JP4762851B2 - Cross-sectional shape detection method and apparatus - Google Patents

Cross-sectional shape detection method and apparatus Download PDF

Info

Publication number
JP4762851B2
JP4762851B2 JP2006288866A JP2006288866A JP4762851B2 JP 4762851 B2 JP4762851 B2 JP 4762851B2 JP 2006288866 A JP2006288866 A JP 2006288866A JP 2006288866 A JP2006288866 A JP 2006288866A JP 4762851 B2 JP4762851 B2 JP 4762851B2
Authority
JP
Japan
Prior art keywords
cross
point
points
peaking
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006288866A
Other languages
Japanese (ja)
Other versions
JP2008107156A (en
Inventor
昇平 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006288866A priority Critical patent/JP4762851B2/en
Publication of JP2008107156A publication Critical patent/JP2008107156A/en
Application granted granted Critical
Publication of JP4762851B2 publication Critical patent/JP4762851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属製部材、木製部材、プラスティック等の有機質部材、及びセラミックス製部材等の無機材質部材の断面形状検出方法及び装置に係り、特に被検査体である部材の湾曲部における断面形状を検出するのに好適な断面形状検出方法及び装置に関する。   The present invention relates to a method and an apparatus for detecting a cross-sectional shape of an inorganic material member such as a metal member, a wooden member, an organic member such as a plastic member, and a ceramic member, and more particularly, a cross-sectional shape in a curved portion of a member which is an inspection object. The present invention relates to a cross-sectional shape detection method and apparatus suitable for detection.

例えば、被検査体として湾曲部を有する部材の一つである鉄鋼製品のUO鋼管は、図13に示した(a)〜(h)の工程で製造される。すなわち、(a)後の溶接工程で開先となる厚鋼板の幅方向端部を切削加工した後、(b)Cプレスにて端部を曲げ、(c)UプレスにてU字型に曲げ加工した後に、(d)Oプレスにより端部を突き合わせた後、(e)仮付け溶接、(f)内面溶接、(g)外面溶接の順で溶接され、(h)最終的に鋼管内側から鋼管を広げる拡管工程を経て真円状のパイプに成形される。   For example, a UO steel pipe of a steel product, which is one of members having a curved portion as an object to be inspected, is manufactured by the steps (a) to (h) shown in FIG. That is, (a) after cutting the width direction end of the thick steel plate that becomes the groove in the subsequent welding process, (b) bend the end with a C press, and (c) be U-shaped with a U press After bending, (d) the end portions are butted together by an O press, and then (e) tack welding, (f) inner surface welding, (g) outer surface welding, and (h) finally the inner pipe The steel pipe is formed into a perfect circular pipe through a pipe expanding process.

UO鋼管等の断面プロフィール(断面の内側又は外側の外形を指す)において、溶接部の盛り上がりは溶接ビード(以下では「ビード」と記す)或いは余盛と呼ばれている。また、断面プロフィールにおいて、溶接部と母材との境界である止端部の周辺における真円度は、ビードの幅、高さ、及びビード周辺部に対するビードの盛り上がり方とともに溶接部の強度に多大な影響を与えるため、製造ラインの各工程において当該真円度を定量的に把握しておくことがUO鋼管の品質管理上重要である。止端部周辺における断面プロフィールの真円弧からのずれはピーキングと呼ばれており、従来から特許文献1、2に開示されているように、ダイヤルゲージを用いた専用治具を用いて測定されている。そして、スペースや予算的な制約により自動測定装置が付けられない工程においては、今でも当該専用治具を用いて手動でピーキング測定を行うことが多い。   In a cross-sectional profile of UO steel pipe or the like (referring to the outer shape inside or outside the cross-section), the rise of the weld is called a weld bead (hereinafter referred to as “bead”) or extra build. Also, in the cross-sectional profile, the roundness around the toe, which is the boundary between the weld and the base metal, greatly affects the strength of the weld along with the width and height of the bead and how the bead swells around the bead. Therefore, it is important for quality control of the UO steel pipe to quantitatively grasp the roundness in each process of the production line. The deviation of the cross-sectional profile from the true arc around the toe is called peaking, and is conventionally measured using a dedicated jig using a dial gauge as disclosed in Patent Documents 1 and 2. Yes. In a process in which an automatic measuring device cannot be attached due to space or budget constraints, peaking measurement is often performed manually using the dedicated jig.

専用治具によるピーキング測定の方法の一例を図11に示す。一定幅Wの脚を二つ有し、その中間にダイヤルゲージの針を配置した治具(以下では「ピーキング測定治具」とも記す)を使って、ダイヤルゲージの針の先端部を止端点Pに当てて、ピーキング測定治具の脚の先端部A,Bを結ぶ線分ABを基準線とした深さ、すなわち、線分ABの中点Cから止端点Pまでの深さd=CPを測る。dは符号をもつ量であり、測定点Pが線分ABより下方にあるときをd>0とする。   An example of a peaking measurement method using a dedicated jig is shown in FIG. Using a jig that has two legs with a constant width W and a dial gauge needle in the middle (hereinafter also referred to as “peaking measurement jig”), the tip of the dial gauge needle is connected to the toe point P. The depth d = CP from the middle point C of the line segment AB to the toe point P is set to the depth of the line segment AB connecting the tip ends A and B of the peak of the peaking measuring jig. measure. d is a quantity having a sign, and d> 0 when the measurement point P is below the line segment AB.

図12は、断面プロフィールと、その上における当該測定治具の脚の接触点A,Bを通る直径Dの仮想的な真円との位置関係を示している。鋼管の断面プロフィール全体が内径Dに相当する真円である場合、長さWの弦ABの中点Cを基準とした、真円弧AB上の中間点P0の深さd0=CP0は式(1)のように与えられる。 FIG. 12 shows the positional relationship between the cross-sectional profile and a virtual perfect circle having a diameter D passing through the contact points A and B of the leg of the measurement jig on the profile. When the entire cross-sectional profile of the steel pipe is a perfect circle corresponding to the inner diameter D, the depth d 0 = CP 0 of the intermediate point P 0 on the true arc AB with reference to the midpoint C of the chord AB of length W is It is given as equation (1).

Figure 0004762851
Figure 0004762851

最終的に真円からの深さのずれΔd=d−d0を、断面形状を表す代表値の一つであるピーキングとして求める。 Finally, the depth deviation Δd = d−d 0 from the perfect circle is obtained as peaking which is one of the representative values representing the cross-sectional shape.

上記のピーキング測定治具を用いたピーキング測定は、熟練工でなくとも比較的簡単に短時間で精度よく行える方法である。しかしながら、それでもなお人手により手間と時間がかかるため測定箇所が限られ間欠的な測定となり、管軸方向の微妙な形状変化を見逃し易く、止端部や母材部の凹凸により測定結果がばらついてしまうという問題があった。   Peaking measurement using the above-mentioned peaking measurement jig is a method that can be performed relatively easily and accurately in a short time without being a skilled worker. However, it still takes time and labor due to manual labor, so the measurement location is limited and intermittent measurement is performed, and it is easy to overlook subtle changes in the shape of the tube axis, and the measurement results vary due to the unevenness of the toe and base parts. There was a problem that.

一方、断面形状を自動検出する様々な方法や装置が提案されているが、中でも光学的方法は非接触で測定が可能である点で有用である。被検査部に照射された光源像を撮像して画像データを得て、画像データ内における撮像された光源像の画素位置から鋼管の断面プロフィールを測定する光学的方法としては、光切断法や特許文献3に開示されているようなレーザ距離計による自動測定装置を用いる方法がある。   On the other hand, various methods and apparatuses for automatically detecting a cross-sectional shape have been proposed. Among them, an optical method is useful in that measurement can be performed without contact. As an optical method for measuring a cross-sectional profile of a steel pipe from a pixel position of a captured light source image in the image data by capturing a light source image irradiated on the inspected part, an optical cutting method or a patent There is a method using an automatic measuring device using a laser distance meter as disclosed in Document 3.

実開平6−49918号公報Japanese Utility Model Publication No. 6-49918 特開昭59−112209号公報JP 59-112209 A 特開2001−201327号公報JP 2001-201327 A 特開平7−40049号公報JP 7-40049 A

実際の製造ラインにおいては、大がかりな自動測定装置を用いることができずに上記のピーキング測定治具を使って手動によるピーキング測定をする工程や、光学的方法による自動測定装置を用いる工程が混在していることがある。   In an actual production line, it is not possible to use a large-scale automatic measuring device, and there are a mixture of processes for manually measuring peaking using the above-mentioned peaking measuring jig and processes for using an automatic measuring apparatus using an optical method. May have.

このような手動測定する工程と自動測定する工程とが混在する製造ラインの工程間でピーキング値がどのように変化したかを測定して管理する場合、ピーキングを専用治具で手動測定している工程でのピーキング測定値と比較することを考慮して、専用治具を用いる測定方法と同程度以上の精度であり、且つ整合性のあるピーキングの光学的測定方法が必要となる。   When measuring and managing how the peaking value has changed between processes on a production line where both the manual measurement process and the automatic measurement process coexist, the peaking is manually measured with a dedicated jig. In consideration of the comparison with the peaking measurement value in the process, an optical measurement method for peaking that is at least as accurate as the measurement method using the dedicated jig and is consistent is required.

しかしながら、従来からこのように適切な方法は知られていなかった。すなわち、光学的方法で得られた断面プロフィールは実際には離散的な複数の点からなる。上記のピーキング測定治具の脚先端の位置に相当する離散点を見つけるには、最もよく脚幅に適合し、且つ離散点を結ぶ直線が針に垂直であるという条件を満たす離散点の組を探索的に見つける必要があるが、光学的方法で得られた測定データを処理する上で計算時間のコストが大きいという問題点があった。そのために、管軸方向に測定間隔を小さくするのが難しく、管軸方向の微妙な形状変化を見逃すことが多かった。   However, conventionally, such an appropriate method has not been known. That is, the cross-sectional profile obtained by the optical method is actually composed of a plurality of discrete points. In order to find a discrete point corresponding to the position of the leg tip of the above peaking measuring jig, a set of discrete points that best fit the leg width and satisfy the condition that the straight line connecting the discrete points is perpendicular to the needle is used. Although it is necessary to find it exploratively, there is a problem that the cost of calculation time is high in processing the measurement data obtained by the optical method. For this reason, it is difficult to reduce the measurement interval in the tube axis direction, and a subtle shape change in the tube axis direction is often overlooked.

本発明は、以上に述べた従来技術の問題点を解決するべく発明されたもので、鋼管等の湾曲部を有する被検査体について、光切断法やレーザ距離計等の光学的手段で測定した断面プロフィールから、ピーキングを高精度且つ計算時間のコストを小さく導出できるようにすることを第1の目的とする。また、ピーキング測定治具によるピーキングの測定値と整合性のあるピーキングの自動測定法を提供することを第2の目的とする。   The present invention was invented to solve the above-described problems of the prior art, and was measured on an inspected object having a curved portion such as a steel pipe by an optical means such as a light cutting method or a laser distance meter. It is a first object of the present invention to make it possible to derive peaking with high accuracy and low calculation time cost from a cross-sectional profile. It is a second object of the present invention to provide an automatic measuring method of peaking that is consistent with the peaking measurement value by the peaking measuring jig.

本願第1の発明の断面形状検出方法は、湾曲部を有する部材を被検査体として、前記湾曲部表面上の測定点Pのピーキングを測定する断面形状検出方法において、前記湾曲部表面に沿って線状光を照射した投光パターン、又は点状光を照射し走査して得る前記湾曲部表面の線状の光線軌跡に基づいて、光学的手法により複数の点で構成される、前記湾曲部の断面プロフィールを測定する第1ステップと、前記断面プロフィール上に測定点Pを設定する第2ステップと、予め設定した距離Wの半分の距離W/2だけ、前記測定点Pから水平方向の左右に離れた断面プロフィール上の第1の点と第2の点を指定する第3ステップと、前記第1の点を中心とする所定の第1の探索範囲WL内、及び、前記第2の点を中心とする所定の第2の探索範囲WR内の、それぞれの断面プロフィール上において、断面プロフィールを構成する複数の離散点、又は断面プロフィールを近似して得られる関数上の連続点の集合の中から、2点間の距離が前記距離Wに最も近い点をそれぞれ第1及び第2の端点として探索する第4ステップと、前記第1及び第2の端点を結ぶ線分を基準線分として、前記第1及び第2の端点と前記測定点Pの位置に基づいて、前記基準線分から前記測定点Pまでの距離を算出する第5ステップと、前記基準線分から前記測定点Pまでの距離に基づいて前記測定点Pのピーキングを算出する第6ステップとを有することを特徴とする。
本願第2の発明の断面形状検出方法は、前記光学的手法は、光切断法であることを特徴とする。
本願第3の発明の断面形状検出方法は、前記光学的手法は、三角測量法であることを特徴とする。
本願第4の発明の断面形状検出装置は、第1又は第2の発明の断面形状検出方法に用いられる前記湾曲部表面上の前記測定点Pのピーキングを測定する断面形状検出装置であって、前記湾曲部表面に沿って線状光を照射するか、又は点状光を照射し走査して前記湾曲部表面の線状の光線軌跡を得る投光手段と、前記線状の光線軌跡の画像を得るための撮像手段と、前記光線軌跡の画像に基づいて複数の点で構成される前記湾曲部の断面プロフィールを所定の画像処理で導出する断面プロフィール測定手段と、前記第2〜6の各ステップを実行する信号処理制御手段とを具備することを特徴とする。
本願第5の発明の断面形状検出装置は、第1又は第3の発明の断面形状検出方法に用いられる前記湾曲部表面上の前記測定点Pのピーキングを測定する断面形状検出装置であって、点状光を照射し走査して前記湾曲部表面の線状の光線軌跡を得る投光手段と、前記線状の光線軌跡の位置を測定する位置検出手段と、複数の点で構成される前記湾曲部の断面プロフィールを導出する断面プロフィール測定手段と、前記第2〜6の各ステップを実行する信号処理制御手段とを具備することを特徴とする。
The cross-sectional shape detection method according to the first aspect of the present invention is the cross-sectional shape detection method for measuring peaking of the measurement point P on the surface of the bending portion using a member having the bending portion as an object to be inspected, along the surface of the bending portion. The bending portion constituted by a plurality of points by an optical method based on a projection pattern irradiated with linear light or a linear ray locus on the surface of the bending portion obtained by irradiating and scanning with point light. A first step of measuring the cross-sectional profile, a second step of setting a measurement point P on the cross-sectional profile, and a horizontal distance W / 2 from the measurement point P by a distance W / 2 that is half of the preset distance W. A third step of designating a first point and a second point on the cross-sectional profile separated from each other, within a predetermined first search range WL centered on the first point, and the second point A predetermined second search range centered at On each cross-sectional profile in R, a distance between two points from a plurality of discrete points constituting the cross-sectional profile or a set of continuous points on the function obtained by approximating the cross-sectional profile is the distance W. A fourth step for searching the closest points to the first and second endpoints respectively, and a line segment connecting the first and second endpoints as a reference line segment, and the first and second endpoints and the measurement A fifth step of calculating a distance from the reference line segment to the measurement point P based on the position of the point P and a peaking of the measurement point P based on a distance from the reference line segment to the measurement point P are calculated. And a sixth step.
According to a second aspect of the present invention, the optical method is a light cutting method.
The cross-sectional shape detection method of the third invention of the present application is characterized in that the optical method is a triangulation method.
A cross-sectional shape detection device of a fourth invention of the present application is a cross-sectional shape detection device that measures peaking of the measurement point P on the curved surface used in the cross-sectional shape detection method of the first or second invention, Projecting means for irradiating linear light along the curved surface or irradiating and scanning with dotted light to obtain a linear ray trajectory on the curved surface, and an image of the linear ray trajectory Imaging means for obtaining a cross-sectional profile measuring means for deriving a cross-sectional profile of the curved portion constituted by a plurality of points based on an image of the ray trajectory by a predetermined image processing, and each of the second to sixth items Signal processing control means for executing the steps.
A cross-sectional shape detection device of a fifth invention of the present application is a cross-sectional shape detection device that measures peaking of the measurement point P on the curved surface used in the cross-sectional shape detection method of the first or third invention, A light projecting unit that irradiates and scans with point light and obtains a linear ray locus on the surface of the curved portion, a position detection unit that measures the position of the linear ray locus, and a plurality of points. It comprises cross-sectional profile measuring means for deriving a cross-sectional profile of the curved portion, and signal processing control means for executing the second to sixth steps.

本発明によれば、湾曲部を有する溶接鋼管等の被検査体のピーキング測定において、ピーキング測定治具の脚と断面プロフィールとの接触点A,B間の距離ABが治具の脚幅Wに等しく、且つ、ABの中点Cと測定点Pを結ぶ線分CPがABと直交するという拘束条件を満たすようにしたので、ピーキング測定治具による手動の測定方法と互換性のある自動的な計測が可能となる。
また、本発明によれば、人手による間欠的な測定では見逃しがちの管軸方向の微妙な形状変化を全長にわたって計測可能になり、各製造工程における断面形状の造り込みや品質管理へ反映することにより全長における品質保証が実現できるようになる。また、ピーキング測定治具で測定したデータとの工程間にわたる突き合わせや形状の変化を追跡することで、形状不良の原因を特定することが可能になる。
According to the present invention, in the peaking measurement of a test object such as a welded steel pipe having a curved portion, the distance AB between the contact points A and B between the leg of the peaking measurement jig and the cross-sectional profile is the leg width W of the jig. The line segment CP connecting the midpoint C of the AB and the measurement point P is equal to the constraint condition that the line segment CP is orthogonal to the AB, so that the automatic measurement is compatible with the manual measurement method using the peaking measurement jig. Measurement is possible.
In addition, according to the present invention, it becomes possible to measure the subtle shape change in the tube axis direction, which is often overlooked by intermittent manual measurement, over the entire length, which is reflected in the creation of the cross-sectional shape and quality control in each manufacturing process. As a result, quality assurance over the entire length can be realized. In addition, it is possible to identify the cause of the shape defect by tracking the matching between the data measured by the peaking measurement jig and the change in the shape between the processes.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
<第一の断面プロフィール導出方法>
図1は、第一の断面プロフィール導出方法及び装置で用いる装置の構成を、被検査体として溶接鋼管を例に示す概略図である。1は被検査体の溶接鋼管(一部のみを図示する)である。2は被検査体の検査部に線状の投光パターンを作成する投光手段である。5は当該投光パターンを写す撮像手段である。6は撮像画像データを画像処理して断面プロフィールを導出する画像処理装置である。7は断面プロフィールのデータに基づいてピーキングを算出する処理を実行するための信号処理制御装置である。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
<First section profile derivation method>
FIG. 1 is a schematic diagram showing a configuration of an apparatus used in the first method for deriving a cross-sectional profile and an example of a welded steel pipe as an object to be inspected. Reference numeral 1 denotes a welded steel pipe (only a part of which is shown). Reference numeral 2 denotes light projecting means for creating a linear light projecting pattern on the inspection portion of the object to be inspected. Reference numeral 5 denotes an image pickup means for copying the projection pattern. Reference numeral 6 denotes an image processing device that performs image processing on captured image data to derive a cross-sectional profile. Reference numeral 7 denotes a signal processing control device for executing processing for calculating peaking based on cross-sectional profile data.

図1では、溶接鋼管1の内側に投光手段2と撮像手段5を入れて内面の断面形状を検出する場合の様子を示している。本断面プロフィール導出方法では、計算の便宜上、被検査体の溶接鋼管1の管軸方向をz軸に、管軸方向に垂直な断面をxy平面にとる。投光手段2から扇状に広がった投光パターンのなす平面と一致させ、投光パターンの射出中心方向をy軸にとる。なお、ビードが投光パターンの中心部近くになるように配置するのがプロフィール測定上好ましい。xyz座標の原点Oの位置は後述するように撮影手段5の光軸方向とxy平面の交点とする。   FIG. 1 shows a state where the light projecting means 2 and the imaging means 5 are placed inside the welded steel pipe 1 to detect the cross-sectional shape of the inner surface. In this section profile derivation method, for convenience of calculation, the pipe axis direction of the welded steel pipe 1 of the object to be inspected is taken as the z axis, and the section perpendicular to the pipe axis direction is taken as the xy plane. The projection center direction coincides with the plane formed by the light projection pattern extending from the light projecting means 2, and the emission center direction of the light projection pattern is taken as the y axis. In addition, it is preferable in terms of profile measurement to arrange the beads so that they are close to the center of the projection pattern. The position of the origin O of the xyz coordinate is the intersection of the optical axis direction of the photographing means 5 and the xy plane as will be described later.

図2は、第一の断面プロフィール導出方法における光学配置をx軸方向から見た図である。5aは撮像手段5の撮像面、Opは撮像手段の撮像レンズ(以下では単に「レンズ」と記す)のレンズ中心(前側主点位置)、Oは上記したように被検査体(物体)側の座標軸の原点である。撮像面5aの水平軸をX軸、撮像面5a内でX軸に垂直な軸をY軸とすると、Ocは撮像面5aの中心で、撮像面5a(像側)XY平面の座標原点である。像側座標原点Ocとレンズ中心Opを結ぶ直線の延長線が物体側の座標原点Oを通るように、また物体側x軸と像側X軸が平行になるようにする。また、撮像手段(撮像系)の光軸方向OOcは投光手段1の光軸方向であるy軸とある角度θをなすように配置する。   FIG. 2 is a view of the optical arrangement in the first cross-sectional profile derivation method as seen from the x-axis direction. 5a is the imaging surface of the imaging means 5, Op is the lens center (front principal point position) of the imaging lens of the imaging means (hereinafter simply referred to as “lens”), and O is the object (object) side as described above. The origin of the coordinate axis. If the horizontal axis of the imaging surface 5a is the X axis and the axis perpendicular to the X axis in the imaging surface 5a is the Y axis, Oc is the center of the imaging surface 5a and the coordinate origin of the imaging surface 5a (image side) XY plane. . An extension line of a straight line connecting the image side coordinate origin Oc and the lens center Op passes through the object side coordinate origin O, and the object side x axis and the image side X axis are parallel to each other. Further, the optical axis direction OOc of the image pickup means (image pickup system) is arranged so as to form an angle θ with the y axis that is the optical axis direction of the light projecting means 1.

ここで、投光手段1としては、例えばレーザやランプから発する光をシリンドリカルレンズやプリズム等を用いて、被検査体上の照射位置で線状の投光パターンに収束するような線状光源を用いるか、又は、照射位置で点状に収束するような点状ビームを、回転制御されたポリゴンミラーで溶接鋼管1のビードを跨いで、管軸方向に直交するx軸方向に走査して、線状の軌跡の投光パターンを得る走査式の点光源を用いる。線状光源を投光手段1として用いる場合、図1の4は扇状に広げられた線状ビームを示し、被検査体である溶接鋼管1の湾曲部に照射されると表面形状に沿って光切断像3を形成する。走査式点光源を投光手段として用いる場合、図1の4は幅方向に走査された点状ビームの軌跡を示し、3は溶接鋼管1上の照射位置での点像の軌跡を示す。   Here, as the light projecting means 1, for example, a linear light source that converges light emitted from a laser or lamp into a linear light projection pattern at an irradiation position on the object to be inspected using a cylindrical lens, a prism, or the like. Use or scan a point beam that converges in a dot shape at the irradiation position across the bead of the welded steel pipe 1 with a rotation-controlled polygon mirror in the x-axis direction orthogonal to the tube axis direction, A scanning point light source that obtains a light projection pattern of a linear locus is used. When a linear light source is used as the light projecting means 1, reference numeral 4 in FIG. 1 shows a fan-shaped linear beam. When the curved portion of the welded steel pipe 1 that is an object to be inspected is irradiated, A cut image 3 is formed. When a scanning point light source is used as the light projecting means, 4 in FIG. 1 indicates a locus of a point beam scanned in the width direction, and 3 indicates a locus of a point image at an irradiation position on the welded steel pipe 1.

撮像手段5としては、例えばエリアセンサであるCMOSカメラやCCDカメラを用いて、被検査体上の線状軌跡の光切断像或いは点像の軌跡を撮像する。図1の画像処理装置6では、撮像手段5から撮像された光切断像又は点像の軌跡の画像データを画像処理装置6へ取り込み、当該画像データに基づき画像処理によって光切断像又は点像(像)の写る画素位置(画像内における各画素の相対位置情報)を求める。そして、投光手段2、撮像手段5、及び被検査体の図2の光学的配置によって決まる、被検査体上の投光パターンの位置と画像データ上の投光パターンの像の位置との相関を示す定数、並びに像の写る画素位置から、ビードを含む鋼管表面の輪郭形状を予め設定した間隔の離散的測定点の集合である断面プロフィールを求める。測定間隔は狭い方がより高精度なプロフィール測定ができるが、測定時間が長くなり、またデータ量が増えるので、高速測定が必要なときには所要の測定精度を満たすように測定間隔を設定する。   As the image pickup means 5, for example, a CMOS camera or a CCD camera which is an area sensor is used to pick up a light cut image or a point image locus of a linear locus on the object to be inspected. In the image processing device 6 of FIG. 1, image data of a light section image or point image trajectory imaged from the image pickup means 5 is taken into the image processing device 6, and a light section image or point image (by image processing based on the image data). The pixel position where the image is captured (relative position information of each pixel in the image) is obtained. Then, the correlation between the position of the light projection pattern on the inspection object and the position of the image of the light projection pattern on the image data, which is determined by the optical arrangement of the light projection means 2, the imaging means 5, and the inspection object in FIG. A cross-sectional profile, which is a set of discrete measurement points at intervals in which the contour shape of the surface of the steel pipe including the bead is set in advance, is obtained from the constants indicating the above and the pixel position where the image appears. If the measurement interval is narrow, more accurate profile measurement can be performed, but the measurement time becomes longer and the amount of data increases. Therefore, when high-speed measurement is required, the measurement interval is set so as to satisfy the required measurement accuracy.

被検査体上の投光パターンの位置と画像データ上の投光パターンの対応する像の位置との相関を示す定数を求める方法について次に詳細に説明する。幾何光学におけるレンズの結像式から、図2においてレンズ中心Opから物体側原点Oまでの距離をL、レンズの焦点距離をfとすると、物体側原点Oにおいては、撮像面5aに写る像に対する物体の倍率MはM=(L−f)/fで表される。しかしながら物体側原点Oからy軸方向にyの高さにある点Qにおいてはy・cosθだけ撮像面側に近くなるため、倍率M'はM'=M・(L−f−y・cosθ)/(L−f)になる。   A method for obtaining a constant indicating the correlation between the position of the projection pattern on the object to be inspected and the position of the image corresponding to the projection pattern on the image data will be described in detail below. From the imaging formula of the lens in geometric optics, if the distance from the lens center Op to the object side origin O in FIG. 2 is L and the focal length of the lens is f, the object side origin O is for the image captured on the imaging surface 5a. The magnification M of the object is expressed by M = (L−f) / f. However, at the point Q at the height of y from the object-side origin O in the y-axis direction, the magnification M ′ is M ′ = M · (Lf−y · cos θ) because it is close to the imaging surface side by y · cos θ. / (L-f).

xy平面上の点Q(x,y)とその対応する撮像面XY上の像(X,Y)について、高さyの点を通り撮像面に垂直な平面での倍率を考慮すると以下のような関係式が成り立つ。   Considering the magnification on the plane perpendicular to the imaging plane passing through the point of height y for the point Q (x, y) on the xy plane and its corresponding image (X, Y) on the imaging plane XY, The following relational expression holds.

Figure 0004762851
Figure 0004762851

これを整理すると像側(撮像面側)から物体側(被検査体側)への座標変換式が、下式(4)、(5)のように得られる。   If this is rearranged, a coordinate conversion formula from the image side (imaging surface side) to the object side (inspected object side) is obtained as in the following formulas (4) and (5).

Figure 0004762851
Figure 0004762851

信号処理制御装置7では、ピーキングを算出するほか、投光手段1の照射時間や撮像手段5の露光時間等の撮像条件制御も行う。   In addition to calculating peaking, the signal processing control device 7 also controls imaging conditions such as the irradiation time of the light projecting means 1 and the exposure time of the imaging means 5.

<第二の断面プロフィール導出方法>
図3は、本発明の断面形状検出方法及び装置における第二の断面プロフィール導出方法での装置構成を、被検査体として溶接鋼管を例に示す概略図である。図3において、5'は走査式点光源(例えばレーザ光源、図示せず)とPSD(位置検出器、図示せず)が一体となったレーザ距離計と同様の測定原理の測距手段であり、測距手段自体から三角測量方式により測定対象である溶接鋼管1の表面までの距離を直接測ることができる。xy座標系を第一の断面プロフィール導出方法と同じにとる。例えば、溶接鋼管をビードを下にして水平に置いたとき、距離測定手段5'はビードの測定個所の鉛直上方に設置する。管軸方向に直交するx軸方向に走査された、測距手段5'内の走査式点光源から発するレーザビームの軌跡を4で示し、3は溶接鋼管1上のレーザビームの照射点の走査軌跡を示す。測距手段5'により溶接鋼管1の表面までの距離は計算済みなので、撮像手段は不要であり、また信号処理制御装置7'では断面プロフィールを計算するための画像処理は不要である。すなわち、本断面プロフィール導出方法の場合、信号処理制御装置7'では測距手段5'からの距離データの取り込み、距離データに基づいた断面プロフィールの計算、後述する断面形状検出にかかる計算、及び測距手段5'の制御を行う。以上のようにして、ビードを含む鋼管表面の輪郭形状を予め設定した間隔の離散的測定点の集合である断面プロフィールを求める。
<Second section profile derivation method>
FIG. 3 is a schematic diagram illustrating an apparatus configuration in the second section profile derivation method in the section shape detection method and apparatus of the present invention, taking a welded steel pipe as an example to be inspected. In FIG. 3, reference numeral 5 'denotes a distance measuring means having a measurement principle similar to that of a laser distance meter in which a scanning point light source (for example, a laser light source, not shown) and a PSD (position detector, not shown) are integrated. The distance from the distance measuring means itself to the surface of the welded steel pipe 1 to be measured can be directly measured by the triangulation method. The xy coordinate system is the same as the first section profile derivation method. For example, when the welded steel pipe is placed horizontally with the bead down, the distance measuring means 5 ′ is installed vertically above the measurement location of the bead. The trajectory of the laser beam emitted from the scanning point light source in the distance measuring means 5 ′ scanned in the x-axis direction orthogonal to the tube axis direction is indicated by 4, and 3 is the scan of the irradiation point of the laser beam on the welded steel tube 1. Show the trajectory. Since the distance to the surface of the welded steel pipe 1 has already been calculated by the distance measuring means 5 ′, the image pickup means is unnecessary, and the signal processing control device 7 ′ does not need image processing for calculating the cross-sectional profile. That is, in the case of this method for deriving a cross-sectional profile, the signal processing control device 7 ′ takes in the distance data from the distance measuring means 5 ′, calculates the cross-sectional profile based on the distance data, calculates the cross-sectional shape described later, and The distance unit 5 'is controlled. As described above, a cross-sectional profile, which is a set of discrete measurement points at intervals in which the contour shape of the steel pipe surface including the beads is set in advance, is obtained.

以上の第一及び第二の方法で導出した断面プロフィールに基づいて、測定点である鋼管母材とビードの境界である止端点を検出する。止端部では緩やかながらも断面プロフィールの接線の傾きが変わるので、断面プロフィールを微分すると止端部でピークをもつ。実際には断面プロフィールは離散点からなりノイズが含まれるので、特許文献4にあるように平滑化と微分操作を組み合わせた方法やSavitzky-Golay法等の平滑化適合微分を用いてピークの頂点である止端点を検出する。   Based on the cross-sectional profiles derived by the first and second methods described above, a toe point that is a boundary between a steel pipe base material and a bead that is a measurement point is detected. Since the slope of the tangent line of the cross-sectional profile changes moderately at the toe, but the cross-sectional profile is differentiated, it has a peak at the toe. Actually, since the cross-sectional profile consists of discrete points and includes noise, as described in Patent Document 4, the method uses a combination of smoothing and differential operation, or smoothing adaptive differentiation such as the Savitzky-Golay method. Detect a toe point.

以下では、溶接鋼管1の断面プロフィールから自動検出した止端点又は指定した測定点における、ピーキングの演算手順と演算方法について説明する。   Below, the peaking calculation procedure and calculation method at the toe point or the designated measurement point automatically detected from the cross-sectional profile of the welded steel pipe 1 will be described.

<第1のピーキング検出手順>
図4は、上記のいずれかの光学的方法で得られた溶接鋼管1の断面プロフィールと、実際の測定点の集合である断面プロフィール上の離散点列の関係を示している。Ac,Bcは測定点Pからそれぞれ左右水平方向にW/2の距離にある断面プロフィール上の点を示す。第1のピーキング検出手順として、まずAc,Bcをそれぞれ中心とする探索範囲WL,WR内にある、断面プロフィールを構成する離散点列の中から2点間の距離がWに近い端点を探索し、端点を結ぶ基準線分から測定点Pまでの距離を求める方法について説明する。
<First Peaking Detection Procedure>
FIG. 4 shows the relationship between the cross-sectional profile of the welded steel pipe 1 obtained by one of the optical methods described above and the discrete point sequence on the cross-sectional profile that is a set of actual measurement points. Ac and Bc indicate points on the cross-sectional profile at a distance of W / 2 in the horizontal direction from the measurement point P, respectively. As a first peaking detection procedure, first, an end point having a distance between two points close to W is searched from a discrete point sequence constituting a cross-sectional profile within the search ranges WL and WR centered on Ac and Bc, respectively. A method for obtaining the distance from the reference line segment connecting the end points to the measurement point P will be described.

探索範囲WL,WR内にある断面プロフィール座標点列をそれぞれ[A'n],[B'n]とする。点列[A'n]に対しては、A'1はA'0の左隣、A'2はA'1の左隣、・・・、A'nはA'n-1の左隣の点、点列[B'n]に対しては、B'1はB'0の右隣、B'2はB'1の右隣、・・・、B'nはB'n-1の右隣の点というようにして、指標付けはいずれも昇順に測定点Pから遠い側へととる。k回目の探索で見つかった測定点Pからの等距離点をAk,Bkで表す。 Let the cross-sectional profile coordinate point sequences in the search ranges WL and WR be [A ′ n ] and [B ′ n ], respectively. For the point sequence [A ' n ], A' 1 is the left neighbor of A ' 0 , A' 2 is the left neighbor of A ' 1 , ... A' n is the left neighbor of A ' n-1 in terms of, 'for the [n, B point sequence B]' 1 is B '0 right next to the, B' 2 is B '1 to the right, ···, B' n is B 'n-1 In this way, the indexing is performed in the ascending order from the measurement point P to the far side. The equidistant points from the measurement point P found in the k-th search are represented by A k and B k .

基準線分の端点A,Bを探索範囲WL,WRで測定された離散的な断面プロフィール点列の中から見い出し、測定点Pにおけるピーキング深さd=CPを演算する手順のフローチャートを図5に示す。   FIG. 5 is a flowchart of a procedure for finding the end points A and B of the reference line segment from the discrete cross-sectional profile point sequence measured in the search ranges WL and WR, and calculating the peaking depth d = CP at the measurement point P. Show.

ステップS101では、まず、前述した方法により測定点Pである止端点を検出・指定する。   In step S101, first, the toe point that is the measurement point P is detected and designated by the method described above.

ステップS102では、測定点Pからそれぞれ左右水平方向にW/2の距離にある2点Ac,Bcをそれぞれ中心として、座標が未知の端点A,Bの探索範囲WL,WRを設定する。   In step S102, the search ranges WL and WR for the end points A and B whose coordinates are unknown are set around the two points Ac and Bc that are at a distance of W / 2 in the horizontal direction from the measurement point P, respectively.

ステップS103では、探索範囲WL内の点Akを選択する。初期点A0は探索範囲WL内で最も測定点Pに近い点A'0とする。点列{Ak}は点列{A'n}の部分点列で、例えば点列{A'n}から点列{Ak}を間隔Δnで抜き出す場合には、nをΔnの倍数、すなわちn=mΔn(m=0、1、・・・)としAkをA'nとする。 In step S103, selecting a point A k in the search range WL. The initial point A 0 is a point A ′ 0 closest to the measurement point P within the search range WL. 'In part point sequence of {n, for example, the sequence of points {A sequence of points {A k} is the sequence of points A}' when extracting the n} from the point sequence {A k} at intervals [Delta] n is a multiple of n of [Delta] n, That is, n = mΔn (m = 0, 1,...) And A k is A ′ n .

ステップS104では、測定点PとAkまでの距離をRk=PAkとし、近似的にPAk=PBk=Rkなる離散点Bkを求める。右側探索範囲WR内の点列{B'n}から指標の昇順に探索を行い、測定点PからB'nまでの距離PB'nが初めてPB'n≧Rkを満たす点B'nをBkとする。Bkの探索は前回Ak-1に対応する探索終了点Bk-1から開始する。 In step S104, the distance from the measurement point P to A k is set to R k = PA k, and a discrete point B k approximately PA k = PB k = R k is obtained. 'Carries out the search from the {n in ascending order of the index, from the measurement point P B point sequence in the right search range WR B}' distance PB 'n is the first PB' n ≧ R k points satisfy the B 'n to n Let B k . Search for B k starts from the search end point B k-1 corresponding to the previous A k-1.

ステップS105では、端点Ak,Bkの座標から線分Akkの長さWkを計算し、目標とするピーキング測定治具の脚幅W以上、すなわちWk≧WになったらステップS103〜ステップS104のループを抜ける判断をする。以上のようにして、繰り返し演算処理によって距離Wに近い2つの端点を導出する。 At step S105, step if the end points A k, from the coordinates of B k of the line segment A k B k the length W k calculated, Ashihaba W or more peaking measuring jig as a target, i.e. becomes W k ≧ W It is determined to exit the loop from S103 to S104. As described above, two end points near the distance W are derived by the iterative calculation process.

ステップS106では、最終的に求められた端点Ak,Bkを基準線分の端点A,B、線分Akkの長さWkをWとみなして、R=Rkとして、下式(6)により長さWの線分と測定点Pまでの距離CP=dを計算する。 In step S106, the end points A k and B k finally obtained are regarded as the end points A and B of the reference line segment and the length W k of the line segment A k B k as W, and R = R k The distance CP = d between the line segment having the length W and the measurement point P is calculated by the equation (6).

Figure 0004762851
Figure 0004762851

符号は測定点Pが線分ABより下方にあるときを+、上方にあるときを−にとる。本発明の断面形状検出方法の実施の形態では、溶接鋼管の内面のピーキングを測定する例を挙げたが、基準線分から測定点Pまでの距離に符号をつけることにより外面でのピーキング測定にも適用可能である。   The sign is + when the measurement point P is below the line segment AB and-when it is above the line segment AB. In the embodiment of the method for detecting a cross-sectional shape of the present invention, an example of measuring the peaking of the inner surface of the welded steel pipe has been given, but the peaking measurement on the outer surface can also be performed by attaching a sign to the distance from the reference line segment to the measurement point P. Applicable.

ステップS107では、式(1)により最終的に基準となる真円の場合の深さd0を差し引いてピーキング値Δd=d−d0を算出する。離散点間隔が密である場合、本方法によれば基準線分の点の探索のみで十分な精度の測定値が得られる。また、探索範囲WL,WR内の離散点の個数をそれぞれNL,NRとすると最大NL×NR個の点の組み合わせが考えられるが、本方法によればNLの数倍のオーダで探索が終了する。 In step S107, the peaking value Δd = d−d 0 is calculated by subtracting the depth d 0 in the case of a perfect circle as a final reference from the equation (1). When the distance between the discrete points is dense, according to the present method, a measurement value with sufficient accuracy can be obtained only by searching for the points of the reference line segment. Further, assuming that the number of discrete points in the search ranges WL and WR is NL and NR, respectively, a combination of a maximum of NL × NR points can be considered. However, according to this method, the search is completed on the order of several times NL. .

<第2のピーキング検出手順>
第2のピーキング検出手順として、探索範囲WL,WR内にある断面プロフィールを離散点列に基づいて断面プロフィールを近似して得られる関数上の連続点の中から、2点間の距離がWに近い端点を推定し、端点を結ぶ基準線分から測定点Pまでの距離を求める方法について説明する。
<Second Peaking Detection Procedure>
As a second peaking detection procedure, a distance between two points is set to W among continuous points on a function obtained by approximating a cross-sectional profile based on a discrete point sequence to a cross-sectional profile within the search ranges WL and WR. A method for estimating a near end point and obtaining a distance from a reference line segment connecting the end points to the measurement point P will be described.

図6は、上記のいずれかの光学的方法で得られた溶接鋼管1の断面プロフィールと、既知の長さWをもち座標が未知の線分の端点A,Bとの関係を示している。ここで長さWはピーキング測定治具の脚幅と同じであり、A,Bは脚が断面プロフィールと接する点に相当し、Cは線分ABの中点であり、測定点Pはダイヤルゲージの針先と一致する。線分CPの長さが求めるべきピーキング深さに相当する。Ac,Bcは測定点Pからそれぞれ左右水平方向にW/2の距離にある断面プロフィール上の点を示す。L1,L2はAc,Bcを中心にそれぞれ指定したWL,WRの幅をもつ範囲内にある断面プロフィールを近似した曲線を示す。Ak,Bkは測定点Pを中心とする半径Rkの円と近似曲線との交点を示す。A0は範囲WLにある近似曲線上の測定点P側に近い右側境界点である。 FIG. 6 shows the relationship between the cross-sectional profile of the welded steel pipe 1 obtained by any one of the above optical methods and the end points A and B of the line segment having a known length W and unknown coordinates. Here, the length W is the same as the leg width of the peaking measurement jig, A and B correspond to the points where the legs contact the cross-sectional profile, C is the midpoint of the line segment AB, and the measurement point P is the dial gauge. It matches the needle tip of. The length of the line segment CP corresponds to the peaking depth to be obtained. Ac and Bc indicate points on the cross-sectional profile at a distance of W / 2 in the horizontal direction from the measurement point P, respectively. L1 and L2 indicate curves approximating a cross-sectional profile within a range having the widths WL and WR designated with Ac and Bc as the centers. A k and B k indicate the intersections of a circle with a radius R k centered on the measurement point P and the approximate curve. A 0 is a right boundary point close to the measurement point P side on the approximate curve in the range WL.

図7を参照して、測定点Pにおけるピーキング深さd=CPの計算アルゴリズムについて説明する。ステップS201では、まず、前述した方法により測定点Pである止端点を検出・指定する。   With reference to FIG. 7, the calculation algorithm of the peaking depth d = CP at the measurement point P will be described. In step S201, first, the toe point that is the measurement point P is detected and designated by the method described above.

ステップS202では、測定点Pからそれぞれ左右水平方向にW/2の距離にある断面プロフィール上の2点Ac,Bcをそれぞれ中心として、座標が未知の端点A,Bの探索範囲WL,WRを設定する。   In step S202, the search ranges WL and WR for the end points A and B whose coordinates are unknown are set with the two points Ac and Bc on the cross-sectional profile at a distance of W / 2 in the horizontal direction from the measurement point P, respectively. To do.

ステップS203では、範囲WL,WRにおいて断面プロフィールを、最小二乗法等の関数近似法により左右それぞれ曲線L1,L2で近似する。   In step S203, the cross-sectional profiles in the ranges WL and WR are approximated by the left and right curves L1 and L2, respectively, by a function approximation method such as a least square method.

ステップS204では、中心が測定点Pにある円の半径Rkを設定する。初期値R0は、例えば近似曲線L1上の点のうち、測定点Pに近いWLの右側境界点A0から測定点Pまでの距離とする。k回目の設定におけるRkは刻み幅ΔRだけ増加させ、Rk=R0+k・ΔRとする。刻み幅ΔRは精度と処理時間等の計算コストを考慮に入れて指定する。 In step S204, the central sets the radius R k of a circle in the measurement point P. The initial value R 0 is, for example, the distance from the right boundary point A 0 of the WL near the measurement point P to the measurement point P among the points on the approximate curve L 1. R k in the k-th setting is increased by a step size ΔR so that R k = R 0 + k · ΔR. The step size ΔR is specified in consideration of calculation costs such as accuracy and processing time.

ステップS205では、近似的にPAk=PBk=Rkなる近似曲線L1,L2上の端点Ak,Bkを求める。すなわち、近似曲線L1,L2と半径Rkの円との交点をそれぞれ求め、端点Ak,Bkとする。 In step S205, end points A k and B k on approximate curves L1 and L2 such that PA k = PB k = R k are approximately obtained . That is, to obtain the intersection between the circle of the approximate curve L1, L2 and radius R k respectively, and end point A k, B k.

ステップS206では、端点Ak,Bkの座標から線分Akkの長さWkを計算し、目標とするピーキング測定治具の脚幅W以上、すなわちWk≧Wになったら、ステップS204〜ステップS205のループを抜ける判断をする。以上のようにして、繰り返し演算処理によって距離Wに近い2つの端点を導出する。 At step S206, When the end point A k, from the coordinates of B k of the line segment A k B k the length W k calculated, Ashihaba W or more peaking measuring jig as a target, i.e. becomes W k ≧ W, A determination is made to exit the loop from step S204 to step S205. As described above, two end points near the distance W are derived by the iterative calculation process.

ステップS207では、最終的に求められた端点Ak,Bkを基準線分の端点A,B、線分Akkの長さWkをWとみなして、R=Rkとして、式(6)により長さWの線分と測定点Pまでの距離CP=dを計算する。 In step S207, the end points A k and B k finally obtained are regarded as the end points A and B of the reference line segment and the length W k of the line segment A k B k as W, and R = R k . The distance CP = d between the line segment of the length W and the measurement point P is calculated by (6).

ステップS208では、式(1)により最終的に基準となる真円の場合の深さd0を差し引いてピーキング値Δd=d−d0を計算する。 In step S208, the peaking value Δd = d−d 0 is calculated by subtracting the depth d 0 in the case of a perfect circle as the final reference from the equation (1).

断面プロフィール上で長さWの線分の端点A,Bが含まれる範囲WL,WRが広い場合には放物線や円等の関数を用いるが、狭い場合には直線で近似してもよい。   A function such as a parabola or a circle is used when the ranges WL and WR including the end points A and B of the line segment having the length W are wide on the cross-sectional profile, but may be approximated by a straight line when narrow.

<第3のピーキング検出手順>
第2のピーキング検出手順において探索範囲WL,WR内にある断面プロフィール上の離散点列を直線で近似する場合、測定点Pと線分ABの中点Cを結ぶ深さCPを直接的に演算する計算式を導出可能である。
<Third Peaking Detection Procedure>
When the discrete point sequence on the cross-sectional profile within the search ranges WL and WR is approximated by a straight line in the second peaking detection procedure, the depth CP connecting the measurement point P and the midpoint C of the line segment AB is directly calculated. A calculation formula can be derived.

まず、図8を用いて第3のピーキング検出手順で用いる計算式を導出する。直線L1,L2はそれぞれ図6の端点A,Bの周辺部を近似して得られる直線(すなわち接線)であり、点Qで交わるとする。   First, a calculation formula used in the third peaking detection procedure is derived using FIG. The straight lines L1 and L2 are straight lines (that is, tangent lines) obtained by approximating the peripheral portions of the end points A and B in FIG.

点Eは線分ABの中点Cから直線L1に下ろした垂線の足、点Dは測定点Pから直線CEに下ろした垂線の足、点Fは測定点Pから直線L1に下ろした垂線の足、点Hは中点Cから直線L2に下ろした垂線の足、点Gは測定点Pから直線CHに下ろした垂線の足、点Iは測定点Pから直線L2に下ろした垂線の足である。   Point E is a perpendicular foot drawn from the middle point C of the line segment AB to the straight line L1, point D is a perpendicular foot drawn from the measurement point P to the straight line CE, and point F is a perpendicular line drawn from the measurement point P to the straight line L1. Feet, point H is a perpendicular foot drawn from the middle point C to the straight line L2, point G is a perpendicular foot drawn from the measurement point P to the straight line CH, and point I is a perpendicular foot drawn from the measurement point P to the straight line L2. is there.

点Rは直線L1と直線CPの延長線との交点、点Sは直線L2と直線CPの延長線との交点、M1は二直線L1,L22のなす角の二等分線、M2は測定点Pを通り当該二等分線M1に平行な直線である。   Point R is the intersection of the straight line L1 and the extension of the straight line CP, point S is the intersection of the straight line L2 and the extension of the straight line CP, M1 is the bisector of the angle formed by the two straight lines L1 and L22, and M2 is the measurement point A straight line passing through P and parallel to the bisector M1.

1は測定点Pから直線L1までの距離(線分PF)、U2は測定点Pから直線L2までの距離である(線分PI)。αは二直線L1,L2のなす角の半角、δは角の二等分線方向M2に対し線分CPがなす角である。なお、以下の説明においては、例えば線分PFの長さを単にPFと記すことにする。 U 1 is the distance from the measurement point P to the straight line L1 (line segment PF), and U 2 is the distance from the measurement point P to the straight line L2 (line segment PI). α is a half angle of the angle formed by the two straight lines L1 and L2, and δ is an angle formed by the line segment CP with respect to the bisector direction M2. In the following description, for example, the length of the line segment PF is simply referred to as PF.

直線CRは直線M2に対しδだけ傾いており、∠ACR=∠AEC=90°、DP//L1であるから、∠CRA=∠ACE=∠CPD=α−δである。同様に、∠BCS=∠BHC=90°、GP//L2であるから、∠CSB=∠BCH=∠CPG=α+δである。   The straight line CR is inclined by δ with respect to the straight line M2, and since ∠ACR = ∠AEC = 90 ° and DP // L1, ∠CRA = ∠ACE = ∠CPD = α−δ. Similarly, since ∠BCS = ∠BHC = 90 ° and GP // L2, ∠CSB = ∠BCH = ∠CPG = α + δ.

AC=BC=W/2、CE=W/2・cos(α−δ)、CD=d・sin(α−δ)、U1=PF=DE=CE−CDより下式(7)が成り立つ。同様に、CH=W/2・cos(α+δ)、CG=d・sin(α+δ)、U2=PI=GH=CH−CGより下式(8)が成り立つ。 From AC = BC = W / 2, CE = W / 2 · cos (α−δ), CD = d · sin (α−δ), U 1 = PF = DE = CE−CD, the following expression (7) holds. . Similarly, the following equation (8) is established from CH = W / 2 · cos (α + δ), CG = d · sin (α + δ), and U 2 = PI = GH = CH−CG.

Figure 0004762851
Figure 0004762851

関係式(7)、(8)を変形すると、下式(9)、(10)が導かれる。   When the relational expressions (7) and (8) are transformed, the following expressions (9) and (10) are derived.

Figure 0004762851
Figure 0004762851

これら式(9)、(10)が、断面プロフィール上にある、長さWの線分の端点A,Bの周辺部を近似する直線が与えられた場合に、CPの長さdと、二直線L1,L2のなす角の二等分線M1に対するCPのなす角δを未知数として計算するための式である。方向角δを消去するとCP=dについての4次方程式が得られるが、線分CPの方向は角の二等分線M1,M2方向にほとんど等しくてδは微小量であるため、式(9)及び(10)それぞれをさらに変形して得られる下記の関係式(11)及び(12)から、δを1次近似で求めて深さdを計算することで十分である。   When these equations (9) and (10) are given a straight line that approximates the periphery of the end points A and B of the line segment of length W on the cross-sectional profile, the CP length d and two This is an equation for calculating the angle δ formed by CP with respect to the bisector M1 of the angle formed by the straight lines L1 and L2 as an unknown. If the direction angle δ is eliminated, a quartic equation for CP = d is obtained, but the direction of the line segment CP is almost equal to the direction of the angle bisectors M1 and M2, and δ is a minute amount. ) And (10) From the following relational expressions (11) and (12) obtained by further modifying each, it is sufficient to calculate δ by a first order approximation and calculate the depth d.

Figure 0004762851
Figure 0004762851

すなわち、まず第1番に、式(11)にてδ=0として深さCP=dの初期値d0を計算する。深さdの初期値d0を用いて式(12)からδ=δ1を計算する。式(11)にてδ=δ1として最終的な深さdを計算する。 That is, first, the initial value d 0 of the depth CP = d is calculated with δ = 0 in equation (11). Δ = δ 1 is calculated from Equation (12) using the initial value d 0 of the depth d. In equation (11), the final depth d is calculated with δ = δ 1 .

なお、線分ABより測定点Pが上方にある場合にはd<0でなければならないが、符号に対応するため測定点Pが直線L1,L2より上方にある場合U1>0、U2>0、下方にある場合をU1<0、U2<0とする。 When the measurement point P is above the line segment AB, d <0 must be satisfied. However, in order to correspond to the sign, when the measurement point P is above the straight lines L1 and L2, U 1 > 0, U 2 > 0, U 1 <0, U 2 <0 in the lower case.

基準線分の端点A,Bを、探索範囲WL,WRで離散的な断面プロフィールを近似する直線上から見い出し、測定点Pにおけるピーキング深さd=CPを演算する手順のフローチャートを図9に示す。   FIG. 9 shows a flowchart of a procedure for finding the end points A and B of the reference line segment on a straight line that approximates a discrete cross-sectional profile in the search ranges WL and WR, and calculating the peaking depth d = CP at the measurement point P. .

図9を参照して、測定点Pにおけるピーキング深さd=CPの計算アルゴリズムについて説明する。ステップS301では、まず、前述した方法により測定点Pである止端点を検出・指定する。   With reference to FIG. 9, the calculation algorithm of the peaking depth d = CP at the measurement point P will be described. In step S301, first, the toe point that is the measurement point P is detected and designated by the method described above.

ステップS302では、測定点Pからそれぞれ左右水平方向にW/2の距離にある断面プロフィール上の2点Ac,Bcをそれぞれ中心として、座標が未知の端点A,Bの探索範囲WL,WRを設定する。   In step S302, the search ranges WL and WR for the end points A and B whose coordinates are unknown are set around the two points Ac and Bc on the cross-sectional profile at a distance W / 2 in the horizontal direction from the measurement point P, respectively. To do.

ステップS303では、範囲WL,WRにおいて断面プロフィールを、最小二乗法等の関数近似法により左右それぞれ直線L1,L2で近似する。   In step S303, the cross-sectional profiles in the ranges WL and WR are approximated by straight lines L1 and L2, respectively, by a function approximation method such as a least square method.

ステップS304では、基準線分の長さW、測定点Pから直線L1,L2までの距離U1,U2,直線L1,L2のなす角の半角αを既知とし、式(11)、(12)を用いて、中点Cから測定点Pを結ぶ線分の長さdと、L1,L2のなす角の二等分線方向からのずれ角δを求める。 In step S304, the length W of the reference line segment, the distances U 1 and U 2 from the measurement point P to the straight lines L1 and L2, and the half angle α formed by the straight lines L1 and L2 are known, and the equations (11) and (12 ), The length d of the line segment connecting the midpoint C to the measurement point P and the deviation angle δ from the bisector direction between the angles formed by L1 and L2 are obtained.

ステップS305では、式(1)により最終的に基準となる真円の場合の深さd0を差し引いてピーキング値Δd=d−d0を計算する。 In step S305, the peaking value Δd = d−d 0 is calculated by subtracting the depth d 0 in the case of a perfect circle as a final reference from the equation (1).

本発明の断面形状検出装置の実現にあたっては、パーソナルコンピュータを画像処理装置及び信号処理制御装置として用い、本発明における各断面プロフィール導出方法や各ピーキング検出手順の前記の各ステップの処理は、例えばパーソナルコンピュータのCPUがコンピュータプログラムを実行することによって実現することができる。また、本発明の断面形状検出装置において、各処理のためのデータを設定するためにキーボード及びマウス等を用いるようにしても良く、また、各処理の中間結果やピーキング導出結果はコンピュータディスプレイ上に表示する(図示せず)。   In realizing the cross-sectional shape detection device of the present invention, a personal computer is used as an image processing device and a signal processing control device, and each cross-sectional profile derivation method and each peaking detection procedure in the present invention are processed in, for example, a personal computer. This can be realized by a computer CPU executing a computer program. Further, in the cross-sectional shape detection apparatus of the present invention, a keyboard and a mouse may be used to set data for each process, and intermediate results and peaking derivation results of each process are displayed on a computer display. Display (not shown).

実際のUO鋼管から切り出した長さ200mmのサンプルを自動ステージに載せて、管軸方向に動かしながらピーキング測定を行った。図10は本発明の方法により得られた測定値(実線)、及び専用のピーキング測定治具を適用して得られた測定値(○)の長手(管軸)方向の変化をプロットしたグラフである。両者は±0.2mmの精度でよく一致しており、本方法がピーキング測定治具による方法と整合性があるので、両方の測定値を用いて品質管理に用いることが可能である。   A sample having a length of 200 mm cut out from an actual UO steel pipe was placed on an automatic stage, and peaking measurement was performed while moving the sample in the pipe axis direction. FIG. 10 is a graph plotting changes in the longitudinal (tube axis) direction of measured values (solid line) obtained by the method of the present invention and measured values (◯) obtained by applying a dedicated peaking measurement jig. is there. Both agree well with an accuracy of ± 0.2 mm, and the present method is consistent with the method using the peaking measurement jig. Therefore, both measured values can be used for quality control.

本方法は複数の離散点の情報を使った計算方法であり、隣り合う離散点の間隔や断面の凹凸による測定のばらつきは小さく、湾曲部の断面形状を簡易に高速に計算できるので、人手による間欠的な測定では捉えきれない管軸方向の微妙な変化を全長にわたって細かい間隔で測定することができる。特に溶接強度に影響のあるピーキングを各製造工程においてピーキング測定治具と互換性のある方法で測定し、工程間での手測定値との比較や形状変化の追跡が可能になる。また、データを蓄積することで溶接強度を保証できるピーキングの管理値を定めることが可能であり、造り込みや品質管理へ反映することにより全長における品質保証が可能になる。   This method is a calculation method using information on multiple discrete points, and there is little variation in measurement due to the distance between adjacent discrete points and the unevenness of the cross section, and the cross-sectional shape of the curved part can be calculated easily and at high speed. Subtle changes in the tube axis direction that cannot be captured by intermittent measurement can be measured over the entire length at fine intervals. In particular, peaking that affects the welding strength can be measured by a method compatible with the peaking measurement jig in each manufacturing process, and comparison with hand-measured values between processes and tracking of shape changes can be performed. In addition, by accumulating data, it is possible to determine a peaking control value that can guarantee the welding strength, and by reflecting it in manufacturing and quality control, it is possible to guarantee the quality over the entire length.

本発明の実施の形態において、第一の断面プロフィール導出方法の装置構成の概略図であり、線状光源又は点状光源を使った光切断法での全体構成を示す図である。In embodiment of this invention, it is the schematic of the apparatus structure of the 1st cross-sectional profile derivation method, and is a figure which shows the whole structure by the light cutting method using a linear light source or a point light source. 第一の断面プロフィール導出方法における、線状光源又は点状光源を使った光切断法での光学配置と、物体側と像側の座標系を示す図である。It is a figure which shows the optical arrangement | positioning by the light cutting method using a linear light source or a point light source, and the coordinate system of an object side and an image side in the 1st cross-sectional profile derivation method. 本発明の実施の形態において、第二の断面プロフィール導出方法の装置構成の概略図であり、測距手段を使った場合の全体構成を示す図である。In embodiment of this invention, it is the schematic of the apparatus structure of the 2nd cross-sectional profile derivation method, and is a figure which shows the whole structure at the time of using a ranging means. 本発明の断面形状検出方法における第1のピーキング検出手順において、断面プロフィール上の基準線分の端点A,Bの探索範囲WL,WRと離散点列の位置関係を示す図である。It is a figure which shows the positional relationship of search range WL, WR of the end points A and B of the reference line segment on a cross-sectional profile, and a discrete point sequence in the 1st peaking detection procedure in the cross-sectional shape detection method of this invention. 本発明の断面形状検出方法における第1のピーキング検出手順において、ピーキング値を算出するフローチャートである。It is a flowchart which calculates a peaking value in the 1st peaking detection procedure in the cross-sectional shape detection method of this invention. 本発明の断面形状検出方法における第2のピーキング検出手順において、断面プロフィール上の基準線分の端点A,Bの探索範囲WL,WRと近似曲線との位置関係を示す図である。In the 2nd peaking detection procedure in the section shape detection method of the present invention, it is a figure showing the positional relation between search range WL, WR of end points A and B of a reference line segment on a section profile, and an approximate curve. 本発明の断面形状検出方法における第2のピーキング検出手順において、ピーキング値を算出するフローチャートである。It is a flowchart which calculates a peaking value in the 2nd peaking detection procedure in the cross-sectional shape detection method of this invention. 本発明の断面形状検出方法における第3のピーキング検出手順において、幾何学的関係式の導出に使う説明図である。It is explanatory drawing used for derivation | leading-out of a geometric relational expression in the 3rd peaking detection procedure in the cross-sectional shape detection method of this invention. 本発明の断面形状検出方法における第3のピーキング検出手順において、ピーキング値を算出するフローチャートである。It is a flowchart which calculates a peaking value in the 3rd peaking detection procedure in the cross-sectional shape detection method of this invention. 本発明の断面形状検出方法を実際のUO鋼管から切り出したサンプルに適用して得られた測定値と、専用治具での測定値を長手方向にプロットした図である。It is the figure which plotted the measured value obtained by applying the cross-sectional shape detection method of this invention to the sample cut out from the actual UO steel pipe, and the measured value in a dedicated jig in the longitudinal direction. 従来技術であるダイヤルゲージを使ったピーキングの測定方法と測定治具のUO鋼管の断面プロフィール上での位置関係を説明する図である。It is a figure explaining the positional relationship on the cross-sectional profile of the measuring method of the peaking which uses the dial gauge which is a prior art, and a measurement jig | tool of a UO steel pipe. UO鋼管の止端部におけるピーキングを説明する図である。It is a figure explaining the peaking in the toe part of a UO steel pipe. UO鋼管の製造工程を説明する図である。It is a figure explaining the manufacturing process of a UO steel pipe.

符号の説明Explanation of symbols

1:溶接鋼管
2:投光装置(線状レーザ光源或いは走査式点状レーザ光源)
3:光切断像
4:線状レーザビーム或いは走査式点状ビームの軌跡
5:撮像手段(カメラ)
5':レーザ距離計
6:画像処理装置
7:信号処理制御装置(第1)
7':信号処理制御装置(第2)
10:ビード部
11:止端部
12:ビード外側の周辺部
P:止端部
1: Welded steel pipe 2: Projection device (linear laser light source or scanning dot laser light source)
3: Light cut image 4: Trace of linear laser beam or scanning point beam 5: Imaging means (camera)
5 ': Laser distance meter 6: Image processing device 7: Signal processing control device (first)
7 ': Signal processing control device (second)
10: Bead part 11: Toe part 12: Peripheral part outside bead P: Toe part

Claims (5)

湾曲部を有する部材を被検査体として、前記湾曲部表面上の測定点Pのピーキングを測定する断面形状検出方法において、
前記湾曲部表面に沿って線状光を照射した投光パターン、又は点状光を照射し走査して得る前記湾曲部表面の線状の光線軌跡に基づいて、光学的手法により複数の点で構成される、前記湾曲部の断面プロフィールを測定する第1ステップと、
前記断面プロフィール上に測定点Pを設定する第2ステップと、
予め設定した距離Wの半分の距離W/2だけ、前記測定点Pから水平方向の左右に離れた断面プロフィール上の第1の点と第2の点を指定する第3ステップと、
前記第1の点を中心とする所定の第1の探索範囲WL内、及び、前記第2の点を中心とする所定の第2の探索範囲WR内の、それぞれの断面プロフィール上において、断面プロフィールを構成する複数の離散点、又は断面プロフィールを近似して得られる関数上の連続点の集合の中から、2点間の距離が前記距離Wに最も近い点をそれぞれ第1及び第2の端点として探索する第4ステップと、
前記第1及び第2の端点を結ぶ線分を基準線分として、前記第1及び第2の端点と前記測定点Pの位置に基づいて、前記基準線分から前記測定点Pまでの距離を算出する第5ステップと、
前記基準線分から前記測定点Pまでの距離に基づいて前記測定点Pのピーキングを算出する第6ステップとを有することを特徴とする断面形状検出方法。
In the cross-sectional shape detection method for measuring the peaking of the measurement point P on the surface of the bending portion, using a member having the bending portion as an inspection object,
Based on a light projection pattern irradiated with linear light along the curved surface, or a linear ray trajectory on the curved surface obtained by irradiating and scanning with dotted light, a plurality of points are obtained by an optical method. A first step of measuring a cross-sectional profile of the curved portion configured;
A second step of setting a measurement point P on the cross-sectional profile;
A third step of designating a first point and a second point on the cross-sectional profile that are separated from the measurement point P in the horizontal direction by a distance W / 2 that is half of the preset distance W;
Cross-sectional profiles on respective cross-sectional profiles in a predetermined first search range WL centered on the first point and in a predetermined second search range WR centered on the second point The first and second end points are the points where the distance between the two points is the closest to the distance W from the set of continuous points on the function obtained by approximating the cross-sectional profile or a plurality of discrete points constituting And a fourth step to search as
A line segment connecting the first and second end points is used as a reference line segment, and a distance from the reference line segment to the measurement point P is calculated based on the positions of the first and second end points and the measurement point P. And a fifth step
And a sixth step of calculating peaking of the measurement point P based on a distance from the reference line segment to the measurement point P.
前記光学的手法は、光切断法であることを特徴とする請求項1に記載の断面形状検出方法。   The cross-sectional shape detection method according to claim 1, wherein the optical method is a light cutting method. 前記光学的手法は、三角測量法であることを特徴とする請求項1に記載の断面形状検出方法。   The cross-sectional shape detection method according to claim 1, wherein the optical method is a triangulation method. 請求項1又は2に記載の断面形状検出方法に用いられる前記湾曲部表面上の前記測定点Pのピーキングを測定する断面形状検出装置であって、
前記湾曲部表面に沿って線状光を照射するか、又は点状光を照射し走査して前記湾曲部表面の線状の光線軌跡を得る投光手段と、
前記線状の光線軌跡の画像を得るための撮像手段と、
前記光線軌跡の画像に基づいて複数の点で構成される前記湾曲部の断面プロフィールを所定の画像処理で導出する断面プロフィール測定手段と、
前記第2〜6の各ステップを実行する信号処理制御手段とを具備することを特徴とする断面形状検出装置。
A cross-sectional shape detection apparatus for measuring peaking of the measurement point P on the curved portion surface used in the cross-sectional shape detection method according to claim 1 or 2,
Irradiating linear light along the curved surface, or projecting means for irradiating and scanning with dotted light to obtain a linear ray locus on the curved surface;
Imaging means for obtaining an image of the linear ray trajectory;
Cross-sectional profile measuring means for deriving a cross-sectional profile of the curved portion constituted by a plurality of points based on an image of the ray trajectory by predetermined image processing;
A cross-sectional shape detection apparatus comprising: signal processing control means for executing the second to sixth steps.
請求項1又は3に記載の断面形状検出方法に用いられる前記湾曲部表面上の前記測定点Pのピーキングを測定する断面形状検出装置であって、
点状光を照射し走査して前記湾曲部表面の線状の光線軌跡を得る投光手段と、
前記線状の光線軌跡の位置を測定する位置検出手段と、
複数の点で構成される前記湾曲部の断面プロフィールを導出する断面プロフィール測定手段と、
前記第2〜6の各ステップを実行する信号処理制御手段とを具備することを特徴とする断面形状検出装置。
A cross-sectional shape detection device for measuring peaking of the measurement point P on the curved portion surface used in the cross-sectional shape detection method according to claim 1,
Projecting means for irradiating and scanning point light to obtain a linear ray locus on the surface of the curved portion;
Position detecting means for measuring the position of the linear ray trajectory;
Cross-sectional profile measuring means for deriving a cross-sectional profile of the curved portion constituted by a plurality of points;
A cross-sectional shape detection apparatus comprising: signal processing control means for executing the second to sixth steps.
JP2006288866A 2006-10-24 2006-10-24 Cross-sectional shape detection method and apparatus Active JP4762851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288866A JP4762851B2 (en) 2006-10-24 2006-10-24 Cross-sectional shape detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288866A JP4762851B2 (en) 2006-10-24 2006-10-24 Cross-sectional shape detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2008107156A JP2008107156A (en) 2008-05-08
JP4762851B2 true JP4762851B2 (en) 2011-08-31

Family

ID=39440628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288866A Active JP4762851B2 (en) 2006-10-24 2006-10-24 Cross-sectional shape detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4762851B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029419B2 (en) * 2008-02-26 2012-09-19 トヨタ自動車株式会社 Weld bead inspection method and weld bead inspection device
JP4992848B2 (en) * 2008-07-22 2012-08-08 トヨタ自動車株式会社 Weld bead inspection method and weld bead inspection device
JP6064754B2 (en) * 2013-04-09 2017-01-25 Jfeスチール株式会社 External surface shape measuring method and external surface shape measuring apparatus for ERW steel pipe
JP6279062B1 (en) * 2016-12-20 2018-02-14 日新製鋼株式会社 Method for detecting shape of butt portion of welded steel pipe, quality control method and apparatus for welded steel pipe using the same
CN114193240B (en) * 2021-12-16 2022-10-04 大连理工大学 Shape following machining process method for weld joint in shell of special mobile robot

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112209A (en) * 1982-12-20 1984-06-28 Nippon Steel Corp Measuring method of shape of steel tube weld zone
JP2674466B2 (en) * 1993-04-09 1997-11-12 日本鋼管株式会社 Pipe shape measuring device
JPH0924433A (en) * 1995-07-11 1997-01-28 Nkk Corp Expanding device of steel tube and manufacture of steel tube
JP3546242B2 (en) * 2000-01-20 2004-07-21 Jfeスチール株式会社 Method and apparatus for measuring shape and dimensions of welded part
JP4267789B2 (en) * 2000-01-24 2009-05-27 日立建機株式会社 Method and apparatus for detecting weld bead shape
JP4374845B2 (en) * 2002-11-29 2009-12-02 Jfeスチール株式会社 Method and apparatus for detecting bead shape of ERW pipe

Also Published As

Publication number Publication date
JP2008107156A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
CN104697467A (en) Weld appearance shape based on line laser scanning and surface defect detection method
US7236255B2 (en) Method and instrument for measuring bead cutting shape of electric welded tube
JP5217221B2 (en) Method for detecting surface defect shape of welded portion and computer program
JP4705479B2 (en) Bead shape detection method and apparatus
US20110279828A1 (en) Inspection device and inspection method for boiler furnace water wall tubes
JP5288297B2 (en) Method for measuring the end shape of a threaded tube
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
CN110140022B (en) Method for detecting shape of butt joint portion of welded steel pipe, method for managing quality of welded steel pipe, and apparatus therefor
CN106382884A (en) Point light source welding seam scanning detection method
CN206056502U (en) A kind of line source scans the detection means of weld seam
MX2011005273A (en) Inspection device and inspection method for evaporation pipe in boiler furnace.
JP5481862B2 (en) Pantograph height measuring device and calibration method thereof
JP2008302428A (en) Arc welding quality inspection method
JP2004117053A (en) Method and device for detecting bead shape of seam welded pipe
US9664604B2 (en) Measurement apparatus, measurement method, and method of manufacturing article
JP4374845B2 (en) Method and apparatus for detecting bead shape of ERW pipe
JP2016024067A (en) Measurement method and measurement device
KR101284852B1 (en) Apparatus for inspecting weld toe grinding and methord thereof
JP2019124560A (en) Appearance evaluation method and appearance evaluation device for weld bead
JPH0160367B2 (en)
JPH0755438A (en) Shape measuring method
JPH03186705A (en) Three-dimensional shape dimension measuring instrument
JPH07218227A (en) Method and apparatus for measuring sectional shape
JPH01232203A (en) Shape measuring instrument for tube body
JP4230758B2 (en) Non-contact sectional shape measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350