JPH03186705A - Three-dimensional shape dimension measuring instrument - Google Patents

Three-dimensional shape dimension measuring instrument

Info

Publication number
JPH03186705A
JPH03186705A JP32626789A JP32626789A JPH03186705A JP H03186705 A JPH03186705 A JP H03186705A JP 32626789 A JP32626789 A JP 32626789A JP 32626789 A JP32626789 A JP 32626789A JP H03186705 A JPH03186705 A JP H03186705A
Authority
JP
Japan
Prior art keywords
slit light
dimensional
feature points
dimension
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32626789A
Other languages
Japanese (ja)
Other versions
JP2630844B2 (en
Inventor
Kazunori Higuchi
和則 樋口
Osamu Koseki
修 小関
Arata Yamamoto
新 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP1326267A priority Critical patent/JP2630844B2/en
Priority to US07/538,525 priority patent/US5129010A/en
Publication of JPH03186705A publication Critical patent/JPH03186705A/en
Application granted granted Critical
Publication of JP2630844B2 publication Critical patent/JP2630844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To execute the measurement at high speed and with high reliability by extracting an end point by comparing a difference value and a threshold in each position of height information of an object, based on three-dimensional coordinates of the object, and obtaining exactly a step difference and the dimension of a clearance which the object has by a small operation quantity. CONSTITUTION:From a slit light source 1, a slit light L is projected to an object. Subsequently, from a coordinate arithmetic part 4 in a position in which the slit light L is projected, three-dimensional coordinates (Y, Z) of a bumper being an object to be measured and a reference block are obtained. Also, in the arithmetic part 4 the center position of the slit light is detected with high accuracy by deriving the centroid of its reflecting signal intensity at every scanning line, in an optical cut image projected to the object and obtained by executing an image pickup by a television camera 2. In such a way, from the center position of the obtained slit light and the positions of the camera 2 and the light source 1, three-dimensional coordinates (Y, Z) are detected by the principle of a trigonometrical survey.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は対象物の特定領域における3次元形状寸法を計
測する、例えば対象物の2つの端部の相対位置関係から
隙間や段差の少なくともいずれかを計測する3次元形状
寸法計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention measures the three-dimensional shape and dimensions of a specific region of an object. The present invention relates to a three-dimensional shape and dimension measuring device for measuring.

〔従来技術〕[Prior art]

従来、対象物の段差を検出するものとして、赤外線レー
ザーによるスリット光を車体のルーフ部とスライディン
グルーフ部とにまたがって照射するレーザスリット光照
射手段と、上記レーザスリット光の照射部分を撮像する
視覚センサと、この視覚センサからレーザスリット光の
照射部分の画像を取り込んで2値化し、この2値化され
た画像におけるレーザスリット光に対応した線のズレ量
の検出に基づいてルーフ部とスライディングル−フ部と
の間の段差を検出する画像処理手段とから成る自動車の
スライディングルーフ段差検出装置がある(特開昭63
−61107号)。
Conventionally, methods for detecting steps in an object include a laser slit light irradiation means that irradiates a slit light emitted from an infrared laser across the roof part and the sliding roof part of a car body, and a visual system that images the irradiated part of the laser slit light. A sensor captures an image of the area irradiated with the laser slit light from this visual sensor and converts it into a binary image. Based on the detection of the amount of deviation of the line corresponding to the laser slit light in the binarized image, the roof part and the sliding wheel are detected. - There is a sliding roof level difference detection device for an automobile comprising an image processing means for detecting a level difference between the roof part and the roof part.
-61107).

しかしながら、従来装置は2値化された画像におけるレ
ーザスリット光に対応した線のズレ量を検出して段差を
測定するため検出精度が十分でない実用上解決すべき問
題点を有する。
However, since the conventional apparatus measures the level difference by detecting the amount of deviation of the line corresponding to the laser slit light in the binarized image, the detection accuracy is insufficient, which is a problem that must be solved in practice.

また、従来、生産工程においては、自動車ボディの段差
や隙間などの寸法計測は、ノギスや隙間ゲージを用いた
人手による計測が行われている。
Furthermore, conventionally, in the production process, dimensions such as steps and gaps in an automobile body have been measured manually using calipers or a gap gauge.

しかしながら前者は作業者によるバラツキや同一作業者
でもコンデイションによるバラツキがあり、計測の信頼
性に欠け、実用上解決すべき問題がある。そして、対象
物の特定領域における隙間、段差の計測を行うためには
、対象物表面の3次元座標値が必要である。従来の接触
式やスポット光式の3次元座標測定では、対象物の表面
の正確な隙間、段差計測をするためには、多くの点数を
測定しなくてはならないため、時間がかかるという欠点
があった。また、スリット光を用いた平面画像処理を用
いる方法でも、画面上のスリット光りの位置(i、j)
が得られるだけでは、対象物の3次元座標が得られない
ため、対象物の表面の隙間・段差計測を行うことはでき
ない。
However, the former method has variations depending on the operator and even the same worker depending on the conditions, lacks measurement reliability, and has problems that need to be solved in practice. In order to measure gaps and steps in a specific area of the object, three-dimensional coordinate values of the surface of the object are required. Conventional contact-type and spot-light type three-dimensional coordinate measurement has the disadvantage that it takes time to measure many points in order to accurately measure gaps and steps on the surface of an object. there were. Also, in a method using planar image processing using slit light, the position (i, j) of the slit light on the screen
If only the three-dimensional coordinates of the object are obtained, it is not possible to measure gaps and steps on the surface of the object.

〔発明の目的〕[Purpose of the invention]

そこで、本発明では、スリット光を用いて高速・高精度
に対象物表面の3次元座標を検出できる座標演算部とし
ての3次元視覚センサを用いて対象物表面の3次元座標
を高速・高精度に、かつ多数点を1度に測定し、その3
次元座標を用いて、対象物の形状を高速・高精度な隙間
・段差計測を行なえるようにした。
Therefore, in the present invention, the three-dimensional coordinates of the object surface can be detected at high speed and with high precision using a three-dimensional visual sensor as a coordinate calculation unit that can detect the three-dimensional coordinates of the object surface at high speed and with high precision using slit light. and measure multiple points at once, Part 3
Using dimensional coordinates, we have made it possible to measure gaps and steps in the shape of objects at high speed and with high precision.

本発明の目的は、上記従来の問題点を解消し、対象物の
隙間・段差(または、高さと幅)の一方あるいは両方(
同時)の簡便・高速・高信頼性計測、例えば、自動車ボ
ディの建付は寸法、自動車部品と基準ブロック(基準座
標を与えるもの)との隙間・段差を計測することができ
る3次元形状寸法計測装置を提供することにある。
It is an object of the present invention to solve the above-mentioned conventional problems and to reduce gaps and steps (or height and width) of objects (or both).
Simple, high-speed, and highly reliable measurement (simultaneously), for example, 3D shape and dimension measurement that can measure dimensions for car body construction, gaps and steps between car parts and reference blocks (which give reference coordinates) The goal is to provide equipment.

〔発明の構成〕[Structure of the invention]

本発明の3次元形状寸法計測装置は、隙間および段差の
少なくとも1つを形成する少なくとも2つの端部を有す
る対象物と対向し、該対象物表面に向けて一定角度でス
リット光源よりスリット光を投射し、該スリット光によ
り生じた光切断線をTVカメラにより撮像する撮像部と
、前記TVカメラからの光切断線像において、各走査線
ごとの強度分布の重心位置に基づく三角測量により検出
された対象物表面の走査線ごとに得られる3次元座標値
の差分と基準値との関係から2つの特徴点を抽出してそ
の3次元座標値を検出する特徴点検出部と、前記特徴点
検出部で検出された2つの特徴点の各3次元座標値の差
に基づき2つの特徴点間の相対位置関係を演算する寸法
演算部とからなる。
The three-dimensional shape measuring device of the present invention faces an object having at least two ends forming at least one of a gap and a step, and emits slit light from a slit light source at a constant angle toward the surface of the object. an imaging unit that images a light section line generated by the slit light projected by a TV camera; a feature point detection unit that extracts two feature points from the relationship between the difference in three-dimensional coordinate values obtained for each scanning line of the object surface and a reference value and detects the three-dimensional coordinate values; and a dimension calculation section that calculates the relative positional relationship between the two feature points based on the difference between the respective three-dimensional coordinate values of the two feature points detected by the section.

〔発明の作用効果〕[Function and effect of the invention]

上記構成からなる本発明の3次元形状寸法計測装置は、
撮像部によって対象物の特定領域における段差、隙間の
少なくとも一つを反映するスリット光源からのスリット
光により生じた光切断線をテレビカメラにより撮像する
。そして、特徴点検出部により得られた光切断線像の走
査線ごとの強度分布の重心位置から3角測量に基づき、
検出された対象物表面の3次元座標から特定領域におけ
る隙間、段差に関する相対寸法を定義する特徴点の3次
元座標を検出する。次いで寸法演算部により前記特徴点
検出部で検出された特徴点の3次元座標値の差に基づき
2つの特徴点間の相対位置関係を演算する。すなわち、
本発明装置により対象物を計測する寸法は、例えば、自
動車ボディのドアとフェンダ間の相対距離である段差や
隙間である。ここで段差や隙間は、3次元視覚センサと
してのスリット光源からのスリット光を対象物に投射し
、得られたスリット光像の端点の3次元座標の差あるい
は距離から算出する。
The three-dimensional shape and dimension measuring device of the present invention having the above configuration includes:
The imaging unit uses a television camera to image a light cutting line generated by slit light from a slit light source that reflects at least one of a step and a gap in a specific area of the object. Then, based on triangulation from the center of gravity of the intensity distribution for each scanning line of the light section line image obtained by the feature point detection unit,
From the detected three-dimensional coordinates of the surface of the object, three-dimensional coordinates of feature points that define relative dimensions regarding gaps and steps in a specific area are detected. Next, the dimension calculation section calculates the relative positional relationship between the two feature points based on the difference in the three-dimensional coordinate values of the feature points detected by the feature point detection section. That is,
The dimensions measured by the device of the present invention are, for example, the relative distance between a door and a fender of an automobile body, such as a step or a gap. Here, the step or gap is calculated from the difference or distance between the three-dimensional coordinates of the end points of the obtained slit light image by projecting slit light from a slit light source as a three-dimensional visual sensor onto the object.

また、本発明は上記の他に対象物が端部に丸味形状を有
する場合には、特徴点検出部では、スリット光像の端点
に、あらかじめ用意した補正値を加算することで、対象
物が有する実際の端とよく一致する特徴点が検出でき、
その結果補正値を用いない場合に比較し、隙間寸法を正
しく計測できるという利点がある。
In addition to the above, in the present invention, when the object has a rounded end, the feature point detection section adds a pre-prepared correction value to the end point of the slit light image. It is possible to detect feature points that closely match the actual edges of the
As a result, compared to the case where no correction value is used, there is an advantage that the gap size can be measured accurately.

さらに、本発明では、光切断線に沿った対象物表面の3
次元座標が高速・高精度に多数点を1度に測定できる3
次元視覚センサを用いているため、対象物の段差や隙間
の寸法計測を高速・高精度に実現できる。すなわち、従
来、接触式やスポット光式3次元座標測定機において、
対象物の寸法を定義する端点の3次元座標は、センサ又
は対象物を複数回移動させて細かく測定しなければ決定
できず、そのため多大の時間がかかっていた。しかし、
この3次元視覚センサを用いた寸法計測では、対象物を
この3次元視覚センサの測定範囲内に位置決めするだけ
で、端部の3次元座標が得られ、高速・高精度に、形状
寸法計測が行なえる。
Furthermore, in the present invention, three parts of the object surface along the optical cutting line are
Dimensional coordinates can measure multiple points at once with high speed and precision 3
Because it uses a dimensional vision sensor, it can measure the dimensions of steps and gaps in objects at high speed and with high precision. In other words, in conventional contact type or spot light type three-dimensional coordinate measuring machines,
The three-dimensional coordinates of the end points that define the dimensions of the object cannot be determined without moving the sensor or the object multiple times and taking detailed measurements, which takes a lot of time. but,
In dimension measurement using this 3D vision sensor, the 3D coordinates of the edge can be obtained simply by positioning the object within the measurement range of this 3D vision sensor, allowing for high-speed, high-precision shape and dimension measurement. I can do it.

このように本発明の3次元形状寸法計測装置は対象物に
おける段差、隙間を非接触で高速かつ高精度に計測でき
る実用上多大の作用効果を奏する。
As described above, the three-dimensional shape and dimension measuring device of the present invention can measure steps and gaps in an object non-contact, at high speed, and with high accuracy, and has a great practical effect.

〔その他の発明の構成〕[Other compositions of the invention]

その他の発明は上記構成に加え寸法演算部で計算された
寸法値について良否を判定する判定部を具備して戒る。
Other inventions include, in addition to the above-described configuration, a determining section that determines the acceptability of the dimension values calculated by the dimension calculation section.

〔その他の発明の作用効果〕[Other effects of the invention]

前記判定部では、予め与えられた良否基準と測定された
寸法を比較し、基準内に入っているか否かで良否を判断
し、その結果を出力する。判定部より出力される良否結
果から、自動車ボディの段差・隙間が規格内であるかど
うかを、容易に判断できる。
The determination unit compares the measured dimensions with a pre-given quality standard, determines the quality based on whether the dimensions are within the standard, and outputs the results. Based on the pass/fail results output from the determining section, it can be easily determined whether the steps and gaps in the car body are within the specifications.

以下、本発明の3次元形状寸法計測装置を実施例に基づ
き説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the three-dimensional shape and dimension measuring device of this invention is demonstrated based on an Example.

〔第1実施例〕 第1実施例の3次元形状寸法計測装置は、自動車用バン
パ組付は寸法計測システム例で第1図乃至第6図図示の
ように、3次元視覚センサはスリット光源1とテレビカ
メラ2から成る撮像部3と座標演算部4とから戒る。該
座標演算部4は高精度の3次元座標を得るための重心計
算を行うスリット光中心検出回路5と、対象物6の表面
性状の影響を少なくするためのスリット光反射強度検出
回路7と、スリット光投射強度設定回路8及び座標ルッ
クアップテーブル9から構成されている。
[First Embodiment] The three-dimensional shape and dimension measuring device of the first embodiment is an example of a dimension measuring system for automobile bumper assembly.As shown in FIGS. 1 to 6, the three-dimensional visual sensor is a slit light source 1. The imaging unit 3 consisting of the television camera 2 and the coordinate calculation unit 4 are instructed to do so. The coordinate calculation unit 4 includes a slit light center detection circuit 5 for calculating the center of gravity to obtain highly accurate three-dimensional coordinates, a slit light reflection intensity detection circuit 7 for reducing the influence of the surface texture of the object 6, It is composed of a slit light projection intensity setting circuit 8 and a coordinate lookup table 9.

そして、3次元視覚センサと寸法計測アルゴリズムを用
いた自動車用バンパ組付寸法計測システムは、3次元視
覚センサと該3次元視覚センサを位置決めするためのロ
ボットとロボットコントローラおよび3次元視覚センサ
から得られた3次元座標について寸法処理を行う特徴点
検出部lOと寸法演算部11を有する。すなわち、特徴
点検出部10は光切断線像上の各点について座標演算回
路4′で計算された3次元座標から光切断線の端点を検
出する端点検出回路12で構成されている。
An automotive bumper assembly dimension measurement system using a three-dimensional visual sensor and a dimension measurement algorithm is obtained from a three-dimensional visual sensor, a robot for positioning the three-dimensional visual sensor, a robot controller, and a three-dimensional visual sensor. It has a feature point detection unit 1O and a dimension calculation unit 11 that perform dimension processing on three-dimensional coordinates. That is, the feature point detection section 10 is composed of an end point detection circuit 12 that detects the end point of the light section line from the three-dimensional coordinates calculated by the coordinate calculation circuit 4' for each point on the light section line image.

また、寸法演算部■1は検出された端点の3次元座標の
差を計算する引算回路13より成る。
Further, the dimension calculation unit (1) includes a subtraction circuit 13 that calculates the difference in three-dimensional coordinates of the detected end points.

上記構成からなる第1実施例の3次元形状寸法計測装置
は、3次元視覚センサをロボットにより、計測位置に位
置決めしてスリット光源1よりスリット光りを対象物6
に向かって投射する。そして、このスリット光りが投射
された位置における、座標演算部4より、被計測対象物
であるバンパと基準ブロックの3次元座標(Y、Z)が
得られる。
The three-dimensional shape and dimension measuring device of the first embodiment having the above-mentioned configuration positions a three-dimensional visual sensor at a measurement position by a robot, and directs slit light from a slit light source 1 to an object 6.
project towards. Then, the three-dimensional coordinates (Y, Z) of the bumper, which is the object to be measured, and the reference block are obtained from the coordinate calculation unit 4 at the position where this slit light is projected.

座標演算部4では、対象物に投射され、テレビカメラで
撮像して得られた光切断線画像において、各走査線ごと
に、スリット光の中心位置を、その反射信号強度の重心
を求めることで精度よく検出し、得られたスリット光の
中心位置と、テレビカメラ2及びスリット光源lの位置
から三角測量の原理により、3次元座標(Y、Z)を検
出する。
The coordinate calculation unit 4 calculates the center position of the slit light for each scanning line in the light cutting line image projected onto the object and captured by the television camera by determining the center of gravity of the reflected signal intensity. Three-dimensional coordinates (Y, Z) are detected by the principle of triangulation from the center position of the slit light obtained by accurate detection and the positions of the television camera 2 and the slit light source l.

なお、本第1実施例では投射されるスリ・ソト光のスリ
ット方向とTVカメラの走査方向とは空間的に直角方向
に設定されている。
In the first embodiment, the slit direction of the projected pick-pocket light and the scanning direction of the TV camera are set to be spatially perpendicular.

ここで、例えば、Y方向に30mmの範囲を500本の
走査線のテレビカメラ2で撮像する場合の、Y方向のデ
ータのピッチは、約0.06 mmとなり、Y、Zの3
次元座標は1本の光切断線で同時に500点得6れる。
Here, for example, when an area of 30 mm in the Y direction is imaged by the television camera 2 with 500 scanning lines, the pitch of data in the Y direction is approximately 0.06 mm, and the pitch of the data in the Y and Z directions is approximately 0.06 mm.
For dimensional coordinates, 500 points can be obtained at the same time with one light cutting line.

次に、特徴点検出部10により、座標演算部4で得られ
た3次元座標から、寸法を定義するような特徴点を検出
する。すなわち、本第1実施例の場合では、対象物6が
対向する基準ブロックと自動車バンパの隙間、段差を形
成する物理的な端を、Z方向の座標値が急激に変化する
点(端点)を求めることにより検出する。具体的には3
次元座標(Y、Z)は、前記座標演算部4からテレビカ
メラ2の走査線ごとの離散的な値で得られるがスリット
光の反射信号が得られない部分の走査線に対応する3次
元座標は検出できないためこの部分のZ座標を、測定値
として得られる範囲外を示す特別な値を設定する。これ
は、反射信号がないことを示すためのフラグに用いるた
めの値で、例えば、Z座標の測定値が、−10mm〜+
 10 mmの値として得られるのであれば、このフラ
グの値として、例えば1000という測定値とは大きく
異なる値に設定する。次に、このZ座標において隣接す
る走査線の対応するZ座標の差分を計算し、その差分が
しきい値を超えた点を、端点とすることで検出できる。
Next, the feature point detection unit 10 detects feature points that define dimensions from the three-dimensional coordinates obtained by the coordinate calculation unit 4. That is, in the case of the first embodiment, the physical edge forming the gap or step between the reference block and the automobile bumper where the object 6 faces is defined as a point (end point) where the coordinate value in the Z direction suddenly changes. Detect by asking. Specifically 3
The dimensional coordinates (Y, Z) are obtained from the coordinate calculation unit 4 as discrete values for each scanning line of the television camera 2, but are three-dimensional coordinates corresponding to the scanning line of the part where the reflected signal of the slit light is not obtained. Since this cannot be detected, a special value is set for the Z coordinate of this part to indicate that it is outside the range that can be obtained as a measured value. This is a value used as a flag to indicate that there is no reflected signal. For example, if the measured value of the Z coordinate is between -10 mm and +
If it can be obtained as a value of 10 mm, the value of this flag is set to a value that is significantly different from the measured value of 1000, for example. Next, at this Z coordinate, a difference between corresponding Z coordinates of adjacent scanning lines is calculated, and a point where the difference exceeds a threshold value can be detected as an end point.

しきい値はノイズ成分を除去するために対象物形状に応
じて決められるものであり、たとえば本第1実施例の様
に隙間部に反射光信号が存在しない場合は、それに対応
するZ座標が上述の如くフラグ値であるので前記隙間端
部における差分値は、本質的に非常に大きくなるので、
比較的大きく設定できる。
The threshold value is determined according to the shape of the object in order to remove noise components. For example, when there is no reflected light signal in the gap as in the first embodiment, the corresponding Z coordinate is As mentioned above, since it is a flag value, the difference value at the end of the gap is essentially very large.
It can be set relatively large.

また対象物が底部を有する凹所形状の場合、その隙間部
に相当する底部からの反射信号が存在すると、各Z座標
の差分値は上述の測定値の範囲に収まるが、ノイズを考
慮した比較的小さなしきい値を設定することにより、同
様に端点が検出できる。次に、寸法演算部11では、検
出された物理的な端に応対する端点の3次元座標におい
て、第5図図示のようにY方向の引算を行うことで、隙
間を算出し、Z方向座標値の引算(Zja−Zjb)を
行うことで段差を算出する。そして、判定部14は得ら
れた寸法と、予め設定しである判定基準とを比較して、
組付は寸法すなわち隙間・段差寸法の良否を判定する。
Furthermore, in the case where the object has a concave shape with a bottom, if there is a reflected signal from the bottom corresponding to the gap, the difference value of each Z coordinate will fall within the range of the measured values described above. By setting a small threshold, endpoints can be detected in the same way. Next, the dimension calculation unit 11 calculates the gap by subtracting the three-dimensional coordinates of the end point corresponding to the detected physical end in the Y direction as shown in FIG. The level difference is calculated by subtracting the coordinate values (Zja - Zjb). Then, the determination unit 14 compares the obtained dimensions with preset determination criteria,
When assembling, judge the quality of the dimensions, that is, the gap and step dimensions.

本第1実施例はテレビカメラにより撮像した対象物から
の反射スリット光より得られる対象物の3次元座標に基
づき、対象物の高さ情報(2座標)の各位置での差分値
としきい値との比較により端点を抽出しているので、少
ない演算量で正確な対象物のもつ段差および隙間の寸法
が得られ、簡便・高速かつ高信頼性の計測が可能になる
という利点を有する。
The first embodiment is based on the three-dimensional coordinates of the object obtained from the reflected slit light from the object imaged by a television camera, and the difference value and threshold value at each position of the height information (two coordinates) of the object. Since the endpoints are extracted by comparison with , accurate dimensions of steps and gaps in the object can be obtained with a small amount of calculations, and this has the advantage of enabling simple, high-speed, and highly reliable measurement.

また、上記の第1実施例に限らず、特徴点検出部10で
は、Z方向、Y方向の少なくとも一方について、移動平
均等により平滑化した座標値を用いる方法や、Z方向の
差分の差分がしきい値以上になる点を端点とする方法や
、曲率や、曲率変化がしきい値以上になる点を端点とす
る方法や、Z方向の差分又はZ方向の差分の差分につい
て重心位置を求め、これを端点とする方法等がある。寸
法演算部11では、特徴点間の差分だけでなく、2点間
の3次元的な距離を計算し、隙間寸法とする方法などが
ある。本第1実施例の3次元形状寸法計測装置では、こ
れらの組合わせでも、上述と同様の作用効果を奏する。
In addition to the first embodiment described above, the feature point detection unit 10 may use a method of using coordinate values smoothed by a moving average or the like in at least one of the Z direction and the Y direction, or a method of using coordinate values smoothed by a moving average, etc. The center of gravity position can be determined by using the point where the curvature or curvature change is more than the threshold as the end point, or by using the difference in the Z direction or the difference in the difference in the Z direction. , there is a method of using this as an end point. The dimension calculation unit 11 calculates not only the difference between feature points but also the three-dimensional distance between two points, and uses this as the gap dimension. In the three-dimensional shape and dimension measuring device of the first embodiment, the same effects as described above can be achieved even with these combinations.

〔第2実施例〕 第2実施例の3次元形状寸法計測装置は、ボディ建付は
寸法計測システム例で第7図および第8図図示のように
第1実施例と同様に3次元視覚センサと該3次元視覚セ
ンサから得られた3次元座標について寸法処理を行う特
徴点検出部10と寸法演算部11で構成される。すなわ
ち、特徴点検出部10は光切断線像上の各点について前
記第1実施例で述べた座標演算回路4′で計算された3
次元座標から光切断線の端点を検出する端点検出回路1
2と補正値テーブル15及び丸味部分検出回路16で構
成され寸法演算部11は段差寸法計算回路11aと隙間
寸法計算回路11bで構成される。
[Second Embodiment] The three-dimensional shape and dimension measuring device of the second embodiment is an example of a dimension measuring system for body installation, and as shown in FIGS. 7 and 8, a three-dimensional visual sensor is used as in the first embodiment. , a feature point detection unit 10 that performs dimension processing on the three-dimensional coordinates obtained from the three-dimensional visual sensor, and a dimension calculation unit 11. That is, the feature point detection unit 10 calculates the 3
End point detection circuit 1 that detects end points of optical cutting lines from dimensional coordinates
2, a correction value table 15, and a rounded portion detection circuit 16, and the dimension calculation section 11 is composed of a step dimension calculation circuit 11a and a gap dimension calculation circuit 11b.

該補正値テーブル15は、測定すべき対象物のコーナ一
部の形状、スリット光反射強度、撮像部3の対象物に対
する位置、姿勢等の条件を変えて、光切断線の端点の座
標値と、コーナ一部の頂点、すなわち隙間を定義する対
象物の開放先端部分相当の座標値との差を、測定してお
き、その差の値を各条件をパラメータとした補正値とし
て記憶する構成である。これは、対象物の端部の形状が
曲線形状をしている場合、投射したスリット光の反射信
号がテレビカメラで得にくくなるため、端部まで3次元
座標値が得られなくなる場合がある。
The correction value table 15 calculates the coordinate values of the end points of the light cutting line by changing conditions such as the shape of a corner of the object to be measured, the slit light reflection intensity, the position and posture of the imaging section 3 with respect to the object, etc. , the difference between the apex of a part of the corner, that is, the coordinate value corresponding to the open tip of the object that defines the gap, is measured, and the difference value is stored as a correction value using each condition as a parameter. be. This is because if the end of the object has a curved shape, it becomes difficult to obtain a reflected signal of the projected slit light with a television camera, and it may become impossible to obtain three-dimensional coordinate values up to the end.

この様な場合でも、隙間が正しく得られるようにするた
めのものである。
This is to ensure that the gap is properly obtained even in such a case.

上記構成からなる第2実施例の3次元形状寸法計測装置
は、3次元視覚センサを計測位置に位置決めしてスリッ
ト光源lよりスリット光りを対象物6へ向かって投射す
る。座標演算部4では、前記第1実施例で述べたように
、高速・高精度の座標演算を行う。次に、まず隙間に対
応する特徴点を以下に述べる方法により検出する。すな
わち端点検出回路12では、座標演算部4で得られた3
次元座標から、第1実施例と同様に端点を検出し、その
点の3次元座標に、あらかじめ用意しである補正値を加
算することで、物理的な端に一致する点を検出する。
The three-dimensional shape and dimension measuring device of the second embodiment having the above configuration positions the three-dimensional visual sensor at the measurement position and projects slit light from the slit light source l toward the object 6. The coordinate calculation unit 4 performs high-speed and high-precision coordinate calculation as described in the first embodiment. Next, first, feature points corresponding to the gaps are detected by the method described below. That is, in the end point detection circuit 12, the 3
An end point is detected from the dimensional coordinates in the same manner as in the first embodiment, and a pre-prepared correction value is added to the three-dimensional coordinates of the point, thereby detecting a point that coincides with a physical end.

すなわち、第8図中ΔZがしきい値THsをこえる点は
、jas番目、jbs番目の座標値であるので、ドア側
の端点の3次元座標として、(YJ as 1Zjas
 ) フェンダ側の端点の3次元座標として (Y J bs 、Z J bs )が得られ、これら
各々のY座標に、補正値を加えることで、対向するドア
とフェンダの先端部のY座標を外挿することができる。
In other words, the point where ΔZ exceeds the threshold THs in FIG.
) The three-dimensional coordinates of the end point on the fender side (Y J bs , Z J bs ) are obtained, and by adding a correction value to each of these Y coordinates, the Y coordinate of the opposing door and the tip of the fender can be removed. It can be inserted.

次に、隙間寸法計算回路11bでは、得られた、ドアと
フェンダの先端部のY座標の引算(lYjaS +y補
正値al  1Yjbs+Y補正値bl)を行うことで
、隙間寸法を得ることができる。また、段差に対応する
特徴点は以下にのべる方法により検出する。すなわち、
丸味部分開始点検出回路16では、座標演算部4で得ら
れた3次元座標から上記隙間寸法計測と同様に、隣接す
る走査線ごとのZ座標の差分を計算し、差分がしきい値
THdをこえる点を丸味部分開始点として検出する。こ
こで、しきい値THdは、隙間寸法におけるしきい値T
Hsとは異なり、差分のノイズよりは大きいが、丸味部
分を切り出せるように十分小さい値に設定する。次に段
差寸法計算回路11aでは、検出された丸味部分開始点
のZ座標の引算(IZjad−Zjbdl)により段差
を計算する。
Next, the gap size calculation circuit 11b can obtain the gap size by subtracting the obtained Y coordinates of the tips of the door and the fender (lYjaS+y correction value al 1Yjbs+Y correction value bl). Further, the feature points corresponding to the step are detected by the method described below. That is,
The rounded portion starting point detection circuit 16 calculates the difference between the Z coordinates of each adjacent scanning line from the three-dimensional coordinates obtained by the coordinate calculation unit 4, in the same way as in the gap size measurement described above, and the difference exceeds the threshold value THd. The point beyond the point is detected as the starting point of the rounded part. Here, the threshold value THd is the threshold value T at the gap size.
Unlike Hs, it is set to a value that is larger than the noise of the difference, but small enough to extract the rounded part. Next, the step size calculation circuit 11a calculates the step by subtracting the Z coordinate of the detected rounded portion starting point (IZjad-Zjbdl).

以上に述べたように、本第2実施例では、対象物の端部
が曲線形状をしているために、反射信号が端部まで得ら
れないような場合でも、正しく、隙間・段差計測を行な
えるという、実用上多大の作用効果を奏する。
As described above, in the second embodiment, even if the reflected signal cannot be obtained all the way to the edge of the object because the edge of the object has a curved shape, it is possible to accurately measure gaps and steps. It has many practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明の第1実施例の3次元形状寸
法計測装置をそれぞれ示すもので、第1図は第1実施例
装置のブロック図、第2図は測定対象物の要部を示す概
略図、第3図は第1実施例装置における具体的内容を示
すブロック線図、第4図は第1実施例装置における光切
断線像の線図、第5図はTVカメラから出力されるビデ
オ信号の説明図、第6図は第1実施例装置における計測
手順を示すフローチャート図、第7図及び第8図は第2
実施例装置のブロック図、フローチャート線図である。 図中 ■ ・ 2 ・ 3 ・ 4 ・ 5 ・ 6 ・ 7 ・ 8 ・ 9 ・ 10 ・ 1 l ・ 12 ・ 13 ・ l 4 ・ ・スリット光源 ・テレビカメラ ・撮像部 ・座標演算部 ・検出回路 ・対象物 ・スリット光反射強度検出回路 ・スリット光投射強度設定回路 ・座標ルックアップテーブル ・特徴点検出部 ・寸法演算部 ・端点検出回路 ・引算回路 ・判定部
1 to 6 respectively show a three-dimensional shape and dimension measuring device according to a first embodiment of the present invention. FIG. 1 is a block diagram of the device of the first embodiment, and FIG. FIG. 3 is a block diagram showing the specific contents of the device of the first embodiment, FIG. 4 is a diagram of the light section line image of the device of the first embodiment, and FIG. 5 is a diagram showing the details from the TV camera. An explanatory diagram of the output video signal, FIG. 6 is a flowchart diagram showing the measurement procedure in the first embodiment device, and FIGS. 7 and 8 are the second embodiment diagram.
FIG. 1 is a block diagram and a flowchart diagram of an example device. In the figure ■ ・ 2 ・ 3 ・ 4 ・ 5 ・ 6 ・ 7 ・ 8 ・ 9 ・ 10 ・ 1 l ・ 12 ・ 13 ・ l 4 ・ ・Slit light source, TV camera, imaging unit, coordinate calculation unit, detection circuit, object Object/Slit light reflection intensity detection circuit/Slit light projection intensity setting circuit/Coordinate lookup table/Feature point detection unit/Dimension calculation unit/End point detection circuit/Subtraction circuit/Judgment unit

Claims (1)

【特許請求の範囲】 隙間および段差の少なくとも1つを形成する少なくとも
2つの端部を有する対象物と対向し、該対象物表面に向
けて一定角度でスリット光源よりスリット光を投射し、
該スリット光により生じた光切断線をTVカメラにより
撮像する撮像部と、前記TVカメラからの光切断線像に
おいて、各走査線ごとの強度分布の重心位置に基づく三
角測量により検出された対象物表面の走査線ごとに得ら
れる3次元座標値の差分と基準値との関係から2つの特
徴点を抽出してその3次元座標値を検出する特徴点検出
部と、 前記特徴点検出部で検出された2つの特徴点の各3次元
座標値の差に基づき2つの特徴点間の相対位置関係を演
算する寸法演算部と、からなり、対象物の特定領域にお
ける2つの端部の間の隙間および段差の少なくとも1つ
を計測することを特徴とる3次元形状寸法計測装置。
[Scope of Claims] Opposing an object having at least two ends forming at least one of a gap and a step, projecting slit light from a slit light source at a constant angle toward the surface of the object,
an imaging unit that images a light section line generated by the slit light with a TV camera; and an object detected by triangulation based on the position of the center of gravity of the intensity distribution for each scanning line in the light section line image from the TV camera. a feature point detection unit that extracts two feature points from the relationship between the difference in three-dimensional coordinate values obtained for each scanning line of the surface and a reference value and detects the three-dimensional coordinate values; a dimension calculation unit that calculates the relative positional relationship between the two feature points based on the difference in the respective three-dimensional coordinate values of the two feature points, and a dimension calculation unit that calculates the relative positional relationship between the two feature points based on the difference in the three-dimensional coordinate values of the two feature points, and a dimension calculation unit that calculates the relative positional relationship between the two feature points. and a three-dimensional shape and dimension measuring device that measures at least one of steps.
JP1326267A 1989-12-15 1989-12-15 3D shape and size measurement device Expired - Fee Related JP2630844B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1326267A JP2630844B2 (en) 1989-12-15 1989-12-15 3D shape and size measurement device
US07/538,525 US5129010A (en) 1989-12-15 1990-06-15 System for measuring shapes and dimensions of gaps and flushnesses on three dimensional surfaces of objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326267A JP2630844B2 (en) 1989-12-15 1989-12-15 3D shape and size measurement device

Publications (2)

Publication Number Publication Date
JPH03186705A true JPH03186705A (en) 1991-08-14
JP2630844B2 JP2630844B2 (en) 1997-07-16

Family

ID=18185862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326267A Expired - Fee Related JP2630844B2 (en) 1989-12-15 1989-12-15 3D shape and size measurement device

Country Status (1)

Country Link
JP (1) JP2630844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228417A (en) * 2001-02-01 2002-08-14 Shinei Denshi Keisokki Kk Crack measuring apparatus
KR100966771B1 (en) * 2006-02-28 2010-06-29 히로세덴끼 가부시끼가이샤 Method for fabrication of multilayer optical waveguide structure and multilayer optical waveguide structure
JP2010523988A (en) * 2007-04-12 2010-07-15 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for optical measurement of external threads
JP2014044127A (en) * 2012-08-27 2014-03-13 Nhk Spring Co Ltd Center position detection device, program, recording medium, and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975168A (en) * 1972-11-21 1974-07-19
JPS5999203A (en) * 1982-11-18 1984-06-07 Matsushita Electric Ind Co Ltd Stepped point detecting method by optical range finder
JPS61111403A (en) * 1984-11-06 1986-05-29 Ishikawajima Harima Heavy Ind Co Ltd Method and instrument for detecting position of metallic lamp in its width direction
JPS62138709A (en) * 1985-12-12 1987-06-22 Ono Sokki Co Ltd Method and instrument for measuring displacement
JPS6358104A (en) * 1986-08-28 1988-03-12 Kawasaki Steel Corp Measurement of fine interval
JPS6478109A (en) * 1987-09-19 1989-03-23 Toyota Central Res & Dev Three-dimensional coordinate measuring instrument
JPH01242906A (en) * 1988-03-24 1989-09-27 Nippon Steel Corp Linearizing method by light cutting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975168A (en) * 1972-11-21 1974-07-19
JPS5999203A (en) * 1982-11-18 1984-06-07 Matsushita Electric Ind Co Ltd Stepped point detecting method by optical range finder
JPS61111403A (en) * 1984-11-06 1986-05-29 Ishikawajima Harima Heavy Ind Co Ltd Method and instrument for detecting position of metallic lamp in its width direction
JPS62138709A (en) * 1985-12-12 1987-06-22 Ono Sokki Co Ltd Method and instrument for measuring displacement
JPS6358104A (en) * 1986-08-28 1988-03-12 Kawasaki Steel Corp Measurement of fine interval
JPS6478109A (en) * 1987-09-19 1989-03-23 Toyota Central Res & Dev Three-dimensional coordinate measuring instrument
JPH01242906A (en) * 1988-03-24 1989-09-27 Nippon Steel Corp Linearizing method by light cutting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228417A (en) * 2001-02-01 2002-08-14 Shinei Denshi Keisokki Kk Crack measuring apparatus
KR100966771B1 (en) * 2006-02-28 2010-06-29 히로세덴끼 가부시끼가이샤 Method for fabrication of multilayer optical waveguide structure and multilayer optical waveguide structure
JP2010523988A (en) * 2007-04-12 2010-07-15 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for optical measurement of external threads
JP2014044127A (en) * 2012-08-27 2014-03-13 Nhk Spring Co Ltd Center position detection device, program, recording medium, and method

Also Published As

Publication number Publication date
JP2630844B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US5129010A (en) System for measuring shapes and dimensions of gaps and flushnesses on three dimensional surfaces of objects
US5986745A (en) Co-planar electromagnetic profile scanner
EP0335035B1 (en) Method and apparatus for measuring a three-dimensional curved surface shape
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
WO2013061976A1 (en) Shape inspection method and device
JP7353757B2 (en) Methods for measuring artifacts
JP2572286B2 (en) 3D shape and size measurement device
JPH0484707A (en) Three-dimensional size measuring apparatus
JP2002156214A (en) Inspection method for car body
JP2630844B2 (en) 3D shape and size measurement device
Molleda et al. A profile measurement system for rail manufacturing using multiple laser range finders
Sansoni et al. Design and development of a 3D system for the measurement of tube eccentricity
JP2680460B2 (en) Angle measuring device for bending machine
Sansoni et al. A three-dimensional imaging system for industrial applications with improved flexibility and robustness
JP2016024067A (en) Measurement method and measurement device
JP3758763B2 (en) Method for optical measurement of hole position
JP5566137B2 (en) Workpiece assembly inspection method and apparatus
KR101833055B1 (en) 3-dimensional measuring system
JP3381420B2 (en) Projection detection device
JPH0560559A (en) Height measuring apparatus
JP2932418B2 (en) Work position measurement method
JPH07218227A (en) Method and apparatus for measuring sectional shape
JP2694504B2 (en) Position measurement method of stepped work
KR20120114579A (en) Apparatus for inspecting weld toe grinding and methord thereof
JP3112537B2 (en) Optical three-dimensional shape measuring method and measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees