JPH09101113A - Method and device for measuring beveling position and its form - Google Patents

Method and device for measuring beveling position and its form

Info

Publication number
JPH09101113A
JPH09101113A JP7261227A JP26122795A JPH09101113A JP H09101113 A JPH09101113 A JP H09101113A JP 7261227 A JP7261227 A JP 7261227A JP 26122795 A JP26122795 A JP 26122795A JP H09101113 A JPH09101113 A JP H09101113A
Authority
JP
Japan
Prior art keywords
groove
line element
slope
slit light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7261227A
Other languages
Japanese (ja)
Inventor
Hironari Kikuchi
宏成 菊池
Nobuo Shibata
信雄 柴田
Yoshio Nakajima
吉男 中島
Mitsuaki Haneda
光明 羽田
Akiyoshi Imanaga
昭慈 今永
Masahiro Kobayashi
正宏 小林
Takeo Uehara
壮夫 上原
Eiji Hino
英司 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7261227A priority Critical patent/JPH09101113A/en
Publication of JPH09101113A publication Critical patent/JPH09101113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the position and form of bevelling accurately without erroneous detection of a secondary reflection image by detecting a line element corresponding to the outer surface part of an object to be welded, obtaining a terminal point on the side of its slant surface, and detecting a line element group being a candidate corresponding to a slant surface part of bevelling. SOLUTION: In measuring the position and form of objects to be welded 21, 22, first an linear element (a) corresponding to the outer surface part A of the object 21, 22 is detected, then a terminal point (u) on the side of its slant face part is obtained. Then, all candidate linear elements b1, b2... corresponding to the part B including a secondary reflection image are detected, and the candidates b1, b2... of linear element corresponding to the slant surface part B and the linear element (a) corresponding to the part A and crossing points p1, p2 are obtained respectively. Thereafter, in consideration of the distance between the crossing points p1, p2... and the terminal point (u) the linear element corresponding to the slant part B is determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外表面部と、外表
面部と90度より大きく180度より小さい角度で交わ
る斜面部を有する二つの被溶接物を突き合わせた開先の
開先位置,形状を、スリット光照射手段から開先にスリ
ット光を照射し、この際、被溶接物の表面から反射する
光切断像を撮像手段で撮像し、画像処理して、物体位
置,形状を計測する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a groove position of a groove formed by abutting two objects to be welded, each groove having an outer surface portion and an inclined surface portion which intersects the outer surface portion at an angle of more than 90 degrees and less than 180 degrees. The slit light irradiating means irradiates the groove with slit light, and at this time, the light cutting image reflected from the surface of the object to be welded is imaged by the imaging means, and image processing is performed to measure the object position and shape. Regarding the device.

【0002】[0002]

【従来の技術】被溶接物を突き合わせた開先の位置を検
出する従来の方法を例に上げると、特開平6−331332 号
公報に開示されるように、スリット光をスリット光照射
手段から照射して、開先に反射されたスリット光の反射
光を撮像手段で撮像して、そして、撮像した画像を画像
処理して開先位置の計測を行うものがある。
2. Description of the Related Art As an example of a conventional method for detecting the position of a groove where a workpiece is butted, slit light is emitted from a slit light emitting means as disclosed in Japanese Patent Laid-Open No. 6-331332. Then, the reflected light of the slit light reflected on the groove is imaged by an image pickup means, and the imaged image is processed to measure the groove position.

【0003】[0003]

【発明が解決しようとする課題】スリット光と被溶接物
(被溶接物が円筒の配管の場合、被溶接物の接線)のな
す角が直角でない場合、スリット光の2次反射像が発生
する。
When the angle between the slit light and the object to be welded (tangential line of the object to be welded when the object to be welded is a cylindrical pipe) is not a right angle, a secondary reflection image of the slit light is generated. .

【0004】例えば、図2に示すような装置において、
スリット光25と被溶接物21,22とのなす角φ1
(本明細書で、なす角は、撮像手段26側の角度とす
る)が、90度より小さく0度より大きく、撮像手段2
6の中心線と被溶接物21,22とのなす角φ2が、ス
リット光25と被溶接物21,22とのなす角φ1より
小さく0度より大きくなった場合は、図3のようなスリ
ット光の反射画像が検出される。ここで、3Aは、スリ
ット光25が外表面Aに反射した1次反射像、3Bは、
スリット光25が斜面Bに反射した1次反射像、3C
は、スリット光25が外表面Cに反射した1次反射像、
3Dは、スリット光25が斜面Dに反射した1次反射
像、4Bは、スリット光25が斜面Dに反射し、さら
に、斜面Bに反射した2次反射像、4Dは、スリット光
25が斜面Bに反射し、さらに、斜面Dに反射した2次
反射像である。
For example, in a device as shown in FIG.
Angle φ1 formed by the slit light 25 and the objects to be welded 21, 22
(Here, the angle formed is the angle on the side of the image pickup means 26) is smaller than 90 degrees and larger than 0 degrees.
When the angle φ2 formed by the center line of 6 and the objects to be welded 21 and 22 is smaller than the angle φ1 formed between the slit light 25 and the objects to be welded 21 and 22 and is larger than 0 degree, the slit as shown in FIG. A light reflection image is detected. Here, 3A is a primary reflection image in which the slit light 25 is reflected on the outer surface A, and 3B is
Primary reflection image of slit light 25 reflected on slope B, 3C
Is a primary reflection image in which the slit light 25 is reflected on the outer surface C,
3D is the primary reflection image in which the slit light 25 is reflected on the slope D, 4B is the secondary reflection image in which the slit light 25 is reflected on the slope D, and further is reflected on the slope B, 4D is the slit light 25 in the slope It is a secondary reflection image reflected on B and further on slope D.

【0005】また、スリット光25と被溶接物21,2
2とのなす角φ1が、180度より小さく、90度より
大きい場合は、図4のような反射画像が検出される。
Further, the slit light 25 and the objects to be welded 21, 21
When the angle φ1 formed with 2 is smaller than 180 degrees and larger than 90 degrees, a reflection image as shown in FIG. 4 is detected.

【0006】特に、被溶接物が円筒の配管の場合、開先
位置,形状の計測装置を搭載した溶接機の走行レールと
配管の中心軸の不一致や、姿勢が一定でないことによる
たわみの変化などにより、スリット光の照射角を一定に
保つことが難しく、2次反射像が開先の斜面部に発生す
る場合が生じる。
In particular, when the object to be welded is a cylindrical pipe, the running rail of the welding machine equipped with the groove position and shape measuring device and the central axis of the pipe do not match, or the deflection changes due to the non-uniform posture. Therefore, it is difficult to keep the irradiation angle of the slit light constant, and a secondary reflection image may occur on the slope of the groove.

【0007】特開平6−331332 号公報に開示される方法
では、1次反射像と2次反射像を同様に処理し、1次反
射像と2次反射像を区別する処理が含まれていないた
め、スリット光の1次反射像3Bと2次反射像4B、及
び、1次反射像3Cと2次反射像4Cを区別することが
できない。そのため、2次反射像4Bを誤って1次反射
像3Bとして検出する場合や、2次反射像4Cを誤って
1次反射像3Cとして検出する場合が生じ、誤った開先
位置,形状を出力する場合が発生する。
The method disclosed in Japanese Unexamined Patent Publication No. 6-331332 does not include a process of processing the primary reflection image and the secondary reflection image in the same manner and distinguishing the primary reflection image from the secondary reflection image. Therefore, the primary reflection image 3B and the secondary reflection image 4B of the slit light, and the primary reflection image 3C and the secondary reflection image 4C cannot be distinguished. Therefore, the secondary reflection image 4B may be erroneously detected as the primary reflection image 3B, or the secondary reflection image 4C may be erroneously detected as the primary reflection image 3C, and an incorrect groove position and shape are output. There will be cases.

【0008】本発明の目的は、外表面部と、前記外表面
部と90度より大きく180度より小さい角度で交わる
斜面部を有する二つの被溶接物を突き合わせた開先の開
先位置,形状を、スリット光照射手段から前記開先にス
リット光を照射して、そのスリットが光被溶接物の表面
に反射した反射像を撮像手段で撮像して、そして、その
撮像手段に撮像された画像を画像処理して、開先位置,
形状を計測する開先位置,形状の計測装置において、ス
リット光の2次反射像を、1次反射像として誤認識せ
ず、開先の位置,形状を正確に計測する開先位置,形状
の計測方法及び装置を提供することにある。
An object of the present invention is to provide a groove position and shape of a groove in which two objects to be welded are abutted with each other having an outer surface portion and an inclined surface portion which intersects with the outer surface portion at an angle larger than 90 degrees and smaller than 180 degrees. By irradiating the groove with slit light from the slit light irradiating means, and capturing the reflected image of the slit reflected on the surface of the object to be welded with the image capturing means, and the image captured by the image capturing means. Image processing the groove position,
In a groove position and shape measuring device for measuring a shape, a secondary reflection image of slit light is not erroneously recognized as a primary reflection image, and the position of the groove and the groove position and shape for accurately measuring the shape are measured. It is to provide a measuring method and apparatus.

【0009】[0009]

【課題を解決するための手段】外表面部と、前記外表面
部とのなす角が90度より大きく180度より小さい斜
面部を有する二つの被溶接物を突き合わせた開先の位
置,形状を、スリット光照射手段から前記開先にスリッ
ト光を照射し、前記スリット光が前記開先に反射した反
射像を撮像手段により撮像し、前記撮像手段で検出した
光切断画像を画像処理することによって、計測する開先
位置,形状の計測方法において、被溶接物の外表面部に
相当する線要素を検出する第1のステップと、前記被溶
接物の外表面部に相当する線要素の斜面部側の端点を検
出する第2のステップと、開先の斜面部に相当する線要
素の候補の線要素群を検出する第3のステップと、開先
の斜面部に相当する線要素の候補の線要素群と前記被溶
接物の外表面部に相当する線要素との交点をそれぞれ計
算する第4のステップと、開先の斜面部に相当する線要
素の候補が複数である場合、少なくとも、前記被溶接物
の外表面部に相当する線要素の開先の斜面部側の端点か
ら、開先の斜面部に相当する線要素の候補の線要素と前
記被溶接物の外表面部に相当する線要素との交点までの
距離を考慮して、開先の斜面部に相当する線要素を一つ
に決定する第5のステップを、有していることにより、
課題を達成できる。
The position and shape of a groove formed by abutting two objects to be welded, each having an outer surface portion and a slope portion whose angle formed by the outer surface portion is greater than 90 degrees and less than 180 degrees, are defined. By irradiating the groove with slit light from slit light irradiating means, the reflected image of the slit light reflected on the groove is captured by an image capturing means, and the light-section image detected by the image capturing means is subjected to image processing. In the method for measuring the groove position and shape to be measured, a first step of detecting a line element corresponding to the outer surface portion of the workpiece, and a sloped portion of the line element corresponding to the outer surface portion of the workpiece. The second step of detecting the end point on the side, the third step of detecting the line element group of candidate line elements corresponding to the slope portion of the groove, and the third step of detecting the line element candidate corresponding to the slope portion of the groove. The line elements and the outer surface of the work piece The fourth step of calculating the respective intersections with the line elements to be formed, and when there are a plurality of line element candidates corresponding to the slope of the groove, at least the line elements corresponding to the outer surface of the workpiece are to be formed. From the end point on the slope side of the groove, in consideration of the distance to the intersection of the line element of the candidate line element corresponding to the slope section of the groove and the line element corresponding to the outer surface part of the workpiece, By having the fifth step of determining one line element corresponding to the slope portion of the groove,
Can achieve the task.

