JPH06294748A - Surface flaw inspection method at welded part of uo steel pipe - Google Patents

Surface flaw inspection method at welded part of uo steel pipe

Info

Publication number
JPH06294748A
JPH06294748A JP10349393A JP10349393A JPH06294748A JP H06294748 A JPH06294748 A JP H06294748A JP 10349393 A JP10349393 A JP 10349393A JP 10349393 A JP10349393 A JP 10349393A JP H06294748 A JPH06294748 A JP H06294748A
Authority
JP
Japan
Prior art keywords
flaw
steel pipe
light
welded part
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10349393A
Other languages
Japanese (ja)
Other versions
JP2955618B2 (en
Inventor
Tsutomu Michioka
力 道岡
Youichi Fujikake
洋一 藤懸
Kazuo Takashima
和夫 高嶋
Katsuya Ueki
勝也 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP10349393A priority Critical patent/JP2955618B2/en
Publication of JPH06294748A publication Critical patent/JPH06294748A/en
Application granted granted Critical
Publication of JP2955618B2 publication Critical patent/JP2955618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect surface flaw at a welded part of a UO steel pipe with high reliability. CONSTITUTION:A welded part 2 of UO steel pipe and the vicinity thereof are irradiated with light to form a slit light 4 in the vicinity of the welded part 2. The slit light 4 is then picked up by means of an image pickup unit 5 which produces an optical cut image 22 being employed in the flaw detection at the welded part 2. The optical cut image 22 is subjected to fine line processing to produce a fine line data S(X) which is then subjected to difference processing and flaw emphasis processing to produce a flaw detection data E(X) being employed in the decision of flaw. When a decision is made that a flaw is present, the fine line data S(X) is operated in order to detect the flaw and to decide the size of the flaw thus detecting the surface flaw highly accurately while attaining the information relevant to the size of the flaw.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はUO鋼管の溶接部表面疵
検査方法に係わり、例えば、UO鋼管溶接部分の表面疵
を光切断法で撮像して疵の有無を判定する方法に用いて
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting the surface of a welded portion of a UO steel pipe, for example, it is suitable for use in a method for determining the presence or absence of a flaw by imaging the surface defect of the welded portion of the UO steel pipe by an optical cutting method. It is something.

【0002】[0002]

【従来の技術】従来より、UO鋼管の溶接部表面の疵を
検査するために種々の方法が用いられている。現状のU
O鋼管の溶接部の表面疵検査は、人間による目視検査で
行われている。
2. Description of the Related Art Conventionally, various methods have been used to inspect the surface of welds of UO steel pipes for defects. Current U
The surface flaw inspection of the welded portion of the O steel pipe is performed by a human visual inspection.

【0003】ところで、一般的な表面疵検査手法として
は、例えば光学式方法、渦流法、漏洩磁束法等が挙げら
れる。これらの表面疵検査手法のうち、光学式方法と
は、レーザスポット等を被検査物にスキャン照射すると
ともに、正反射光または散乱光を受光して得られる時系
列的な受光信号を処理して疵判定を行うものであり、鋼
板の表面疵検査手段として用いられる。
By the way, as a general surface flaw inspection method, for example, an optical method, an eddy current method, a leakage magnetic flux method and the like can be mentioned. Among these surface flaw inspection methods, the optical method is to scan and irradiate the object to be inspected with a laser spot or the like, and process a time-series reception signal obtained by receiving specular reflection light or scattered light. It is used for flaw detection and is used as a surface flaw inspection means for steel plates.

【0004】また、渦流法とは、高周波磁界によって被
検査物表面部分に渦電流を励起させるとともに、被検査
物に検出コイルを近接させ、上記検出コイルと鎖交する
磁束値を検出して疵を検査するようにしたものであり、
種々の被検査物に対する表面疵検査手段として用いられ
る。
In the eddy current method, a high frequency magnetic field excites an eddy current on the surface of the object to be inspected, a detection coil is brought close to the object to be inspected, and a magnetic flux value interlinking with the detection coil is detected to detect a flaw. Is to be inspected,
It is used as a surface flaw inspection means for various inspection objects.

【0005】漏洩磁束法とは、磁化器を被検査物に近接
させて磁束を浸透させるとともに被検査物に近接させた
磁気センサを移動して漏洩磁束の変化を検出し疵を検査
する手法であり、一般的に鋼板の表面欠陥検出手法とし
て用いられる。
The leakage magnetic flux method is a method for inspecting a flaw by detecting a change in leakage magnetic flux by moving a magnetic sensor in the vicinity of an object to be inspected and allowing the magnetic flux to permeate and moving a magnetic sensor in proximity to the object to be inspected. Yes, it is generally used as a surface defect detection method for steel sheets.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の疵検出
手法では、一般的に、形状が均一な被検査物を対象とし
ている。しかし、図10〜図12に溶接部の端部に発生
する疵の一例であるアンダーカット疵の概略形状を示す
が、UO鋼管1の溶接部は鋼管母材部分に対して肉盛り
を施しているので、溶接端部に発生する微細なアンダー
カット疵21を検査するためには、起伏をもつ溶接部お
よびその近傍を精密に検査できる検査手法が必要であ
る。
In the above-mentioned conventional flaw detection method, generally, the object to be inspected has a uniform shape. However, FIGS. 10 to 12 show a schematic shape of an undercut flaw, which is an example of a flaw generated at an end portion of a welded portion, but in the welded portion of the UO steel pipe 1, the steel pipe base metal portion is provided with a buildup. Therefore, in order to inspect the fine undercut flaw 21 generated at the weld end portion, an inspection method capable of precisely inspecting the welded portion having undulations and the vicinity thereof is necessary.

【0007】被検査物の表面に起伏がある場合には、例
えば、光学式方法では投受光系の光軸を含む平面と被検
査物表面の交差角度が変化することで受光強度に変動を
生じるので、細密な疵を検査することは困難となる。
When the surface of the object to be inspected has undulations, for example, in the optical method, the crossing angle between the plane including the optical axis of the light projecting and receiving system and the surface of the object to be inspected changes, so that the received light intensity varies. Therefore, it becomes difficult to inspect fine defects.

【0008】また、渦流法や漏洩磁束法等の手法で検出
精度を得るためには、センサーと被検査物表面とのギャ
ップを短くして一定に保つことが必要であり、したがっ
て、起伏をもつ表面上の疵の検出は困難である。
Further, in order to obtain the detection accuracy by the method such as the eddy current method or the leakage magnetic flux method, it is necessary to shorten the gap between the sensor and the surface of the object to be inspected and keep it constant. Defects on the surface are difficult to detect.

【0009】また、形状を測定する方法として光切断法
がある。図10では、アンダーカット疵21の形状を、
わかり易く示すために大きく示したが、実際は非常に微
細なものまで有害であるので検出する必要があり、溶接
部の形状も一定でないことから、信頼性よく疵を検出す
ることができる光切断像の処理方法は提案されていなか
った。
Further, there is a light cutting method as a method for measuring the shape. In FIG. 10, the shape of the undercut flaw 21 is
Although it is shown in a large size for easy understanding, it is necessary to detect even very fine things because it is harmful, and since the shape of the welded part is not constant, it is possible to reliably detect flaws. No treatment method was proposed.

【0010】本発明は上述の問題点にかんがみ、UO鋼
管の溶接部の表面疵を高い信頼性で検出できるようにす
ることを目的とする。
In view of the above problems, it is an object of the present invention to make it possible to detect a surface flaw in a welded portion of a UO steel pipe with high reliability.

【0011】[0011]

【課題を解決するための手段】本発明のUO鋼管の溶接
部表面疵検査方法は、スリット光をUO鋼管溶接部及び
その近傍に照射し、撮像装置により上記スリット光を撮
像して得た光切断像を用いて溶接部の疵を検出する方法
において、上記光切断像を細線化処理して細線化データ
を得る第1の処理と、上記細線化データを差分処理して
差分データを得る第2の処理と、上記差分データを疵強
調処理して疵検出データを得る第3の処理と、上記疵検
出データを用いて疵有無の判定を行うとともに、疵有り
と判定された場合について、細線化データを演算するこ
とにより疵検出および疵の大きさの判定を行う第4の処
理とを具備している。
A method for inspecting a weld surface flaw of a UO steel pipe according to the present invention is a light obtained by irradiating a UO steel pipe weld portion and its vicinity with a slit light and imaging the slit light by an image pickup device. In a method of detecting a flaw in a welded portion using a cut image, a first process of thinning the light cut image to obtain thinned data, and a difference process of the thinned data to obtain difference data The second process, the third process for obtaining flaw detection data by performing flaw enhancement processing on the difference data, and the presence / absence of a flaw are determined using the flaw detection data, and a thin line is used when it is determined that there is a flaw. And a fourth process for detecting a flaw and determining the size of the flaw by calculating the digitized data.

【0012】[0012]

【作用】上述の疵検出方法によれば、疵部分だけを強調
して検出する処理を行うので、肉盛り等のように起伏の
あるUO鋼管溶接部にある微細な疵についても高い信頼
性で検出することが可能になるとともに、疵有りと判定
した場合には疵の深さの測定を行うことにより、疵深さ
の情報についても得られるようになる。
According to the above-described flaw detection method, since the processing is performed by emphasizing and detecting only the flaw portion, it is highly reliable even for fine flaws in a UO steel pipe welded portion having undulations such as padding. It becomes possible to detect, and when it is determined that there is a flaw, the depth of the flaw is measured so that information on the flaw depth can be obtained.

【0013】[0013]

【実施例】以下、本発明のUO鋼管の溶接部表面疵検査
方法の一実施例を図面を参照して説明する。図1は、本
発明の一実施例を説明するための疵検査装置の一例を示
すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for inspecting the surface of a welded portion of a UO steel pipe according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an example of a flaw inspection apparatus for explaining an embodiment of the present invention.

【0014】図1において、1はUO鋼管、2はその溶
接部である。このようなUO鋼管1の表面疵の検査を行
うのに際し、スリット光投光器3で光を放射して溶接部
およびその近傍にスリット光4を形成する。また、上記
スリット光4をとらえる位置に撮像装置5を配設する。
なお、ここでは、UO鋼管内表面の溶接部を検査する場
合を示しているが、外表面の場合も同様な方法により外
表面の溶接部およびその近傍にスリット光を形成して撮
像すればよい。
In FIG. 1, 1 is a UO steel pipe and 2 is a welded portion thereof. When the surface flaw of the UO steel pipe 1 is inspected as described above, the slit light projector 3 emits light to form the slit light 4 at and near the welded portion. Further, the image pickup device 5 is arranged at a position where the slit light 4 is captured.
Although the case where the welded portion on the inner surface of the UO steel pipe is inspected is shown here, in the case of the outer surface as well, slit light may be formed on the welded portion on the outer surface and in the vicinity thereof by the same method to perform imaging. .

【0015】スリット光投光器3としては、例えば図2
に示すように、レーザダイオード13を発光させ、その
レーザ光をコリメータレンズ14によって集光する。そ
して、上記レーザ光をシリンドリカルレンズ15によっ
て扇形状に広げてスリット光4を形成する装置を用いて
いる。これによって、例えば0.1mm程度の半値幅の
スリット光4を形成するようにしている。
An example of the slit light projector 3 is shown in FIG.
As shown in, the laser diode 13 is caused to emit light, and the laser light is condensed by the collimator lens 14. Then, a device is used that spreads the laser light into a fan shape by the cylindrical lens 15 to form the slit light 4. As a result, the slit light 4 having a half width of, for example, about 0.1 mm is formed.

【0016】また、撮像装置5としては、例えばCCD
カメラが用いられる。通常の場合には1台の撮像装置で
もよいが、微細な疵を検出する場合には撮像装置5は十
分な分解能を有することが望まれるので、例えば、視野
を限って複数台の撮像装置を配設することで対応するこ
とが考えられる。図1では2台の撮像装置を用いる例を
示している。
The image pickup device 5 is, for example, a CCD.
A camera is used. In a normal case, one image pickup device may be used, but since it is desired that the image pickup device 5 has sufficient resolution in the case of detecting a minute flaw, for example, a plurality of image pickup devices may be provided with a limited field of view. It is possible to deal with this by disposing it. FIG. 1 shows an example in which two image pickup devices are used.

【0017】ところで、アンダーカットと呼ばれる溶接
疵は、その発生原因から図3において21の符号を付し
て示したように、溶接部2の裾野に多く発生する。ま
た、その形状は、図3のA−A’線に沿う断面図である
図4に示すように、V字型をしたものが一般的である。
By the way, welding defects called undercut often occur in the skirt of the welded portion 2 as indicated by reference numeral 21 in FIG. The shape thereof is generally V-shaped as shown in FIG. 4 which is a sectional view taken along the line AA ′ of FIG.

【0018】したがって、上記撮像装置5において、図
3のB−B’間のスリット光4を撮影すると、図5に示
したような光切断像22が得られる。このようにして得
られた光切断像22は、疵検出処理部6に入力される。
Therefore, when the image pickup device 5 photographs the slit light 4 between BB 'in FIG. 3, a light section image 22 as shown in FIG. 5 is obtained. The light section image 22 thus obtained is input to the flaw detection processing unit 6.

【0019】疵検出処理部6においては、まず、上記光
切断像22を画像記憶部7においてA/D変換し、2次
元のデジタル値(x,y)として記憶する、次に、細線
化処理部8によって細線化を行うが、ここで行われる細
線化処理について、詳細に示したものが図6である。
In the flaw detection processing unit 6, first, the light section image 22 is A / D converted in the image storage unit 7 and stored as a two-dimensional digital value (x, y). The thinning is performed by the unit 8. The thinning processing performed here is shown in detail in FIG.

【0020】図6に示したように、ここでは2次元画像
データp(x,y)について、図6に示す画面y方向の
1ライン上で最大輝度を有する点を選択する処理を画面
x方向に進めて行き、x座標に対応する最大輝度点のy
座標値を配列させた細線化データ列S(x)を得る。
As shown in FIG. 6, here, for the two-dimensional image data p (x, y), the process of selecting the point having the maximum brightness on one line in the screen y direction shown in FIG. 6 is performed. To the y of the maximum brightness point corresponding to the x coordinate.
A thinned data string S (x) in which coordinate values are arranged is obtained.

【0021】そのとき、スリット像の輝度が小さい部分
についてスリット像外のノイズを誤選択しないよう、輝
度最大として選択した点の輝度が輝度しきい値に達して
いない場合、xn-1 における最大輝度点のy座標S(x
n-1 )と同じ値として、細線化データがスリット像から
外れるのを防ぐ。
At this time, if the luminance of the point selected as the maximum luminance does not reach the luminance threshold value so as to prevent noise outside the slit image from being erroneously selected for a portion where the luminance of the slit image is small, the maximum in x n-1 is obtained. Y coordinate of luminance point S (x
The same value as ( n-1 ) is used to prevent the thinned data from deviating from the slit image.

【0022】次に、差分処理部9では、細線化処理部8
が出力する細線化データ列S(x)について差分データ
列D(x)の演算を行う。図7に演算方法の詳細を示
す。適当な画素数dxを設定し、細線化データ列S
(x)上のある点B(xn,B )について、点A(xn
−dx,yA )と点C(xn +dx,yc )をとり、こ
れらのy座標について、 dy=(yc −yB )−(yB −yA ) …(1式) とする要素dyを演算する。
Next, in the difference processing unit 9, the thinning processing unit 8
The difference data string D (x) is calculated for the thinned data string S (x) output by FIG. 7 shows the details of the calculation method. By setting an appropriate number of pixels dx, the thinned data string S
For some point B (x n, y B ) on (x), the point A (x n
-Dx, y A ) and the point C (x n + dx, y c ) are taken, and for these y coordinates, dy = (y c −y B ) − (y B −y A ) ... (Equation 1) The element dy is calculated.

【0023】この演算をx座標全域に渡って行い、差分
要素dyをx座標に対応させて配列させた差分データ列
D(x)を作成する。このようにして得られた差分デー
タ列D(x)では、図7でも示すように、疵でない部分
は0に近い値となり、細線化データ列S(x)において
V字型をしている疵部分のみが大きな値となる。
This operation is performed over the entire x coordinate to create a difference data string D (x) in which the difference elements dy are arranged in correspondence with the x coordinate. In the difference data string D (x) thus obtained, as shown in FIG. 7, the non-flaw part has a value close to 0, and the thinned data sequence S (x) has a V-shaped flaw. Only the part has a large value.

【0024】この差分データ列D(x)を用いて疵の判
定をしてもよいが、より判定精度を向上させるために疵
強調処理部10において、第6図に示すように差分デー
タ列D(x)の連続するk個のデータの移動和演算を下
記に示す2式で行う。
Defects may be judged using this difference data string D (x). However, in order to improve the judgment accuracy, the defect emphasizing processing unit 10 makes a difference data string D as shown in FIG. The moving sum operation of k continuous data of (x) is performed by the following two equations.

【0025】[0025]

【数1】 [Equation 1]

【0026】そして、疵部分がさらに強調された疵検出
データ列E(x)を作成する。疵有無判定部11では、
この疵検出データ列E(x)の大きさとあらかじめ設定
した疵検出しきい値とを比較する。そして、疵検出デー
タ列E(x)の全ての要素が疵検出しきい値を超過しな
い場合に疵無しと検出し、その画像での疵検出処理を終
了する。
Then, a flaw detection data string E (x) in which the flaw portion is further emphasized is created. In the flaw presence / absence determination unit 11,
The size of the flaw detection data string E (x) is compared with a preset flaw detection threshold value. Then, when all the elements of the flaw detection data string E (x) do not exceed the flaw detection threshold value, it is detected that there is no flaw, and the flaw detection processing for the image is finished.

【0027】また、図8に示すように、疵検出データ列
E(x)に、疵検出しきい値を超過する要素が存在する
場合には疵有りと検出し、さらに疵深さ判定部12にお
いて疵深さ判定を行う。
Further, as shown in FIG. 8, when there is an element that exceeds the flaw detection threshold value in the flaw detection data string E (x), it is detected that there is a flaw, and the flaw depth determination unit 12 At, the flaw depth is determined.

【0028】疵深さ判定部12では、細線化データ列S
(x)を用いて疵深さを測定して疵判定を行う。また、
図9に示すように、細線化データ列S(x)のうちUO
鋼管の母材部分に相当する部分の近似直線を作成し、疵
部分の深さを細線化データ列S(x)の要素が母材部近
似直線上の値を下回る最大の画素数として算出して、さ
らにあらかじめ測定しておいた1画素当たりに対応する
疵深さ方向の長さとの積をとることで、疵の最大深さ値
を算出する。
In the flaw depth determination unit 12, the thinned data string S
The flaw depth is measured by using (x) to determine the flaw. Also,
As shown in FIG. 9, UO in the thinned data string S (x)
An approximate straight line of a portion corresponding to the base metal portion of the steel pipe is created, and the depth of the flaw portion is calculated as the maximum number of pixels in which the elements of the thinned data string S (x) are below the value on the base metal approximate straight line. Then, the maximum depth value of the flaw is calculated by taking the product of the length in the flaw depth direction corresponding to each pixel measured in advance.

【0029】同様に、鋼管全長に渡って上述した処理を
行い、それによって得た疵有無情報・疵深さ情報は、例
えば製品管理用コンピュータ等の外部機器に伝送する。
Similarly, the above-described processing is performed over the entire length of the steel pipe, and the defect presence / absence information and the defect depth information obtained thereby are transmitted to an external device such as a product management computer.

【0030】次に、以上説明した実施例において、具体
的数値を設定して疵を検査した例について説明する。ス
リット光投光器3では、20mWレーザダイオードを2
msecでパルス点灯した。また、撮像装置にはCCD
カメラを用いて、幅方向32mm,深さ方向45mmの
視野で撮像し、その後512×512画素の画像処理装
置を用いて処理した。
Next, an example in which a specific numerical value is set and a flaw is inspected in the above-described embodiment will be described. In the slit light projector 3, two 20 mW laser diodes are used.
The pulse was lit in msec. Also, the image pickup device is a CCD
Images were taken with a camera in a field of view of 32 mm in the width direction and 45 mm in the depth direction, and then processed using an image processing device of 512 × 512 pixels.

【0031】差分処理部におけるdx=10,疵強調処
理部におけるk=6,疵有無判定部における疵検出しき
い値を30と設定し、UO鋼管の長手方向を2mmピッ
チで検査したところ、0.2mm以上の深さを長手方向
に3mm以上有するアンダーカット疵を確実に検出する
とともに、疵深さを約±0.05mmの精度で判定し
た。
When dx = 10 in the difference processing unit, k = 6 in the defect emphasis processing unit, the defect detection threshold value in the defect presence / absence determination unit was set to 30, and the longitudinal direction of the UO steel pipe was inspected at a pitch of 2 mm, the result was 0. Undercut flaws having a depth of 2 mm or more in the longitudinal direction of 3 mm or more were reliably detected, and the flaw depth was determined with an accuracy of about ± 0.05 mm.

【0032】[0032]

【発明の効果】本発明は上述したように、疵検出方法に
よれば、疵部分だけを強調して検出する処理を行うの
で、肉盛り等起伏のあるUO鋼管溶接部にある微細な疵
についても高い信頼性で疵検出を行うことができる。さ
らに、疵有りと判定した場合には疵の深さの測定を行う
ことで、疵深さの情報についても得ることができるの
で、UO鋼管の溶接部の自動検査等に本発明による方法
を良好に適用することができる。
As described above, according to the present invention, the flaw detection method emphasizes and detects only the flaw portion. Therefore, it is possible to detect fine flaws in a UO steel pipe welded portion having undulations such as buildup. It is also possible to detect defects with high reliability. Further, when it is determined that there is a flaw, the depth of the flaw can be measured to obtain information on the flaw depth. Therefore, the method according to the present invention is suitable for automatic inspection of a welded portion of a UO steel pipe. Can be applied to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための疵検査装置
のブロック図である。
FIG. 1 is a block diagram of a flaw inspection apparatus for explaining an embodiment of the present invention.

【図2】スリット光投光器の一例の概略を示す構成図で
ある。
FIG. 2 is a configuration diagram showing an outline of an example of a slit light projector.

【図3】検出すべき疵である溶接部のアンダーカット疵
の概略形状を示すUO鋼管の部分斜視図である。
FIG. 3 is a partial perspective view of a UO steel pipe showing a schematic shape of an undercut flaw of a welded portion which is a flaw to be detected.

【図4】図3中のA−A’線に沿う断面図である。FIG. 4 is a cross-sectional view taken along the line A-A ′ in FIG.

【図5】図3中のB−B’線に沿う光切断像を示す図で
ある。
5 is a diagram showing a light section image taken along line BB ′ in FIG.

【図6】細線化処理部で行う処理の内容を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing the content of processing performed by a thinning processing unit.

【図7】差分処理部で行う差分処理の内容を示す説明図
である。
FIG. 7 is an explanatory diagram showing contents of difference processing performed by a difference processing unit.

【図8】疵強調処理部で行う複数画素の移動和による処
理を示す説明図である。
FIG. 8 is an explanatory diagram illustrating a process based on a moving sum of a plurality of pixels, which is performed by the defect emphasis processing unit.

【図9】疵深さ判定部で行う疵深さ測定の方法を示す説
明図である。
FIG. 9 is an explanatory diagram showing a method of measuring a flaw depth performed by a flaw depth determination unit.

【図10】溶接部の端部に発生するアンダーカット疵の
概略形状を示す説明図である。
FIG. 10 is an explanatory diagram showing a schematic shape of an undercut flaw generated at an end portion of a welded portion.

【図11】図10中のA−A’線に沿う断面図である。11 is a cross-sectional view taken along the line A-A ′ in FIG.

【図12】図10中のC−C’線に沿う断面図である。FIG. 12 is a cross-sectional view taken along the line C-C ′ in FIG.

【符号の説明】[Explanation of symbols]

1 UO鋼管 2 UO鋼管溶接部 3 スリット光投光器 4 スリット光 5 撮像装置 6 疵検出処理部 7 画像記憶部 8 細線化処理部 9 差分処理部 10 疵強調処理部 11 疵有無判定部 12 疵深さ判定部 1 UO steel pipe 2 UO steel pipe welded portion 3 slit light projector 4 slit light 5 imaging device 6 flaw detection processing portion 7 image storage portion 8 thinning processing portion 9 difference processing portion 10 flaw enhancement processing portion 11 flaw presence / absence determination portion 12 flaw depth Judgment part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高嶋 和夫 尼崎市塚口本町8−1−1 三菱電機株式 会社産業システム研究所内 (72)発明者 植木 勝也 神戸市兵庫区和田崎町1−1−2 三菱電 機株式会社制御製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Takashima 8-1-1 Tsukaguchihonmachi, Amagasaki City Inside the Industrial Systems Research Center, Mitsubishi Electric Corporation (72) Inventor Katsuya Ueki 1-1-2 Wadazakicho, Hyogo-ku, Kobe Mitsubishi Electric Corporation Control Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スリット光をUO鋼管溶接部及びその近
傍に照射し、撮像装置により上記スリット光を撮像して
得た光切断像を用いて溶接部の疵を検出する方法におい
て、 上記光切断像を細線化処理して細線化データを得る第1
の処理と、 上記細線化データを差分処理して差分データを得る第2
の処理と、 上記差分データを疵強調処理して疵検出データを得る第
3の処理と、 上記疵検出データを用いて疵有無の判定を行うととも
に、疵有りと判定された場合について、細線化データを
演算することにより疵検出および疵の大きさの判定を行
う第4の処理とを具備することを特徴とするUO鋼管溶
接部表面疵検査方法。
1. A method of irradiating slit light to a UO steel pipe welded portion and its vicinity and detecting a flaw in the welded portion by using a light cut image obtained by imaging the slit light with an imaging device, wherein the light cutting is performed. The first to obtain thinned data by thinning the image
And the difference processing of the thinned data to obtain difference data
And the third process for obtaining defect detection data by performing defect enhancement processing on the difference data, and determining the presence / absence of a defect using the defect detection data, and thinning the case when it is determined that there is a defect. A UO steel pipe welded portion surface flaw inspection method, comprising: a fourth process for detecting flaws and determining the size of flaws by calculating data.
JP10349393A 1993-04-06 1993-04-06 Inspection method for weld surface defects of UO steel pipe Expired - Fee Related JP2955618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10349393A JP2955618B2 (en) 1993-04-06 1993-04-06 Inspection method for weld surface defects of UO steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10349393A JP2955618B2 (en) 1993-04-06 1993-04-06 Inspection method for weld surface defects of UO steel pipe

Publications (2)

Publication Number Publication Date
JPH06294748A true JPH06294748A (en) 1994-10-21
JP2955618B2 JP2955618B2 (en) 1999-10-04

Family

ID=14355526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10349393A Expired - Fee Related JP2955618B2 (en) 1993-04-06 1993-04-06 Inspection method for weld surface defects of UO steel pipe

Country Status (1)

Country Link
JP (1) JP2955618B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212680A1 (en) * 1991-04-26 1992-10-29 Zexel Corp CONTROL DEVICE FOR CONTROLLING THE DISCHARGE PERFORMANCE OF A COMPRESSOR IN AN AUTOMOTIVE AIR CONDITIONER
JPH0890066A (en) * 1994-09-21 1996-04-09 Nippon Steel Corp Method for inspecting surface flaw at weld zone of uo steel tube
JP2017194813A (en) * 2016-04-20 2017-10-26 株式会社日立製作所 Image diagnostic system
CN115953409A (en) * 2023-03-15 2023-04-11 深圳市深奇浩实业有限公司 Injection molding surface defect detection method based on image processing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212680A1 (en) * 1991-04-26 1992-10-29 Zexel Corp CONTROL DEVICE FOR CONTROLLING THE DISCHARGE PERFORMANCE OF A COMPRESSOR IN AN AUTOMOTIVE AIR CONDITIONER
JPH0890066A (en) * 1994-09-21 1996-04-09 Nippon Steel Corp Method for inspecting surface flaw at weld zone of uo steel tube
JP2017194813A (en) * 2016-04-20 2017-10-26 株式会社日立製作所 Image diagnostic system
CN115953409A (en) * 2023-03-15 2023-04-11 深圳市深奇浩实业有限公司 Injection molding surface defect detection method based on image processing

Also Published As

Publication number Publication date
JP2955618B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
KR100922478B1 (en) Method and device for detecting a joint between workpieces and use of the method
WO2003093761A1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
KR102235832B1 (en) Portable type welding inspection appatatus and inspection method
JPH08285780A (en) Method for inspecting flaw on outer surface of steel pipe
JP4981433B2 (en) Inspection device, inspection method, inspection program, and inspection system
JP2955618B2 (en) Inspection method for weld surface defects of UO steel pipe
JP2789169B2 (en) Inspection method for weld surface defects of UO steel pipe
JP3089079B2 (en) Circuit pattern defect inspection method
JPH1123479A (en) Method for inspecting surface flaw of welded part of steel pipe
JP3223414B2 (en) Object shape detection method and apparatus, and automatic processing system
JPH0972851A (en) Method and apparatus for detection of welding bead for steel pipe
JPH06273349A (en) Flaw decision system
JP2768053B2 (en) Seam position detection device for ERW steel pipes
JPH08220001A (en) Surface-flam inspecting method
JPH06294747A (en) Surface flaw inspection method at welded part of uo steel pipe
JP2008196866A (en) Weld crack detection method and device
JP2563865B2 (en) Image recognition apparatus and method
JPH07117495B2 (en) Steel pipe weld detection method
JPH09101113A (en) Method and device for measuring beveling position and its form
JPH085350A (en) Welding groove position and shape measurement method
JPH01227910A (en) Optical inspection device
JPH03118975A (en) Welding equipment
JPH0740049A (en) Method and device for detecting weld zone of uo steel pipe
JPH0554107A (en) Welding state judging method with appearance inspection
JP2924718B2 (en) Inspection equipment for non-metallic inclusions

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990518

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371