011-10-12 Jfeスチール株式会社 Quality inspection method and apparatus for butt welds
JP5029419B2 (en) * 2008-02-26 2012-09-19 トヨタ自動車株式会社 Weld bead inspection method and weld bead inspection device
JP4992848B2 (en) * 2008-07-22 2012-08-08 トヨタ自動車株式会社 Weld bead inspection method and weld bead inspection device
JP5347418B2 (en) * 2008-10-10 2013-11-20 新日鐵住金株式会社 Surface defect inspection system, method and program
JP6279062B1 (en) * 2016-12-20 2018-02-14 日新製鋼株式会社 Method for detecting shape of butt portion of welded steel pipe, quality control method and apparatus for welded steel pipe using the same
JP7247876B2 (en) * 2019-12-10 2023-03-29 トヨタ自動車株式会社 Welded bead cutting device and welded bead cutting method
CN114273754B (en) * 2022-01-20 2023-10-20 成都熊谷加世电器有限公司 Automatic welding control method
CN115781148B (en) * 2023-01-06 2023-05-23 江苏菲达宝开电气股份有限公司 Welding robot with leak and weld marking function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724122B2 (en) 2010-02-25 2014-05-13 Toyota Jidosha Kabushiki Kaisha Bead inspection method, and bead inspection apparatus

Also Published As

Publication number Publication date
JP2004117053A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US7471400B2 (en) Measurement method and device for bead cutting shape in electric resistance welded pipes
JP4705479B2 (en) Bead shape detection method and apparatus
JP3858792B2 (en) Method and apparatus for detecting bead shape of electric resistance welded pipe
JP5672480B2 (en) Apparatus and method for determining shape of terminal end of bead
JP5217221B2 (en) Method for detecting surface defect shape of welded portion and computer program
KR102056076B1 (en) Apparatus for weld bead detecting and method for detecting welding defects of the same
US10704897B2 (en) Method for detecting shape of butt joint of welded steel pipe, and quality control method and apparatus for welded steel pipes using the shape detecting method
JP2017053790A (en) Defect detection device and defect detection method
JP6481216B1 (en) Tubular body surface inspection method and tubular body surface inspection apparatus
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
JP4374845B2 (en) Method and apparatus for detecting bead shape of ERW pipe
JP2515460B2 (en) ERW welded pipe manufacturing method
US20230026608A1 (en) Shape inspection device, processing device, height image processing device
JP2012234255A (en) Image processing device and image processing method
JPH05240620A (en) Instrument for measuring outer diameter and wall thickness of pipe
JPH04127984A (en) Method and device for laser welding
JPH05240619A (en) Instrument for measuring outer diameter and wall thickness of pipe
JP3212023B2 (en) Dimension measurement device and manufacturing system for corrugated long flexible tube
JPH05240621A (en) Instrument for measuring outer diameter and wall thickness of pipe
JP2768053B2 (en) Seam position detection device for ERW steel pipes
JPH0740049A (en) Method and device for detecting weld zone of uo steel pipe
KR101417044B1 (en) Device and method for measuring the edge crack of coil
JP2011185726A (en) Method and device for inspection of assembling workpiece
JPH06294748A (en) Surface flaw inspection method at welded part of uo steel pipe
CN106181144B (en) A kind of detection method of concave welding bead position

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3858792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees