JP4374845B2 - Method and apparatus for detecting bead shape of ERW pipe - Google Patents

Method and apparatus for detecting bead shape of ERW pipe Download PDF

Info

Publication number
JP4374845B2
JP4374845B2 JP2002348649A JP2002348649A JP4374845B2 JP 4374845 B2 JP4374845 B2 JP 4374845B2 JP 2002348649 A JP2002348649 A JP 2002348649A JP 2002348649 A JP2002348649 A JP 2002348649A JP 4374845 B2 JP4374845 B2 JP 4374845B2
Authority
JP
Japan
Prior art keywords
bead
shape
tube
pipe
approximate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002348649A
Other languages
Japanese (ja)
Other versions
JP2004181471A (en
Inventor
俊文 児玉
平 鈴木
能知 岡部
泰昌 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002348649A priority Critical patent/JP4374845B2/en
Priority to MYPI20031453A priority patent/MY137246A/en
Priority to DE60334373T priority patent/DE60334373D1/en
Priority to PCT/JP2003/005168 priority patent/WO2003093761A1/en
Priority to US10/507,350 priority patent/US7236255B2/en
Priority to KR1020047016653A priority patent/KR100685206B1/en
Priority to EP03719173A priority patent/EP1500904B1/en
Priority to TW092109761A priority patent/TW587153B/en
Publication of JP2004181471A publication Critical patent/JP2004181471A/en
Priority to US11/802,133 priority patent/US7471400B2/en
Priority to US12/113,440 priority patent/US7619750B2/en
Application granted granted Critical
Publication of JP4374845B2 publication Critical patent/JP4374845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電縫溶接管のビード形状の検出方法および装置に関する。
【0002】
【従来の技術】
一般に、電縫溶接管(以下、本文中では略して「電縫管」と称している箇所がある)、例えば電縫鋼管は、鋼帯等の金属帯(金属板を含む)を管状に成形しながら長手方向に搬送し、該鋼帯等の金属帯の両幅端を高周波誘導加熱圧接や抵抗加熱圧接等の手段で長手方向に連続的に突き合わせ溶接することによって製造されている。
【0003】
この電縫管の溶接部には、圧接による盛り上がり、すなわち溶接ビード(以下、略して「ビード」と称している箇所もある)が管内外面に生じる。このビードは管製造の過程で切削されるものの、このビードの切削前の盛り上がり形状(幅、高さ等)が最終製品段階での溶接部強度と関係を持つことが従来より知られている。このため、従来より溶接工程において作業員が溶接後のビードを目で見ながら溶接電流等を調節しているが、このような作業形態では適切とされるビードの形状が作業員のそのときの主観に委ねられることから、作業員間での差異や時間的なばらつきが発生し、普遍性、再現性が低下するという問題があった。このため、種々の方法によってビード形状を自動計測する試みがなされている。従来の鋼管溶接ビード検出方法あるいは装置に関する発明は、機械的方法、光学的方法などが提案されている。
【0004】
機械的方法としては、例えば特許文献1に、走行するパイプの外面溶接部の振れを接触式ローラーで検知する方法が提案されている。
【0005】
【特許文献1】
特公昭59−2593号公報
【0006】
また、光学的な方法としては、特許文献2に開示されているように、ビードカット前の、移動中の素管にスリット光を照射して得られる光切断プロフィールを光学的に受像し、得られた光切断プロフィール受像信号から溶接部のビードの幅と高さを検出し、かくして得られたビードの幅と高さの検出値に基づいて溶接部のメタルフロー角度を演算する、電縫管のメタルフロー角度測定方法が提案されている。
【0007】
【特許文献2】
特公昭60−7586号公報
【0008】
また、特許文献3においては、ビードカット前の、移動中の素管の溶接部にスリット光を照射して得られる光切断プロフィールを光学的にそれぞれ受像し、得られた光切断プロフィール受像信号から前記溶接部のビードの立上り位置を基準とする前記ビードの最大高さの3/4〜1/3の範囲内の所定高さに該当する前記ビードの表面位置を検出し、かくして得られた前記所定高さに該当する前記ビードの表面位置における前記立上り位置からの水平距離と前記所定高さとに基づいて、前記溶接部のメタルフロー角度を演算する、電縫溶接管の溶接部メタルフロー角度測定方法が提案されている。
【0009】
【特許文献3】
特公昭60−25234号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示のような接触式ローラーと速度計を併用した場合、ビードの高さが長手方向にほぼ一定でその凹凸が比較的急峻であることが必要であり、ビードの凹凸が非常に滑らかな場合やビードの高さが低い場合、ビードの高さが長手方向に一定でない場合などには正確な検出ができないという問題があった。
【0011】
また、特許文献2においては、溶接ビードの形が台形であるとみなして、その幅と高さの比とメタルフロー角度の関係が実験式に基づく形状指数演算回路によって算出されることになっているが、近年の溶接技術の進歩によりビードの立上がり角度は小さくなっており、また板厚や用途などによっても最適とされる立上がり角度が変化するので、それぞれの場合に検量線を実験的に求め切り替えて運用するのは非常に煩雑になる、という問題があった。
【0012】
また、特許文献3においては、前述の問題に加えて、ビードの高さの3/4、1/3でのビード幅の情報を利用しているために、ビードの形状が3角形や台形から外れた形状の場合、例えば、高さの1/3〜3/4の部分が垂直である場合には、メタルフロー演算の分母がゼロとなって演算結果が異常になってしまう、という問題があった。
【0013】
また、溶接ビード部を含む管の横断方向(軸と垂直方向の)形状を検出し、その微分値によってビード位置や立上がり角度を算出する方法も考えられるが、このような方法では、検出した形状データにノイズが乗っている場合に、微分演算によりそれが強調され、ビード形状の誤検出や立上がり角算出の誤差が大きくなってしまう、という問題があった。
【0014】
この発明は、以上説明してきたような従来技術の問題を解決すべくなされたもので、光切断法により検出される電縫溶接管の形状データから、精度よくビード形状を検出することを課題とするものである。
【0015】
【課題を解決するための手段】
請求項1の発明は、電縫溶接管の溶接によるビード部を含む管表面にスリット光を照射あるいは点状光を走査し、前記ビード部を含む管表面に照射されたスリット光の像あるいは走査された点状光の軌跡の像を前記スリット光の照射方向と異なる角度から撮像して得られる画像に所定の画像処理を施すことにより該電縫溶接管のビード形状を検出する電縫溶接管のビード形状検出方法において、画像処理の結果算出したビード部を含む管表面の形状データに対し、予め設定したビード部左右両端の境界と、別途算出したビード部の頂点位置とにより、ビード部に相当する部分の管表面の形状データを求め、該ビード部に相当する部分の管表面の形状データを左右2つの領域に分け、左右それぞれの形状データについて、円弧、多項式、線分の集合体のいずれかの関数により近似して左右それぞれのビード形状の近似関数を求め、さらに、ビード部を含む管表面の形状データからビード部に相当する部分の管表面の形状データを除いた素管形状データについて、関数により近似して素管形状の近似関数を求め、前記左右それぞれのビード形状の近似関数 L (x)、f R (x)および素管形状の近似関数 p (x)の交点の電縫溶接管横断方向位置x L ’,x R ’を算出し、少くともビードの幅、高さ、立上がり角、ビード部と素管部の左右境界の段差のいずれか一つを次の定義に従って算出することにより前記課題を解決したものである。
・ビードの幅:前記x L ’,x R ’の間隔
・ビードの高さ:ビード頂点の電縫溶接管横断方向位置におけるビード部を含む管表面の形状データと素管形状の近似関数f p (x)の値の差
・ビードの立上がり角:前記x L ’,x R ’それぞれにおける、前記左右それぞれのビード形状の近似関数f L (x)、f R (x)と前記素管形状の近似関数f p (x)の微分係数により定義される傾きの逆正接
・ビード部と素管部の左右境界の段差:前記x L ’,x R ’それぞれにおけるビード形状の近似関数f L (x)、f R (x)と素管形状の近似関数f p (x)の値の差
【0016】
請求項2の発明は、請求項1の発明において、前記線分の集合体で定義される左右それぞれのビード形状の近似関数を、線分が切り替わる位置、それぞれの線分の傾きと切片をパラメータとして、前記左右それぞれのビード形状の近似関数と、前記ビード部を含む管表面の形状データとの誤差とを最小とするように算出することを特徴とするものである。
【0020】
請求項の発明は、電縫溶接管の溶接部を含む管表面にスリット光を照射あるいは点状光を走査する投光手段と、前記投光手段から前記溶接部を含む管表面に照射された像を前記投光手段と異なる角度から撮像する撮像手段と、前記撮像手段により得られる画像に所定の画像処理を施すことにより該電縫溶接管のビード形状を算出するビード形状算出手段と、前記ビード形状算出手段により算出されたビード形状データに基いて、ビードの頂点位置およびビード部とビード部を除いた素管部との境界位置をそれぞれ算出する頂点位置設定回路およびビード範囲設定回路と、前記頂点位置設定回路およびビード範囲設定回路の出力する頂点位置および該頂点位置を挟んだ左右の境界位置に基いて、円弧、多項式、線分の集合体のいずれかを用いて左右それぞれのビード形状の近似関数 L (x)、f R (x)を算出するビード形状近似回路と、前記ビード範囲設定回路の出力する左右の境界位置より外側の素管形状データに基いて、素管形状の近似関数 p (x)を算出する素管形状近似回路と、前記ビード形状近似回路が出力する左右それぞれのビード形状の近似関数 L (x)、f R (x)と、素管形状近似回路が出力する素管形状の近似関数 p (x)との交点の電縫溶接管横断方向位置x L ’,x R を、左右の境界位置として再設定するビード範囲再設定回路と、前記ビード範囲設定回路、ビード形状近似回路、素管形状近似回路のそれぞれの出力に基づいて、少くともビードの幅、高さ、立上がり角、ビード部と素管部の左右境界の段差のいずれか一つを次の定義に従って算出する特徴量算出回路と、を備えたことを特徴とする、電縫溶接管のビード形状検出装置を提供するものである。
・ビードの幅:前記x L ’,x R ’の間隔
・ビードの高さ:ビード頂点の電縫溶接管横断方向位置におけるビード部を含む管表面の形状データと素管形状の近似関数f p (x)の値の差
・ビードの立上がり角:前記x L ’,x R ’それぞれにおける、前記左右それぞれのビード形状の近似関数f L (x)、f R (x)と前記素管形状の近似関数f p (x)の微分係数により定義される傾きの逆正接
・ビード部と素管部の左右境界の段差:前記x L ’,x R ’それぞれにおけるビード形状の近似関数f L (x)、f R (x)と素管形状の近似関数f p (x)の値の差
【0021】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施形態について説明する。
【0022】
図1は、本発明にかかる電縫溶接管のビード形状検出装置の構成例を示す概略図である。図1において、200は電縫管、10は投光手段、20は撮像手段、30はビード形状算出手段、40はデータ処理装置、50は表示装置である。
【0023】
前記投光手段10としては、レーザーやランプ等の発光素子が放射する光をシリンドリカルレンズ等で平面状に収束させたスリット光源か、照射位置で点状に収束するような光をミラー等で幅方向に走査するような走査点光源を用いればよいが、好適には半導体発光素子(LED)とレンズ系を一体にした小型のスリット光源を用いるのが望ましい。スリットの幅も溶接ビードの高さに比べ十分小さいことが望ましく、好適には50μm以下であることが望ましいが、最終的には被測定部位の形状は後述の画像処理により1本の線として算出されるのでこれは必須ではない。
【0024】
前記撮像手段20としては、ITVカメラやPSD(光学的位置検出素子)を利用することができるが、後続の画像処理装置へのデータ変換を考慮すると、CCDカメラを用いるのが好適である。また、図では省略しているが、照射光を結像させるためのレンズ系、受光光量を適切な範囲に調節する絞りやシャッター機構などは一般的に適切なものを選択して装着させればよい。ここで、投光手段10として点光源を走査させる形式を採用した場合には、光が少なくとも1回は幅方向の全範囲を照射する間は露光させることが必要となる。この条件を満たし、かつ走査が完了する間に管およびビード形状がほぼ定常であれば、採取された画像はスリット光の場合も点光源走査の場合も同等となるので、以下ではスリット光源の場合のみを説明する。
【0025】
前記投光手段10からの光の入射角αおよび撮像手段20の配置角度βは、(α+β)が略90°であることが望ましく、カメラの画素数および視野は、ビード部の幅および必要な分解能に基づいて決定すればよい。本発明では投光手段10からのスリット光の照射角度α=60°、撮像角度β=30°、視野の範囲を幅×高さ=(25mm×20mm)、画素数は横×縦=640×480画素を好適値として用いた。これにより、高さ方向の分解能は、
20/480*cos(60°)/sin(60°+30°)=0.0209(mm)
また、幅方向の分解能は
25/640=0.0391(mm)
となり、本実施例においては、幅方向(管横断方向)40μm、高さ方向(管軸方向)20μmの分解能でビード形状を検出可能である。
【0026】
前記ビード形状算出手段30は、スリット光の像を適切な画像処理手段により1本の線にし、次に投光手段10および撮像手段20の配置から決まる幾何計算によりビード形状(プロフィール)を算出するものである。ここで、プロフィールとは、電縫溶接管の内面または外面の輪郭形状のことで、ビード部を含む管表面の形状データは、その一部を切り取ったものである。また、画像処理手段としては一般に細線化処理を行えるものとして知られているものを用いればよいが、好適には発明者らが特願2002−128497において提案した細線化手段を用いるのが望ましい。
【0027】
前記データ処理装置40は、図2に、その内部構成を示す如く、頂点位置設定回路100と、ビード範囲設定回路110と、ビード形状近似回路120と、素管形状近似回路130と、ビード範囲再設定回路140と、特徴量算出回路150とを備えている。
【0028】
以下、データ処理装置40内部の各部について説明する。
【0029】
前記頂点位置設定回路100は、前記のようにして算出されるビード部を含む管表面の形状データからビードの頂点位置を設定する。これは作業者がビード部を含む管表面の形状データから判断して手入力しても良いが、より好適には、ビード部を含む管表面の形状データの中で高さの最大値を示す位置を求めればよい。さらに、適宜加重平均等の演算による処理を加えて算出するようにしてもよい。
【0030】
前記ビード範囲設定回路110は、同じく前記のようにして算出されるビード部を含む管表面の形状データからビード範囲を設定する。これも、作業者がビード部を含む管表面の形状データから判断してビード部左右両端の境界を手入力し、左右両境界の中間に相当する領域をビード範囲として設定しても良く、あるいは特許文献3に開示されているように隣接する形状データの差に基づいて立上がり位置を検出するようにしてもよいが、より好適には、頂点位置設定回路100が出力するビードの頂点位置を中心として予め設定するビード幅を半分づつ振り分けるか、発明者らが特願2002−277802にて提案している、電縫溶接管の溶接ビード形状検出方法に開示した方法に従って設定するのが良い。
【0031】
前記ビード形状近似回路120は、前記のように設定するビード範囲を頂点の左側xl<x<xc、右側xc<x<xrの2つに分け、それぞれの範囲におけるビード部の形状を所定の関数で近似し、その関数をビード部の左右それぞれの形状について決定するものである。その好適な方法については下記の実施例の動作の項で説明する。
【0032】
前記素管形状近似回路130は、前記のようにして設定したビード範囲の形状データを、ビード部を含む管表面の形状データから除いた管表面の形状データと、冪関数等の所定の形の関数で近似しその関数の各係数等具体的パラメータを算出するものである。その好適な方法については下記の実施例の動作の項で説明する。
【0033】
前記ビード範囲再設定回路140は、上記のようにして決定された左右それぞれのビード形状の近似関数、素管形状の近似関数の値が交差する位置をビード部と素管部の境界位置として認識し直すものであり、関数値演算回路と比較器から構成することができる。
【0034】
前記特徴量検出回路150は、上記のように算出したビード範囲、頂点位置、左右それぞれのビード形状の近似関数、素管形状の近似関数、ビード部を含む管表面の形状データより、ビードの幅、高さ、左右の立上がり角、左右のビード部と素管部の境界の段差を算出するものである。
【0035】
前記表示装置50は、前記特徴量検出回路150が検出するビード形状の特徴量を表示する。これはそれぞれの値を数値や棒グラフで時々刻々更新して表示しても良いが、好適にはビード部を含む管表面の形状データやそれぞれの特徴量をタイムチャートとして表示するのもよい。
【0036】
また、前記特徴量検出回路150の出力を図示しない通信ポートや外部出力回路により、これも図示しないレコーダーやビジネスコンピュータ等に適切な時間間隔で出力し、データを蓄積するようにしてもよい。
【0037】
次に、本実施例の動作について説明する。
【0038】
図3は、撮像手段20が撮像した、ビード部を含む管表面の範囲をカバーする投光手段であるスリット光源10の光切断像であり、これをビード形状算出手段30により細線化処理して表示装置50上の座標に変換した結果が、図4のようなビード部を含む管表面の形状データである。図4に書き込んだ矢印は、それぞれ頂点位置設定回路100、ビード範囲設定回路110が算出したビード範囲、頂点位置のx座標を示している。本実施例において頂点位置算出は、ビード部を含む管表面の形状データ列(xi,zi)(i=0,…,N−1)に対して所定のビード範囲を定義域とするビード部を含む管表面形状データ(xi,zi)(i=iL,…,iR)の加重平均
【数1】

Figure 0004374845
により、xc=−0.0781と算出した値を用い、ビード範囲の設定は予め設定した概略のビード幅W0=4mmを用いて、
L=xc−W0/2=−2.0781mm
R=xc+W0/2=1.9029mm
とした。ここで、iL,iRはそれぞれビード範囲の左端、右端に相当する形状データのアドレスである。また、以下で用いるicは、前記のように求められたxcに相当する形状データ列のアドレスである。
【0039】
ビード形状近似回路120は、前記のようにして設定したビードの左半分(左側の境界x=xiLから頂点x=xicまで)、右半分(頂点x=xicから右側の境界x=xiRまで)について、下記のEL、ERをそれぞれ最小化する関数fL(x)を算出する。
【0040】
【数2】
Figure 0004374845
【0041】
ここで、左半分と右半分で以下に説明する処理は同じになるため、以降、代表して、和記号等はビードの左側半分についてだけ説明する。また、ビード部の左右それぞれの形状データの近似関数としては、円弧、多項式等を用いても良いが、本実施例では好適例として、次のように定義される線分の集合体を用いた。
【0042】
【数3】
Figure 0004374845
【0043】
ただし、nは線分の本数であり、iP1,…,iPnはiL<iP1<…<iPj<…<iPn-1<iCを満たす連結点(線分が切り替わる位置)のアドレスである。連結点の個数、すなわち線分の本数は任意に設定してよいが、演算時間を考慮して本実施例ではn=2とした。従って、本実施例では連結点が1つであるので、以降ではp1はpと添字を省略して表記することがある。
【0044】
さて、この場合、fL(x)を算出するには、aL1、bL1、aL2、bL2、xp1の5つのパラメータに関するEの最小値問題を解くことになるが、これは下記のようなステップに分けることにより算出できる。
【0045】
(1)まずxを固定して、その場合についてのaL1、bL1、aL2、bL2を算出する。その場合、データの集合(x,z)に対する直線の最小二乗回帰であるから代数的に求めることができ、
【数4】
Figure 0004374845
である。
【0046】
(2)上記で算出したaL1、bL1、aL2、bL2を用いて、x=xpの場合の近似誤差E(xp)を算出する。
【0047】
【数5】
Figure 0004374845
【0048】
(3)上記の(1)、(2)の演算をすべての
【数6】
Figure 0004374845
に対して実行し、E(xip)が最小となるxipが求める連結点である。
【0049】
(4)上記で算出したxipに対応したfL(x)を、当該ビード部を含む管表面の形状の近似関数とする。
【0050】
(5)頂点位置よりも右側のビード形状の近似関数についても同様に、上記の(1)〜(4)において、iをiに、iをiにおきかえて同様の演算を実行すればよい。
【0051】
そして、図5は、図4のビード部を含む管表面の形状データのうちの頂点位置よりも左側の形状データに関して、各xpと上記近似誤差E(xp)の関係をプロットした例であるが、図のようにxp=−0.7031において最小値をとっており、これにより、当該左側のビード形状の近似関数を、
【数7】
Figure 0004374845
と決定できる。
【0052】
素管形状近似回路130は、ビード部を含む管表面の形状データのうち、ビード部を除く範囲に対して、近似関数fP(x)を算出する。この近似関数fP(x)としては、円、楕円を用いてもよいが、冪関数、中でも2次以上の偶数次多項式を近似曲線として用いるのが好ましい。
【0053】
図6は、この根拠を説明するために、円の上半分の曲線を2次、4次、6次、8次の多項式で回帰した場合の多項式の次数と近似誤差のRMS(二乗平均の平方根)の関係を表したグラフであり、図より、2次以上の偶数次多項式、好適には4次以上の偶数次多項式により、楕円の形状を十分な精度で回帰できることが示されている。したがって本実施例では4次関数で近似を行うこととした。具体的には、図4のビード部を含む管表面の形状データの座標範囲
【数8】
Figure 0004374845
に関して、次のように定義される誤差の二乗和
【数9】
Figure 0004374845
が最小となる4次関数
【数10】
Figure 0004374845
の係数を算出する。これは代数的に解くことができて、
【数11】
Figure 0004374845
により算出する(ただし、inv(A)は行列Aの逆行列を表す)。本実施例においては、上式により、
p(x)=1.60921+0.055776x−0.02129x2−0.00015x3+0.000057x4
と算出できた。
【0054】
ビード範囲再設定回路140は、上記のようにして算出した左右それぞれのビード形状の近似関数fL(x)、fR(x)、および素管形状の近似関数fp(x)の交点を算出し、算出された左右両交点の中間に相当する領域を新たなビード範囲(xL’,xR’)として出力する。
【0055】
本実施例において算出されたfL(x)、fR(x)、fp(x)は図7のようになり、ビード範囲再設定回路は、
L =−2.2266、xR =3.5938
を出力した。なお、図7において破線でプロットされているのは、図4と同じビード部を含む管表面の形状データである。
【0056】
特徴量検出回路150は、上記のように算出したビード範囲、頂点位置、左右それぞれのビード形状の近似関数、素管形状の近似関数、ビード部を含む管表面形状データより、ビードの高さH、幅W、左右のビード部の立上がり角度θL、θR、左右のビード部の境界の段差Δを算出する。
【0057】
それぞれの特徴量の好適な決定方法として、本実施例では、
・ビードの幅W:ビード範囲再設定回路が出力する左右のビード境界の管周方向位置の間隔
・ビードの高さH:ビード頂点位置におけるビード部を含む管表面の形状データと素管形状の近似関数の値の差
・ビードの立上がり角θL、θR:左右それぞれのビード形状の近似関数と素管形状の近似関数の境界における微分係数により定義されるそれぞれの傾きの逆正接・ビード部と素管部の左右境界の段差Δ:ビード範囲再設定回路140が出力する左右のビード境界位置における左右それぞれのビード形状の近似関数と素管形状の近似関数の値の差
なる定義に従って算出した。
【0058】
ビードの立上がり角の算出方法について更に詳細に説明する。一例として、左側のビードの立上がり角の算出手順を説明すると、上記素管形状の近似関数fp(x)および左側のビード形状の近似関数fL(x)のx=xiLにおける傾きベクトルνP,νL
【数12】
Figure 0004374845
であるから、両者のなす角θLに関して、
【数13】
Figure 0004374845
により、θLを算出する。
【0059】
θRについても、上記と同様にして算出する。
【0060】
本実施例においては、上記のような定義により、
ビードの幅(mm) W=xR −xL =5.8204
ビードの高さ(mm) H=Z(xc)−fp(xc)=2.9150
左側ビードの立上がり角度(deg) θL=38.335
右側ビードの立上がり角度(deg) θR=21.392
左右ビード境界の段差(mm) Δ=|fp(x)−fp(xR)|=0.1576
と算出できた。
【0061】
【発明の効果】
本発明によれば、光学的手法によって検出するビード部を含む管表面の形状データに基いて電縫溶接管のビード形状の特徴量を算出するようにしたので、溶接部の透磁率変化の影響等を受けずにビード形状を検出することができる。
【0062】
また、ビードの立上がり角が急峻であるとか、ビードの形状が台形であるといった仮定を行わずに、ビード形状の特徴量を算出するようにしたので、ビードの立ち上がりが非常に滑らかな場合やビードの高さが低い場合、ビードの高さが長手方向でばらついている場合、あるいはビード形状が三角形や台形から外れた場合や切り立っているような場合でも、正確にビード形状を検出することができる。
【0063】
さらに、本発明によれば、ビード形状データの微分演算を行うことなくビード形状の特徴量を算出するようにしたので、形状データにぎざぎざ状のノイズが乗っているような場合でも、その影響を受けず、また、ビード位置の誤検出や立上がり角算出の誤差が大きくなることなく正確にビード形状を検出することができる等、電縫管の溶接ビード形状の特徴量定量化において優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明にかかる電縫溶接管のビード形状検出装置の要部の構成を示す概略図
【図2】ビード形状算出手段を構成する回路群の構成を示すブロック図
【図3】ビード部を含む電縫管表面の光切断画像の例を示す図
【図4】本発明にかかる光切断画像を細線化処理したビード部を含む電縫管表面の形状データを示す図
【図5】図4のビード部を含む管表面の形状データのうちの頂点位置よりも左側の形状データに関して、各xpと上記近似誤差E(xp)の関係をプロットした図
【図6】円の上半分の曲線を2次、4次、6次、8次の多項式で回帰した場合の多項式の次数と近似誤差のRMS(二乗平均の平方根)の関係を表した図
【図7】本発明にかかるビード形状検出方法の実施例において、ビード形状近似回路が算出した左右のビード形状の近似関数fL(x)、fR(x)、および素管形状近似回路が算出した素管形状の近似関数fp(x)を、ビード部を含む管表面の形状データとともにプロットした図
【符号の説明】
10…投光手段(光源)
20…撮像手段(カメラ)
30…ビード形状算出手段
40…データ処理装置
50…表示装置
100…頂点位置設定回路
110…ビード範囲設定回路
120…ビード形状近似回路、
130…素管形状近似回路
140…ビード範囲再設定回路
150…特徴量算出回路
200…電縫管
210…溶接ビード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for detecting a bead shape of an electric resistance welded pipe.
[0002]
[Prior art]
In general, ERW welded pipe (hereinafter referred to as “ERW pipe” for short in the text), for example, ERW steel pipe is formed by forming a metal band (including a metal plate) such as a steel band into a tubular shape. While being conveyed in the longitudinal direction, both width ends of the metal strip such as the steel strip are continuously butt welded in the longitudinal direction by means such as high frequency induction heating pressure welding or resistance heating pressure welding.
[0003]
In the welded portion of the electric resistance welded pipe, a bulge by pressure welding, that is, a weld bead (hereinafter, also referred to as “bead” for short) occurs on the inner and outer surfaces of the pipe. Although this bead is cut in the course of pipe manufacture, it is conventionally known that the raised shape (width, height, etc.) of this bead before cutting is related to the weld strength at the final product stage. For this reason, conventionally, in the welding process, the worker adjusts the welding current and the like while visually observing the bead after welding. Since it is left to the subjectivity, there is a problem that differences between workers and temporal variations occur, and universality and reproducibility deteriorate. For this reason, attempts have been made to automatically measure the bead shape by various methods. As for the invention relating to a conventional method or apparatus for detecting a welded bead of steel pipe, a mechanical method, an optical method and the like have been proposed.
[0004]
As a mechanical method, for example, Patent Document 1 proposes a method of detecting runout of an outer surface welded portion of a traveling pipe with a contact roller.
[0005]
[Patent Document 1]
Japanese Examined Patent Publication No. 59-2593 [0006]
As an optical method, as disclosed in Patent Document 2, a light cutting profile obtained by irradiating slit light to a moving raw tube before bead cutting is optically received and obtained. An electric resistance welded tube that detects the width and height of the weld bead from the received optical cutting profile image signal and calculates the metal flow angle of the weld based on the detected width and height of the bead thus obtained. A metal flow angle measurement method has been proposed.
[0007]
[Patent Document 2]
Japanese Patent Publication No. 60-7586 [0008]
Moreover, in patent document 3, the optical cutting profile obtained by irradiating slit light to the welding part of the moving raw pipe before bead cutting is optically received, respectively, and the obtained optical cutting profile image receiving signal is received. The surface position of the bead corresponding to a predetermined height within a range of 3/4 to 1/3 of the maximum height of the bead relative to the rising position of the weld bead is detected, and thus obtained A weld metal flow angle measurement of an ERW weld pipe that calculates a metal flow angle of the weld based on a horizontal distance from the rising position at the surface position of the bead corresponding to a predetermined height and the predetermined height. A method has been proposed.
[0009]
[Patent Document 3]
Japanese Patent Publication No. 60-25234 [0010]
[Problems to be solved by the invention]
However, when a contact-type roller as disclosed in Patent Document 1 and a speedometer are used in combination, the height of the bead needs to be substantially constant in the longitudinal direction and the unevenness thereof is relatively steep. There is a problem that accurate detection cannot be performed when the surface is very smooth, the bead height is low, or the bead height is not constant in the longitudinal direction.
[0011]
Further, in Patent Document 2, it is assumed that the shape of the weld bead is a trapezoid, and the relationship between the width / height ratio and the metal flow angle is calculated by a shape index calculation circuit based on an empirical formula. However, due to recent advances in welding technology, the bead rise angle has become smaller, and the optimum rise angle varies depending on the plate thickness and application, so a calibration curve is experimentally obtained in each case. There is a problem that it is very complicated to switch and operate.
[0012]
In addition, in Patent Document 3, in addition to the above-mentioned problems, information on the bead width at 3/4 and 1/3 of the height of the bead is used. In the case of a deviated shape, for example, when 1/3 to 3/4 of the height is vertical, the denominator of the metal flow calculation becomes zero and the calculation result becomes abnormal. there were.
[0013]
In addition, a method of detecting the transverse direction (perpendicular to the axis) shape of the tube including the weld bead and calculating the bead position and rising angle based on the differential value is also conceivable, but in such a method, the detected shape When noise is added to the data, there is a problem that it is emphasized by the differential operation, and the error in detecting the bead shape and calculating the rising angle becomes large.
[0014]
The present invention has been made to solve the problems of the prior art as described above, and it is an object to accurately detect the bead shape from the shape data of the ERW weld pipe detected by the optical cutting method. To do.
[0015]
[Means for Solving the Problems]
According to the first aspect of the present invention, an image or scanning of the slit light irradiated on the surface of the tube including the bead portion by irradiating the surface of the tube including the bead portion by the welding of the ERW welded tube or scanning the spot light. An electric-welded welded pipe that detects the bead shape of the electric-welded welded pipe by performing predetermined image processing on an image obtained by capturing an image of the locus of the spotted light from an angle different from the irradiation direction of the slit light In the bead shape detection method, the shape data of the tube surface including the bead portion calculated as a result of the image processing is set in the bead portion based on the predetermined boundary between the left and right ends of the bead portion and the vertex position of the bead portion calculated separately. obtains the shape data of the corresponding portion of the tube surface, divided shape data of the tube surface of a portion corresponding to the bead portion into two left and right regions, the left and right about the shape data, arcs, polynomials, the line segment Obtains an approximate function of each bead shape lateral approximated by a function of either polymer, further, base tube except for the shape data of the pipe surface of the portion corresponding to the bead portion from the shape data of the pipe surface including bead portion The shape data is approximated by a function to obtain an approximate function of the tube shape, and the left and right bead shape approximate functions f L (x) and f R (x) and the tube shape approximate function f p (x) Calculate the crosswise position x L ', x R ' of the cross-section of the ERW welded pipe , and at least one of the width, height, rising angle of the bead and the step between the left and right boundaries between the bead and the base pipe The problem is solved by calculating according to the following definition .
・ Bead width: the distance between the above x L 'and x R '
・ Bead height: difference between the shape data of the pipe surface including the bead and the approximate function f p (x) of the pipe shape at the position in the cross direction of the ERW weld pipe at the apex of the bead
• Rise angle of the bead: the approximate functions f L (x) and f R (x) of the left and right bead shapes in the x L ′ and x R and the approximate function f p (x) of the tube shape The arc tangent of the slope defined by the derivative of
Step difference at the left and right boundary between the bead part and the raw pipe part: the approximate functions f L (x) and f R (x) of the bead shape and the approximate function f p (x of the raw pipe shape in each of the above x L ′ and x R ) Difference in value [0016]
According to a second aspect of the present invention, in the first aspect of the invention, the left and right bead-shaped approximate functions defined by the assembly of the line segments , the position at which the line segments are switched , the slope and intercept of each line segment are parameters. As described above, calculation is performed so as to minimize an error between the approximate function of the left and right bead shapes and the shape data of the tube surface including the bead portion.
[0020]
According to a third aspect of the present invention, there is provided light projecting means for irradiating the surface of a tube including a welded portion of an ERW welded tube with slit light or scanning spot light, and the surface of the tube including the welded portion is irradiated from the light projecting means. An image pickup means for picking up the captured image from an angle different from that of the light projecting means, and a bead shape calculation means for calculating a bead shape of the electric resistance welded pipe by applying predetermined image processing to an image obtained by the image pickup means; An apex position setting circuit and a bead range setting circuit for calculating the bead apex position and the boundary position between the bead part and the bare pipe part excluding the bead part based on the bead shape data calculated by the bead shape calculating unit; , based on the output left and right boundary position sandwiching the vertex position and the vertex position of the vertex position setting circuit and a bead range setting circuit, arc, polynomials, one of a collection of line segments using Approximation function f L of left and right bead shape (x), f R and (x) bead shape approximation circuit for calculating a, based on the outside of the base pipe shape data from the left and right boundary position output by the said bead range setting circuit A tube shape approximating circuit for calculating the tube shape approximating function f p (x) , and bead shape approximating functions f L (x) and f R (x) output by the bead shape approximating circuit. The bead range for resetting the crosswise position x L ′, x R of the ERW weld pipe at the intersection with the approximate function f p (x) of the pipe shape output from the pipe shape approximating circuit as the left and right boundary positions Based on the outputs of the reset circuit, the bead range setting circuit, the bead shape approximating circuit, and the tube shape approximating circuit, at least the width, height, rising angle of the bead, and the left and right boundaries between the bead portion and the tube portion Calculate one of the steps according to the following definition: The present invention provides a bead shape detection device for an electric resistance welded pipe, characterized by comprising a feature amount calculation circuit to be output.
・ Bead width: the distance between the above x L 'and x R '
・ Bead height: difference between the shape data of the pipe surface including the bead and the approximate function f p (x) of the pipe shape at the position in the cross direction of the ERW weld pipe at the apex of the bead
• Rise angle of the bead: the approximate functions f L (x) and f R (x) of the left and right bead shapes in the x L ′ and x R and the approximate function f p (x) of the tube shape The arc tangent of the slope defined by the derivative of
Step difference at the left and right boundary between the bead part and the raw pipe part: the approximate functions f L (x) and f R (x) of the bead shape and the approximate function f p (x of the raw pipe shape in each of the above x L ′ and x R ) Value difference [0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a schematic view showing a configuration example of a bead shape detection device for an electric resistance welded pipe according to the present invention. In FIG. 1, 200 is an electric sewing tube, 10 is a light projecting means, 20 is an imaging means, 30 is a bead shape calculating means, 40 is a data processing device, and 50 is a display device.
[0023]
The light projecting means 10 is a slit light source in which light emitted from a light emitting element such as a laser or a lamp is converged in a planar shape by a cylindrical lens or the like, or a light that converges in a point shape at an irradiation position by a mirror or the like. A scanning point light source that scans in the direction may be used, but it is preferable to use a small slit light source in which a semiconductor light emitting element (LED) and a lens system are integrated. It is desirable that the slit width is also sufficiently small compared to the height of the weld bead, preferably 50 μm or less, but ultimately the shape of the part to be measured is calculated as a single line by image processing described later. This is not essential.
[0024]
As the imaging means 20, an ITV camera or PSD (optical position detection element) can be used, but it is preferable to use a CCD camera in consideration of data conversion to a subsequent image processing apparatus. Although not shown in the figure, a lens system for imaging the irradiated light, an aperture and a shutter mechanism for adjusting the amount of received light to an appropriate range, etc. are generally selected and mounted. Good. Here, when the point light source is scanned as the light projecting means 10, it is necessary to expose the light while irradiating the entire range in the width direction at least once. If this condition is met and the tube and bead shape are almost stationary while scanning is completed, the collected images will be the same for both slit light and point light source scanning. I will explain only.
[0025]
The incident angle α of the light from the light projecting means 10 and the arrangement angle β of the imaging means 20 are preferably (α + β) being approximately 90 °, and the number of pixels and the field of view of the camera are the width of the bead portion and What is necessary is just to determine based on required resolution. In the present invention, the slit light irradiation angle α from the light projecting means 10 = 60 °, the imaging angle β = 30 °, the field of view width × height = (25 mm × 20 mm), and the number of pixels is horizontal × vertical = 640 ×. 480 pixels were used as the preferred value. As a result, the resolution in the height direction is
20/480 * cos (60 °) / sin (60 ° + 30 °) = 0.0209 (mm)
The resolution in the width direction is
25/640 = 0.0391 (mm)
Thus, in this embodiment, the bead shape can be detected with a resolution of 40 μm in the width direction (cross-tube direction) and 20 μm in the height direction (tube axis direction).
[0026]
The bead shape calculating means 30 converts the slit light image into one line by an appropriate image processing means, and then calculates a bead shape (profile) by geometric calculation determined from the arrangement of the light projecting means 10 and the imaging means 20. Is. Here, the profile is the contour shape of the inner surface or the outer surface of the ERW welded tube, and the shape data of the tube surface including the bead portion is a part of the profile data. As the image processing means, those generally known as those capable of performing thinning processing may be used. However, it is preferable to use the thinning means proposed by the inventors in Japanese Patent Application No. 2002-128497.
[0027]
As shown in FIG. 2, the data processor 40 includes a vertex position setting circuit 100, a bead range setting circuit 110, a bead shape approximating circuit 120, a tube shape approximating circuit 130, and a bead range re-setting circuit. A setting circuit 140 and a feature amount calculation circuit 150 are provided.
[0028]
Hereinafter, each part in the data processing device 40 will be described.
[0029]
The apex position setting circuit 100 sets the apex position of the bead from the shape data of the tube surface including the bead portion calculated as described above. This may be manually input by the operator judging from the shape data of the tube surface including the bead portion, but more preferably the maximum value of the height is indicated in the shape data of the tube surface including the bead portion. Find the position. Furthermore, the calculation may be performed by appropriately adding processing by calculation such as a weighted average.
[0030]
The bead range setting circuit 110 sets the bead range from the shape data of the tube surface including the bead portion calculated in the same manner as described above. Alternatively, the operator may manually input the boundary between the left and right ends of the bead portion based on the shape data of the pipe surface including the bead portion, and set an area corresponding to the middle between the left and right boundaries as the bead range. As disclosed in Patent Document 3, the rising position may be detected based on the difference between adjacent shape data. More preferably, the vertex position of the bead output by the vertex position setting circuit 100 is centered. The bead width set in advance may be divided by half, or may be set in accordance with the method disclosed in the method for detecting the weld bead shape of an electric resistance welded pipe proposed by the inventors in Japanese Patent Application No. 2002-277802.
[0031]
The bead shape approximating circuit 120 divides the bead range set as described above into two of the left side x l <x <x c and the right side x c <x <x r of the apex, and the shape of the bead portion in each range Is approximated by a predetermined function, and the function is determined for each of the left and right shapes of the bead portion. The preferred method will be described in the operation section below.
[0032]
The raw tube shape approximating circuit 130 is obtained by removing the shape data of the bead range set as described above from the shape data of the tube surface including the bead portion, and a predetermined shape such as a power function. It approximates with a function and calculates specific parameters such as each coefficient of the function. The preferred method will be described in the operation section below.
[0033]
The bead range reset circuit 140 recognizes the position at which the values of the approximate function of the left and right bead shapes determined as described above and the approximate function of the tube shape intersect as the boundary position between the bead portion and the tube portion. It can be constructed again from a function value arithmetic circuit and a comparator.
[0034]
The feature amount detection circuit 150 calculates the bead width from the bead range, apex position, right and left bead shape approximation functions, the tube shape approximation function, and the tube surface shape data including the bead portion calculated as described above. , Height, left and right rising angles, and steps at the boundaries between the left and right bead portions and the raw tube portion.
[0035]
The display device 50 displays bead-shaped feature values detected by the feature value detection circuit 150. This may be displayed by updating each value with a numerical value or a bar graph from time to time, but it is preferable to display the shape data of the tube surface including the bead portion and each feature amount as a time chart.
[0036]
Further, the output of the feature amount detection circuit 150 may be output to a recorder or business computer (not shown) at a suitable time interval by a communication port or external output circuit (not shown), and data may be accumulated.
[0037]
Next, the operation of this embodiment will be described.
[0038]
FIG. 3 is a light cut image of the slit light source 10 that is the light projecting means that covers the range of the tube surface including the bead portion, which is picked up by the image pickup means 20, and this is thinned by the bead shape calculation means 30. The result of conversion into coordinates on the display device 50 is the shape data of the tube surface including the bead portion as shown in FIG. The arrows written in FIG. 4 indicate the x-coordinates of the bead range and the vertex position calculated by the vertex position setting circuit 100 and the bead range setting circuit 110, respectively. In this embodiment, the vertex position calculation is performed with a bead having a predetermined bead range as a defined area for the shape data string (x i , z i ) (i = 0,..., N−1) of the tube surface including the bead portion. Weighted average of tube surface shape data (x i , z i ) (i = i L ,..., I R ) including the part
Figure 0004374845
Accordingly, the value calculated as x c = −0.0781 is used, and the bead range is set using a preset bead width W 0 = 4 mm.
x L = x c −W 0 /2=−2.0781 mm
x R = x c + W 0 /2=1.9029mm
It was. Here, i L and i R are the addresses of the shape data corresponding to the left end and the right end of the bead range, respectively. Further, the i c used in the following, the address of shape data string corresponding to the determined as x c.
[0039]
The bead shape approximating circuit 120 includes the left half of the bead set as described above (from the left boundary x = xiL to the vertex x = x ic ) and the right half (from the vertex x = x ic to the right boundary x = x). For up to iR ), a function f L (x) that minimizes the following E L and E R is calculated.
[0040]
[Expression 2]
Figure 0004374845
[0041]
Here, since the processing described below is the same for the left half and the right half, only the left half of the bead will be described below as a representative example. In addition, as an approximation function of the shape data on the left and right sides of the bead portion, an arc, a polynomial, or the like may be used. However, in this embodiment, a set of line segments defined as follows is used as a preferred example. .
[0042]
[Equation 3]
Figure 0004374845
[0043]
Here, n is the number of line segments, and i P1 ,..., I Pn is a connection point satisfying i L <i P1 <... <i Pj <... <i Pn-1 <i C (position where the line segment switches). Address. The number of connection points, that is, the number of line segments may be set arbitrarily, but n = 2 in this embodiment in consideration of the calculation time. Therefore, in this embodiment, since there is one connecting point, hereinafter, p1 may be expressed by omitting p and the subscript.
[0044]
In this case, in order to calculate f L (x), an E L minimum value problem for five parameters a L1 , b L1 , a L2 , b L2 , and x p1 is solved. It can be calculated by dividing into the following steps.
[0045]
(1) First, xp is fixed, and a L1 , b L1 , a L2 , and b L2 for that case are calculated. In that case, since it is a least-squares regression of a straight line over the data set (x, z), it can be obtained algebraically,
[Expression 4]
Figure 0004374845
It is.
[0046]
(2) Using the a L1 , b L1 , a L2 , and b L2 calculated above, an approximate error E (x p ) when x = x p is calculated.
[0047]
[Equation 5]
Figure 0004374845
[0048]
(3) Perform the above calculations (1) and (2) for all
Figure 0004374845
This is the connection point obtained by x ip that minimizes E (x ip ).
[0049]
(4) Let f L (x) corresponding to x ip calculated above be an approximate function of the shape of the tube surface including the bead portion.
[0050]
(5) Similarly, for the bead-shaped approximation function on the right side of the vertex position, the same calculation is performed by replacing i L with i c and i c with i R in (1) to (4) above. do it.
[0051]
FIG. 5 is an example in which the relationship between each x p and the approximation error E (x p ) is plotted with respect to the shape data on the left side of the apex position among the shape data of the tube surface including the bead portion of FIG. There is a minimum value at x p = −0.7031 as shown in FIG.
[Expression 7]
Figure 0004374845
Can be determined.
[0052]
The raw tube shape approximating circuit 130 calculates an approximate function f P (x) for a range excluding the bead portion in the shape data of the tube surface including the bead portion. As this approximate function f P (x), a circle or an ellipse may be used. However, it is preferable to use a power function, especially a second-order or higher order polynomial as an approximate curve.
[0053]
In order to explain this reason, FIG. 6 shows the order of the polynomial when the upper half curve of the circle is regressed with a second-order, fourth-order, sixth-order, and eighth-order polynomial, and the RMS (square root mean square) of the approximation error. ), And the figure shows that the shape of the ellipse can be regressed with sufficient accuracy by an even-order polynomial of the second or higher order, preferably an even-order polynomial of the fourth or higher order. Therefore, in this embodiment, approximation is performed using a quartic function. Specifically, the coordinate range of the shape data of the tube surface including the bead portion of FIG.
Figure 0004374845
With respect to the sum of squared errors defined as
Figure 0004374845
A quartic function that minimizes
Figure 0004374845
The coefficient of is calculated. This can be solved algebraically,
[Expression 11]
Figure 0004374845
(Where inv (A) represents the inverse of matrix A). In this embodiment, the above formula
f p (x) = 1.60921 + 0.055776x−0.02129x 2 −0.00015x 3 + 0.000057x 4
It was possible to calculate.
[0054]
The bead range reset circuit 140 calculates the intersection of the left and right bead-shaped approximation functions f L (x) and f R (x) and the tube-shaped approximation function f p (x) calculated as described above. An area corresponding to the middle of the calculated left and right intersections is output as a new bead range (x L ', x R ').
[0055]
The f L (x), f R (x), and f p (x) calculated in this embodiment are as shown in FIG. 7, and the bead range reset circuit is
x L ' = -2.2266, x R ' = 3.5938
Was output. In addition, what is plotted with a broken line in FIG. 7 is the shape data of the tube surface including the same bead portion as in FIG.
[0056]
The feature amount detection circuit 150 calculates the bead height H from the bead range, apex position, right and left bead shape approximation functions, the tube shape approximation function, and the tube surface shape data including the bead portion calculated as described above. , The width W, the rising angles θ L and θ R of the left and right bead portions, and the step difference Δ at the boundary between the left and right bead portions.
[0057]
As a preferred method for determining each feature amount, in this embodiment,
The width W of the bead: the interval between the positions in the pipe circumferential direction of the left and right bead boundaries output by the bead range reset circuit. The height H of the bead H: the shape data of the pipe surface including the bead portion at the bead apex position and the shape of the raw pipe shape. Approximate function value difference / bead rise angle θ L , θ R : Inverse tangent / bead part of each slope defined by the differential coefficient at the boundary between the right and left bead shape approximate functions and the tube shape approximate function And the step difference Δ between the left and right boundary of the pipe part: calculated according to the definition of the difference between the values of the approximate function of the right and left bead shapes and the approximate function of the pipe shape at the right and left bead boundary positions output by the bead range reset circuit 140 .
[0058]
The method for calculating the bead rising angle will be described in more detail. As an example, the procedure for calculating the rising angle of the left bead will be described. The slope vector ν of the approximate function f p (x) of the tube shape and the approximate function f L (x) of the left bead shape at x = x iL . P and ν L are given by
Figure 0004374845
Therefore, regarding the angle θ L formed by both,
[Formula 13]
Figure 0004374845
To calculate θ L.
[0059]
θ R is also calculated in the same manner as described above.
[0060]
In this embodiment, the definition as described above,
Bead width (mm) W = x R ' -x L ' = 5.8204
Bead height (mm) H = Z (x c ) −f p (x c ) = 2.9150
Left bead rise angle (deg) θ L = 38.335
Rising angle of right bead (deg) θ R = 21.392
Step difference between left and right bead boundaries (mm) Δ = | f p (x L ) −f p (x R ) | = 0.1576
It was possible to calculate.
[0061]
【The invention's effect】
According to the present invention, the feature amount of the bead shape of the ERW welded pipe is calculated based on the shape data of the surface of the pipe including the bead portion detected by an optical technique. It is possible to detect the bead shape without receiving the above.
[0062]
In addition, since the bead shape feature value is calculated without assuming that the rise angle of the bead is steep or the shape of the bead is trapezoidal, the bead rise is very smooth or The bead shape can be detected accurately even when the bead height is low, when the bead height varies in the longitudinal direction, or when the bead shape deviates from the triangle or trapezoid, .
[0063]
Furthermore, according to the present invention, since the feature value of the bead shape is calculated without performing the differential operation of the bead shape data, the influence is exerted even when jagged noise is on the shape data. In addition, it is possible to accurately detect the bead shape without misdetecting the bead position and increasing the rise angle calculation error. Demonstrate.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a main part of a bead shape detecting device for an electric resistance welded pipe according to the present invention. FIG. 2 is a block diagram showing a configuration of a circuit group constituting a bead shape calculating unit. FIG. 4 is a diagram showing an example of a light cut image on the surface of an electric resistance tube including a portion. FIG. 6 is a graph plotting the relationship between each x p and the above approximate error E (x p ) with respect to the shape data on the left side of the apex position among the shape data of the tube surface including the bead portion in FIG. FIG. 7 is a graph showing the relationship between the degree of a polynomial and the RMS (root mean square) of approximation error when a half curve is regressed with a second-order, fourth-order, sixth-order, and eighth-order polynomial. In the embodiment of the bead shape detection method, the left and right bead values calculated by the bead shape approximation circuit are used. Approximation of de shape function f L (x), f R (x), and approximation function f p of mother tube shaped blank tube shape approximation circuit is calculated (x), plotted along with the shape data of the pipe surface including bead portion Figure 【Explanation of symbols】
10 ... Projection means (light source)
20 ... Imaging means (camera)
30 ... Bead shape calculation means 40 ... Data processing device 50 ... Display device 100 ... Vertex position setting circuit 110 ... Bead range setting circuit 120 ... Bead shape approximation circuit,
130 ... Element shape approximation circuit 140 ... Bead range resetting circuit 150 ... Feature amount calculation circuit 200 ... ERW pipe 210 ... Weld bead

Claims (3)

電縫溶接管の溶接によるビード部を含む管表面にスリット光を照射あるいは点状光を走査し、前記ビード部を含む管表面に照射されたスリット光の像あるいは走査された点状光の軌跡の像を前記スリット光の照射方向と異なる角度から撮像して得られる画像に所定の画像処理を施すことにより該電縫溶接管のビード形状を検出する電縫溶接管のビード形状検出方法において、
画像処理の結果算出したビード部を含む管表面の形状データに対し、予め設定したビード部左右両端の境界と、別途算出したビード部の頂点位置とにより、ビード部に相当する部分の管表面の形状データを求め、
該ビード部に相当する部分の管表面の形状データを左右2つの領域に分け、
左右それぞれの形状データについて、円弧、多項式、線分の集合体のいずれかの関数により近似して左右それぞれのビード形状の近似関数を求め、
さらに、ビード部を含む管表面の形状データからビード部に相当する部分の管表面の形状データを除いた素管形状データについて、関数により近似して素管形状の近似関数を求め、
前記左右それぞれのビード形状の近似関数 L (x)、f R (x)および素管形状の近似関数 p (x)の交点の電縫溶接管横断方向位置x L ’,x R ’を算出し
少くともビードの幅、高さ、立上がり角、ビード部と素管部の左右境界の段差のいずれか一つを次の定義に従って算出することを特徴とする、電縫溶接管のビード形状検出方法。
・ビードの幅:前記x L ’,x R ’の間隔
・ビードの高さ:ビード頂点の電縫溶接管横断方向位置におけるビード部を含む管表面の形状データと素管形状の近似関数f p (x)の値の差
・ビードの立上がり角:前記x L ’,x R ’それぞれにおける、前記左右それぞれのビード形状の近似関数f L (x)、f R (x)と前記素管形状の近似関数f p (x)の微分係数により定義される傾きの逆正接
・ビード部と素管部の左右境界の段差:前記x L ’,x R ’それぞれにおけるビード形状の近似関数f L (x)、f R (x)と素管形状の近似関数f p (x)の値の差
Irradiating the surface of the tube including the bead portion by welding an electro-welded pipe with slit light or scanning with spot light, the image of the slit light irradiated on the surface of the tube including the bead portion or the locus of the scanned spot light In the bead shape detection method for an ERW weld pipe, the bead shape of the ERW weld pipe is detected by performing predetermined image processing on an image obtained by capturing the image of the image from an angle different from the irradiation direction of the slit light.
With respect to the shape data of the tube surface including the bead portion calculated as a result of the image processing, the tube surface of the portion corresponding to the bead portion is determined based on the predetermined boundary between the left and right ends of the bead portion and the vertex position of the bead portion calculated separately Find shape data,
Divide the shape data of the tube surface of the part corresponding to the bead part into two left and right regions,
For each of the left and right shape data, approximate by a function of an arc, a polynomial, or an assembly of line segments to obtain an approximate function of the left and right bead shapes,
Furthermore, for the tube shape data obtained by removing the shape data of the tube surface corresponding to the bead portion from the shape data of the tube surface including the bead portion, an approximate function of the tube shape is obtained by approximating with a function,
The position X L ′, x R ′ in the transverse direction of the ERW weld pipe at the intersection of the approximate functions f L (x), f R (x) of the left and right bead shapes and the approximate function f p (x) of the tube shape Calculate
A method for detecting the bead shape of an electric resistance welded pipe, wherein at least one of the width, height, rising angle of the bead, and the step between the left and right boundaries between the bead part and the base pipe part is calculated according to the following definition : .
・ Bead width: the distance between the above x L 'and x R '
・ Bead height: difference between the shape data of the pipe surface including the bead and the approximate function f p (x) of the pipe shape at the position in the cross direction of the ERW weld pipe at the apex of the bead
• Rise angle of the bead: the approximate functions f L (x) and f R (x) of the left and right bead shapes in the x L ′ and x R and the approximate function f p (x) of the tube shape The arc tangent of the slope defined by the derivative of
Step difference at the left and right boundary between the bead part and the raw pipe part: the approximate functions f L (x) and f R (x) of the bead shape and the approximate function f p (x of the raw pipe shape in each of the above x L ′ and x R ) Value difference
請求項1において、前記線分の集合体で定義される左右それぞれのビード形状の近似関数を、線分が切り替わる位置、それぞれの線分の傾きと切片をパラメータとして、前記左右それぞれのビード形状の近似関数と、前記ビード部を含む管表面の形状データとの誤差とを最小とするように算出することを特徴とする、電縫溶接管のビード形状検出方法。In Claim 1, the right and left bead shape approximation functions defined by the assembly of the line segments are used as parameters for the position at which the line segments are switched and the slope and intercept of each line segment , respectively. A method for detecting a bead shape of an electric resistance welded pipe, wherein calculation is performed so as to minimize an error between the approximate function and the shape data of the pipe surface including the bead portion. 電縫溶接管の溶接部を含む管表面にスリット光を照射あるいは点状光を走査する投光手段と、
前記投光手段から前記溶接部を含む管表面に照射された像を前記投光手段と異なる角度から撮像する撮像手段と、
前記撮像手段により得られる画像に所定の画像処理を施すことにより該電縫溶接管のビード形状を算出するビード形状算出手段と、
前記ビード形状算出手段により算出されたビード形状データに基いて、ビードの頂点位置およびビード部とビード部を除いた素管部との境界位置をそれぞれ算出する頂点位置設定回路およびビード範囲設定回路と、
前記頂点位置設定回路およびビード範囲設定回路の出力する頂点位置および該頂点位置を挟んだ左右の境界位置に基いて、円弧、多項式、線分の集合体のいずれかを用いて左右それぞれのビード形状の近似関数 L (x)、f R (x)を算出するビード形状近似回路と、
前記ビード範囲設定回路の出力する左右の境界位置より外側の素管形状データに基いて、素管形状の近似関数 p (x)を算出する素管形状近似回路と、
前記ビード形状近似回路が出力する左右それぞれのビード形状の近似関数 L (x)、f R (x)と、素管形状近似回路が出力する素管形状の近似関数 p (x)との交点の電縫溶接管横断方向位置x L ’,x R を、左右の境界位置として再設定するビード範囲再設定回路と、
前記ビード範囲設定回路、ビード形状近似回路、素管形状近似回路のそれぞれの出力に基づいて、少くともビードの幅、高さ、立上がり角、ビード部と素管部の左右境界の段差のいずれか一つを次の定義に従って算出する特徴量算出回路と、
を備えたことを特徴とする、電縫溶接管のビード形状検出装置。
・ビードの幅:前記x L ’,x R ’の間隔
・ビードの高さ:ビード頂点の電縫溶接管横断方向位置におけるビード部を含む管表面の形状データと素管形状の近似関数f p (x)の値の差
・ビードの立上がり角:前記x L ’,x R ’それぞれにおける、前記左右それぞれのビード形状の近似関数f L (x)、f R (x)と前記素管形状の近似関数f p (x)の微分係数により定義される傾きの逆正接
・ビード部と素管部の左右境界の段差:前記x L ’,x R ’それぞれにおけるビード形状の近似関数f L (x)、f R (x)と素管形状の近似関数f p (x)の値の差
A light projecting means for irradiating the surface of the tube including the welded portion of the ERW welded tube or scanning the spot light;
An image pickup means for picking up an image irradiated from the light projecting means to the tube surface including the welded portion from an angle different from that of the light projecting means;
Bead shape calculating means for calculating a bead shape of the electric resistance welded pipe by performing predetermined image processing on an image obtained by the imaging means;
Based on the bead shape data calculated by the bead shape calculating means, a vertex position setting circuit and a bead range setting circuit for calculating the bead apex position and the boundary position between the bead part and the bare pipe part excluding the bead part, respectively; ,
Based on the vertex position output by the vertex position setting circuit and the bead range setting circuit and the left and right boundary positions sandwiching the vertex position, each of the left and right bead shapes using an arc, a polynomial, or an assembly of line segments A bead shape approximating circuit for calculating approximate functions f L (x) and f R (x) of
A tube shape approximating circuit for calculating an approximate function f p (x) of the tube shape based on tube shape data outside the left and right boundary positions output by the bead range setting circuit;
The right and left bead shape approximation functions f L (x) and f R (x) output from the bead shape approximation circuit and the tube shape approximation function f p (x) output from the tube shape approximation circuit. A bead range reset circuit for resetting the crosswise position x L ′, x R at the intersection of the electric resistance welded pipe as the left and right boundary positions;
Based on the outputs of the bead range setting circuit, the bead shape approximating circuit, and the tube shape approximating circuit, at least one of the width, the height, the rising angle of the bead, and the step between the left and right boundaries between the bead portion and the tube portion. A feature quantity calculation circuit for calculating one according to the following definition ;
An apparatus for detecting a bead shape of an electric resistance welded pipe, comprising:
・ Bead width: the distance between the above x L 'and x R '
・ Bead height: difference between the shape data of the pipe surface including the bead and the approximate function f p (x) of the pipe shape at the position in the cross direction of the ERW weld pipe at the apex of the bead
• Rise angle of the bead: the approximate functions f L (x) and f R (x) of the left and right bead shapes in the x L ′ and x R and the approximate function f p (x) of the tube shape The arc tangent of the slope defined by the derivative of
Step difference at the left and right boundary between the bead part and the raw pipe part: the approximate functions f L (x) and f R (x) of the bead shape and the approximate function f p (x of the raw pipe shape in each of the above x L ′ and x R ) Value difference
JP2002348649A 2002-04-30 2002-11-29 Method and apparatus for detecting bead shape of ERW pipe Expired - Lifetime JP4374845B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002348649A JP4374845B2 (en) 2002-11-29 2002-11-29 Method and apparatus for detecting bead shape of ERW pipe
MYPI20031453A MY137246A (en) 2002-04-30 2003-04-17 Method and instrument for measuring bead cutting shape of electric welded tube
PCT/JP2003/005168 WO2003093761A1 (en) 2002-04-30 2003-04-23 Method and instrument for measuring bead cutting shape of electric welded tube
US10/507,350 US7236255B2 (en) 2002-04-30 2003-04-23 Method and instrument for measuring bead cutting shape of electric welded tube
KR1020047016653A KR100685206B1 (en) 2002-04-30 2003-04-23 Method and instrument for measuring bead cutting shape of electric welded tube
EP03719173A EP1500904B1 (en) 2002-04-30 2003-04-23 Method of and device for measuring bead cutting shape of electric welded tube
DE60334373T DE60334373D1 (en) 2002-04-30 2003-04-23 METHOD AND DEVICE FOR MEASURING THE BURGLARY CUTTING SHAPE OF AN ELECTRICALLY WELDED TUBE
TW092109761A TW587153B (en) 2002-04-30 2003-04-25 Measurement method and device for bead cutting shape in electric resistance welded pipes
US11/802,133 US7471400B2 (en) 2002-04-30 2007-05-21 Measurement method and device for bead cutting shape in electric resistance welded pipes
US12/113,440 US7619750B2 (en) 2002-04-30 2008-05-01 Measurement method and device for bead cutting shape in electric resistance welded pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348649A JP4374845B2 (en) 2002-11-29 2002-11-29 Method and apparatus for detecting bead shape of ERW pipe

Publications (2)

Publication Number Publication Date
JP2004181471A JP2004181471A (en) 2004-07-02
JP4374845B2 true JP4374845B2 (en) 2009-12-02

Family

ID=32751504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348649A Expired - Lifetime JP4374845B2 (en) 2002-04-30 2002-11-29 Method and apparatus for detecting bead shape of ERW pipe

Country Status (1)

Country Link
JP (1) JP4374845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10744589B2 (en) 2015-03-10 2020-08-18 Jfe Steel Corporation Method of monitoring manufacturing status of electric resistance welded pipe, device for monitoring manufacturing status of electric resistance welded pipe, and method of manufacturing electric resistance welded pipe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705479B2 (en) * 2006-01-20 2011-06-22 新日本製鐵株式会社 Bead shape detection method and apparatus
JP4762851B2 (en) * 2006-10-24 2011-08-31 新日本製鐵株式会社 Cross-sectional shape detection method and apparatus
JP2008175577A (en) * 2007-01-16 2008-07-31 Jfe Steel Kk Method and device for monitoring welded part of electro-resistance-welded pipe and manufacturing method of electro-resistance-welded pipe
JP5029419B2 (en) * 2008-02-26 2012-09-19 トヨタ自動車株式会社 Weld bead inspection method and weld bead inspection device
JP4992848B2 (en) * 2008-07-22 2012-08-08 トヨタ自動車株式会社 Weld bead inspection method and weld bead inspection device
KR101799051B1 (en) 2016-08-23 2017-11-20 (주)피앤에스 Method and apparatus for inspecting bead through laser scanning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10744589B2 (en) 2015-03-10 2020-08-18 Jfe Steel Corporation Method of monitoring manufacturing status of electric resistance welded pipe, device for monitoring manufacturing status of electric resistance welded pipe, and method of manufacturing electric resistance welded pipe

Also Published As

Publication number Publication date
JP2004181471A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
KR100685206B1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
JP4705479B2 (en) Bead shape detection method and apparatus
KR101329471B1 (en) Non contact wheel alignment sensor and method
RU2478489C1 (en) Device to measure current collector height
TWI438050B (en) Method and processor for laser processing error calibration
JP2009139268A (en) Tire wheel tread measurement apparatus
US20190323828A1 (en) Method for detecting shape of butt joint of welded steel pipe, and quality control method and apparatus for welded steel pipes using the shape detecting method
JP4374845B2 (en) Method and apparatus for detecting bead shape of ERW pipe
JP5481862B2 (en) Pantograph height measuring device and calibration method thereof
JP2002331383A (en) Monitoring device for cutting
JP3858792B2 (en) Method and apparatus for detecting bead shape of electric resistance welded pipe
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
JP2006323693A (en) Processor, and method and program for processing image
JP2572286B2 (en) 3D shape and size measurement device
JP5589362B2 (en) Method and apparatus for detecting center position of butt gap of steel plate
JP5087165B1 (en) Adjustment device for outputting data for adjusting surface inspection device, adjustment data output method and program
JP3939866B2 (en) Headlight optical axis adjustment method
JP2872481B2 (en) How to measure groove dimensions
JP4529227B2 (en) Plane inspection apparatus and plane inspection method
JPS63284409A (en) Measuring instrument for road surface property
JP6094690B2 (en) Laser irradiation position deviation detection method for laser welded steel pipe, steel pipe manufacturing method, laser irradiation position deviation detection apparatus, steel pipe laser welding apparatus, and steel pipe manufacturing apparatus
JP2005337856A (en) Visual inspection apparatus and visual inspection method
JPS6242004A (en) Seam position detecting device for electric welded pipe
JPH08145660A (en) Optical displacement measuring apparatus
JP2001311614A (en) Shape measuring apparatus and shape inspecting apparatus for long molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Ref document number: 4374845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term