【0010】また、外表面部と、前記外表面部とのなす
角が90度より大きく180度より小さい斜面部を有す
る二つの被溶接物を突き合わせた開先の位置,形状を、
スリット光照射手段から前記開先にスリット光を照射
し、前記スリット光が前記開先に反射した反射像を撮像
手段により撮像し、前記撮像手段で検出した光切断画像
を画像処理することによって、計測する開先位置,形状
の計測装置において、前記スリット光照射手段が、スリ
ット光照射手段と被溶接物とのなす角が0度より大き
く、90度より小さくなるように配置されており、前記
撮像手段が、撮像手段と被溶接物とのなす角が0度より
大きく、スリット光照射手段と被溶接物とのなす角より
小さくなるように配置されており、前記画像処理手段
が、前記撮像手段により得られるスリット光の反射画像
を画像処理して得られる開先の斜面部に相当する線要素
の候補が複数である場合に、前記開先の斜面部に相当す
る線要素の候補の線要素群のなかで、ヘッセの標準形で
表わした、xy直行座標系の原点から線要素を延長した
直線に直行するベクトルとx軸とのなす角θの絶対値|
θ|が最も小さい線要素を前記開先の斜面部に相当する
線要素として検出する手段を有していることによって
も、課題を達成できる。
Further, the position and shape of the groove in which two objects to be welded having an outer surface portion and an inclined surface portion whose angle formed by the outer surface portion is greater than 90 degrees and less than 180 degrees are abutted,
By irradiating the groove with slit light from the slit light irradiating means, the slit light is imaged by the image pickup means for the reflection image reflected by the groove, and by image processing the light section image detected by the image pickup means, In the measuring device for measuring the groove position and shape, the slit light irradiating means is arranged such that an angle formed by the slit light irradiating means and the object to be welded is larger than 0 degree and smaller than 90 degrees. The image pickup means is arranged such that the angle formed by the image pickup means and the object to be welded is larger than 0 degree and smaller than the angle formed by the slit light irradiating means and the object to be welded, and the image processing means is the image pickup means. When there are a plurality of line element candidates corresponding to the slope portion of the groove obtained by performing image processing on the reflection image of the slit light obtained by the means, lines of candidate line elements corresponding to the slope portion of the groove. element Among, expressed in the standard form of Hesse, the absolute value of the angle θ between the vector and the x-axis orthogonal from the origin of the xy Cartesian a straight line obtained by extending the line elements |
The problem can also be achieved by providing a means for detecting a line element having the smallest θ | as a line element corresponding to the slope of the groove.

【0011】また、外表面部と、前記外表面部とのなす
角が90度より大きく180度より小さい斜面部を有す
る二つの被溶接物を突き合わせた開先の位置,形状を、
スリット光照射手段から前記開先にスリット光を照射
し、前記スリット光が前記開先に反射した反射像を撮像
手段により撮像し、前記撮像手段で検出した光切断画像
を画像処理することによって、計測する開先位置,形状
の計測装置において、前記スリット光照射手段が、スリ
ット光照射手段と被溶接物とのなす角が90度より大き
く、180度より小さくなるように配置されており、前
記撮像手段が、撮像手段と被溶接物とのなす角が0度よ
り大きく、90度より小さくなるように配置されてお
り、前記画像処理手段が、前記撮像手段により得られる
スリット光の反射画像を画像処理して得られる開先の斜
面部に相当する線要素の候補が複数である場合に、前記
開先の斜面部に相当する線要素の候補の線要素群のなか
で、ヘッセの標準形で表わした、xy直行座標系の原点
から線要素を延長した直線に直行するベクトルとx軸と
のなす角θの絶対値|θ|が最も大きい線要素を前記開
先の斜面部に相当する線要素として検出する手段を有し
ていることによっても、課題を達成できる。
Further, the position and shape of the groove where two objects to be welded are abutted with each other having an outer surface portion and an inclined surface portion whose angle formed by the outer surface portion is larger than 90 degrees and smaller than 180 degrees,
By irradiating the groove with slit light from the slit light irradiating means, the slit light is imaged by the image pickup means for the reflection image reflected by the groove, and by image processing the light section image detected by the image pickup means, In the measuring device for measuring the groove position and shape, the slit light irradiating means is arranged such that the angle formed by the slit light irradiating means and the object to be welded is larger than 90 degrees and smaller than 180 degrees. The image pickup means is arranged such that the angle formed by the image pickup means and the object to be welded is larger than 0 degree and smaller than 90 degrees, and the image processing means displays the reflection image of the slit light obtained by the image pickup means. When there are a plurality of line element candidates corresponding to the slope part of the groove obtained by image processing, in the line element group of candidate line elements corresponding to the slope part of the groove, the standard form of Hessian so The linear element having the largest absolute value | θ | of the angle θ formed by the vector orthogonal to the straight line extending the linear element from the origin of the xy orthogonal coordinate system and the x-axis corresponds to the slope of the groove. The problem can be achieved also by having a means for detecting as an element.

【0012】[0012]

【発明の実施の形態】以下、本発明の第1の実施例につ
いて図1ないし図7を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIGS.

【0013】図1は本発明の処理の説明図、図2は本発
明を適用した装置の構成を模式的に示す斜視図、図3,
図4は、図2の撮像手段26で撮像した開先の光切断像
であり、図3が、スリット光25と被溶接物21,22
とのなす角φ1が90度より小さく、0度より大きい場
合、図4が、スリット光25と被溶接物21,22との
なす角φ1が180度より小さく、90度より大きい場
合である。図5は開先位置,形状を計測する手順を説明
するためのフローチャート、図6は図3の領域2を図5
の手順52の処理することにより得られる変化点データ
を示した模式図、図7は図5の手順54を詳しく説明す
るためのフローチャートである。
FIG. 1 is an explanatory view of the process of the present invention, FIG. 2 is a perspective view schematically showing the constitution of an apparatus to which the present invention is applied, FIG.
4 is a light section image of the groove taken by the image pickup means 26 of FIG. 2, and FIG. 3 shows the slit light 25 and the objects to be welded 21, 22.
When the angle φ1 formed by and is smaller than 90 degrees and larger than 0 degrees, FIG. 4 shows the case where the angle φ1 formed by the slit light 25 and the objects to be welded 21, 22 is smaller than 180 degrees and larger than 90 degrees. FIG. 5 is a flow chart for explaining the procedure for measuring the groove position and shape, and FIG. 6 shows the area 2 in FIG.
FIG. 7 is a schematic diagram showing change point data obtained by performing the procedure 52 of FIG. 7, and FIG. 7 is a flowchart for explaining the procedure 54 of FIG. 5 in detail.

【0014】図2において、21,22は溶接により接
合する被溶接物、23は溶接トーチ、24は線状のスリ
ット光を照射するスリット光照射手段、25はスリット
光照射手段24より照射されたスリット光、26はスリ
ット光25が被溶接物21,22に反射された反射像を
撮像する撮像手段、27は撮像手段で撮像された画像を
画像処理する画像処理手段、28はセンサ座標系であ
る。
In FIG. 2, reference numerals 21 and 22 denote objects to be welded, 23 denotes a welding torch, 24 denotes slit light irradiating means for irradiating linear slit light, and 25 denotes slit light irradiating means 24. Slit light, 26 is an image pickup means for picking up a reflected image of the slit light 25 reflected by the objects to be welded 21, 22, 27 is an image processing means for processing the image picked up by the image pickup means, and 28 is a sensor coordinate system. is there.

【0015】図2の装置において、スリット光25と被
溶接物21,22とのなす角φ1を90度になるよう
に、スリット光照射手段24を配置した場合、その角度
φ1を正確に90度に保つことは難しい。
In the apparatus of FIG. 2, when the slit light irradiating means 24 is arranged so that the angle φ1 formed by the slit light 25 and the objects to be welded 21 and 22 is 90 degrees, the angle φ1 is exactly 90 degrees. Hard to keep in.

【0016】前でも述べたが、特に、被溶接物が円筒の
配管の場合、開先位置,形状の計測装置を搭載した溶接
機の走行レールと配管の中心軸の不一致や、姿勢が一定
でないことによるたわみの変化などにより、スリット光
の照射角を一定に保つことが難しい。
As described above, particularly when the object to be welded is a cylindrical pipe, the running rail of the welding machine equipped with the measuring device for the groove position and shape and the central axis of the pipe do not match, or the posture is not constant. It is difficult to keep the irradiation angle of the slit light constant due to a change in the deflection due to some reason.

【0017】図3は、図2の装置で、スリット光25と
被溶接物21,22とのなす角φ1が90度より小さ
く、0度より大きくなった場合、図4は、図2の装置に
おいて、スリット光25と被溶接物21,22とのなす
角φ1が180度より小さく、90度より大きくなった
場合に撮像手段26により撮像される画像である。
FIG. 3 is the apparatus of FIG. 2, and when the angle φ1 formed by the slit light 25 and the objects to be welded 21, 22 is smaller than 90 degrees and larger than 0 degrees, FIG. 4 shows the apparatus of FIG. 2 is an image taken by the imaging means 26 when the angle φ1 formed by the slit light 25 and the objects to be welded 21, 22 is smaller than 180 degrees and larger than 90 degrees.

【0018】ここで、図3,図4で、3Aは、スリット
光25が外表面Aに反射した1次反射像、3Bは、スリ
ット光25が斜面Bに反射した1次反射像、3Cは、ス
リット光25が外表面Cに反射した1次反射像、3D
は、スリット光25が斜面Dに反射した1次反射像、4
Bは、スリット光25が斜面Dに反射し、さらに、斜面
Bに反射した2次反射像、4Dは、スリット光25が斜
面Bに反射し、さらに、斜面Dに反射した2次反射像で
ある。
Here, in FIGS. 3 and 4, 3A is a primary reflection image in which the slit light 25 is reflected on the outer surface A, 3B is a primary reflection image in which the slit light 25 is reflected on the slope B, and 3C is. , A primary reflection image in which the slit light 25 is reflected on the outer surface C, 3D
Is a primary reflection image in which the slit light 25 is reflected on the slope D, 4
B is a secondary reflection image in which the slit light 25 is reflected on the slope D and further reflected on the slope B, and 4D is a secondary reflection image in which the slit light 25 is reflected on the slope B and further reflected on the slope D. is there.

【0019】開先の位置,形状を計測する場合、2次反
射像が発生する可能性があることを考慮しないと、1次
反射像3Bと2次反射像4B、および、1次反射像3D
と2次反射像4Dを区別することができず、開先の位
置,形状を誤って計測する場合が生じる。
When measuring the position and shape of the groove, the primary reflection image 3B and the secondary reflection image 4B, and the primary reflection image 3D are taken into consideration without considering the possibility that a secondary reflection image may occur.
The secondary reflection image 4D cannot be distinguished from the secondary reflection image 4D, and the position and shape of the groove may be erroneously measured.

【0020】図1は本発明の処理を説明するための模式
図である。まず、図1を用いて、本発明によって1次反
射像3Bと2次反射像4Bを区別する方法を説明する。
ここで、図1はスリット光25と被溶接物21,22と
のなす角φ1が90度より小さく、0度より大きい場合
であり、以下、この場合を例にとり説明するが、スリッ
ト光25と被溶接物21,22とのなす角φ1が180
度より小さく、90度より大きい場合にも適用できる。
FIG. 1 is a schematic diagram for explaining the process of the present invention. First, a method for distinguishing the primary reflection image 3B and the secondary reflection image 4B according to the present invention will be described with reference to FIG.
Here, FIG. 1 shows the case where the angle φ1 formed by the slit light 25 and the objects to be welded 21, 22 is smaller than 90 degrees and larger than 0 degree. Hereinafter, description will be made by taking this case as an example. The angle φ1 formed by the objects to be welded 21 and 22 is 180
It is also applicable when the angle is smaller than 90 degrees and larger than 90 degrees.

【0021】まず、図2の外表面部Aに相当する線要素
aを検出し、その斜面部側の端点uを求める。
First, the line element a corresponding to the outer surface portion A of FIG. 2 is detected, and the end point u on the slope portion side is obtained.

【0022】次に、2次反射像も含め、斜面部Bに相当
する線要素の候補b1,b2,‥をすべて検出し、斜面
部Bに相当する線要素の候補b1,b2,‥と外表面部
Aに相当する線要素aとの交点p1,p2、‥をそれぞ
れ求める。
Next, all the line element candidates b1, b2, ... Corresponding to the slope B, including the secondary reflection image, are detected, and the line element candidates b1, b2 ,. Intersection points p1, p2, ... With the line element a corresponding to the surface portion A are obtained.

【0023】そして、交点p1,p2,‥と端点uとの
距離を考慮して、斜面部Bに相当する線要素に相当する
線要素を決定する。
Then, the line element corresponding to the line element corresponding to the slope B is determined in consideration of the distance between the intersection points p1, p2, ... And the end point u.

【0024】次に、被溶接物21,22の接合部(開
先)の位置,形状のうち、一例として、開先幅Wを計測
する方法を、図5を用いて処理手順を詳しく説明する。
Next, of the positions and shapes of the joints (grooves) of the objects to be welded 21 and 22, as an example, a method of measuring the groove width W will be described in detail with reference to FIG. .

【0025】まず、手順51で、撮像手段26により撮
像された画像を画像メモリに記憶する。
First, in step 51, the image picked up by the image pickup means 26 is stored in the image memory.

【0026】次に、手順52で、画像メモリに記憶され
たデータを基に、変化点データを作成する。図6に変化
点データの一例を示す。図6は、図3の領域2の部分の
変化点データを示した模式図であり、黒い四角の点が、
検出された変化点である。変化点データを作成する方法
としては、輝度のしきい値を設定して2値化処理する方
法、および、平滑化微分して極大値をとった点と極小値
をとった点の中点を変化点とする方法などがある。これ
らの方法については、特開平6−331332 号公報に開示さ
れていて、特開平6−331332 号公報に開示されている方
法を用いることにより実現できる。
Next, in step 52, change point data is created based on the data stored in the image memory. FIG. 6 shows an example of change point data. FIG. 6 is a schematic diagram showing the change point data of the area 2 in FIG. 3, in which the black square points are
This is the detected change point. As the method of creating the change point data, a threshold value of brightness is set to perform binarization processing, and a smoothing differentiation is performed to obtain a maximum value and a middle point of a minimum value. There is a method of using it as a change point. These methods are disclosed in JP-A-6-331332 and can be realized by using the method disclosed in JP-A-6-331332.

【0027】次に、手順53で、変化点データを基に、
ラベリングと直線化処理を行う。ここで、ラベリングと
は、同一の連結成分に属すると見なされる画素(変化
点)に同一の番号を割り当てる処理である。また、直線
化処理は、ラベリングにより同一の番号を割り当てられ
た画素(変化点)を基に、例えば、ハフ変換処理等を用
い、ヘッセの標準形で表わした、xy直行座標系(カメ
ラ座標系)1の原点から直線に直行するベクトルの距離
r(以下、原点からの距離rと呼ぶ)とx軸とのなす角
θ(以下、方向角θと呼ぶ)を求める処理である(図1
参照)。ラベリングと直線化処理についても、特開平6
−331332 号公報に開示されていて、特開平6−331332
号公報に開示されている方法を用いることにより実現で
きる。
Next, in step 53, based on the change point data,
Performs labeling and linearization processing. Here, the labeling is a process of assigning the same number to pixels (change points) that are considered to belong to the same connected component. The linearization process is based on the pixels (change points) assigned the same number by labeling, for example, Hough transform process is used, and the xy orthogonal coordinate system (camera coordinate system) expressed in Hesse's standard form is used. ) 1 is a process of obtaining an angle θ (hereinafter, referred to as a direction angle θ) formed by a distance r of a vector orthogonal to a straight line from the origin (hereinafter, referred to as a distance r from the origin) and the x-axis (FIG. 1).
reference). Regarding labeling and linearization, Japanese Patent Laid-Open No.
Japanese Unexamined Patent Publication No. 6-331332
It can be realized by using the method disclosed in the publication.

【0028】ここで、ラベリングと直線化処理を終え
て、それぞれのラベル内に設定される直線を線要素と呼
ぶ。それぞれの線要素は、ラベリングで割り当てられた
番号,画素数,始点と終点の座標,原点からの距離r、
及び、方向角θ等のパラメータにより表わされる。ま
た、ラベリングで、同一の連結成分に属するかの判断
は、変化点と線要素の距離が、設定した距離l1より短
いかで判断する。
Here, a straight line set in each label after the labeling and straightening processing is completed is called a line element. Each line element is the number assigned by labeling, the number of pixels, the coordinates of the start and end points, the distance r from the origin,
And a parameter such as the direction angle θ. Further, in labeling, the determination as to whether they belong to the same connected component is made based on whether the distance between the change point and the line element is shorter than the set distance l1.

【0029】次に、手順54で、図2の平面Aに相当す
る線要素a,図2の平面Bに相当する線要素b、およ
び、その二つの線要素、平面Aに相当する線要素aと平
面Bに相当する線要素bの交点pを検出する(図1参
照)。
Next, in step 54, the line element a corresponding to the plane A of FIG. 2, the line element b corresponding to the plane B of FIG. 2, and the two line elements thereof, the line element a corresponding to the plane A. And the intersection point p of the line element b corresponding to the plane B is detected (see FIG. 1).

【0030】図7に手順54の詳細フローチャートを示
す。次に、手順54の詳細について説明する。
FIG. 7 shows a detailed flowchart of the procedure 54. Next, details of the procedure 54 will be described.

【0031】まず、手順541で、図2の平面Aに相当
する線要素aを検出する。検出方法は、平面Aに相当す
る線要素aの画素数,始点,終点,原点からの距離、お
よび、方向角の範囲を設定しておき、ラベリングと直線
化処理により得られた線要素群の中から、すべてのパラ
メータが設定した範囲内に入る線要素を抽出し、その中
で、最も画素数の多いもの平面Aに相当する線要素aと
して検出する。
First, in step 541, the line element a corresponding to the plane A in FIG. 2 is detected. As the detection method, the number of pixels of the line element a corresponding to the plane A, the starting point, the end point, the distance from the origin, and the range of the direction angle are set in advance, and the line element group of the line element group obtained by the labeling and linearization processing is set. A line element in which all parameters fall within the set range is extracted from the inside, and is detected as a line element a corresponding to the plane A having the largest number of pixels.

【0032】次に、手順542で、予め設定した平面B
に相当する線要素bの画素数,始点,終点,原点からの
距離、および、方向角の範囲を基に、すべてのパラメー
タがその範囲内に入る線要素を、平面Bに相当する線要
素の候補となる線要素群b1,b2,‥として検出す
る。図1には線要素b1とb2の二つしか図示していな
いが、二つより多くてもよい。
Next, in step 542, the plane B set in advance is set.
Based on the number of pixels of the line element b corresponding to, the start point, the end point, the distance from the origin, and the range of the direction angle, a line element in which all parameters fall within the range is defined as a line element corresponding to the plane B. Detected as candidate line element groups b1, b2, .... Although only two line elements b1 and b2 are shown in FIG. 1, there may be more than two.

【0033】次に、手順543で、平面Aに相当する線
要素aの端点(この場合、終点)uを検出する。
Next, in step 543, the end point (end point in this case) u of the line element a corresponding to the plane A is detected.

【0034】次に、手順544で、平面Aに相当する線
要素aと、平面Bに相当する線要素の候補の線要素群b
1,b2,‥との、それぞれの交点p1,p2,‥を算
出する。
Next, in step 544, the line element a corresponding to the plane A and the line element group b of candidate line elements corresponding to the plane B are included.
, And the respective intersections p1, p2, ...

【0035】次に、手順545で、平面Bに相当する線
要素b、および、平面Aに相当する線要素aと平面Bに
相当する線要素bの交点pを確定する。確定する方法の
例を、以下に二つ述べる。
Next, in step 545, the line element b corresponding to the plane B and the intersection point p of the line element a corresponding to the plane A and the line element b corresponding to the plane B are determined. Two examples of how to determine are described below.

【0036】一つの方法は、交点p1,p2,‥の中
で、最も平面Aに相当する線要素aの端点uに距離が近
い交点を、平面Aに相当する線要素aと平面Bに相当す
る線要素bの交点pとし、その交点pを通る平面Bに相
当する線要素の候補となった線要素を、平面Bに相当す
る線要素bとする方法である。
In one method, among the intersections p1, p2, ..., the intersection whose distance is closest to the end point u of the line element a corresponding to the plane A is equivalent to the line element a and the plane B corresponding to the plane A. In this method, a line element corresponding to the plane B passing through the intersection p is defined as a candidate for a line element corresponding to the plane B passing through the intersection p.

【0037】この方法によれば、1次反射像により発生
した線要素b1と2次反射像により発生した線要素b2
を区別でき、線要素b2を平面Bに相当する線要素bと
して誤認識することがなくなる。
According to this method, the line element b1 generated by the primary reflection image and the line element b2 generated by the secondary reflection image
Can be distinguished, and the line element b2 will not be erroneously recognized as the line element b corresponding to the plane B.

【0038】別の方法は、交点p1,p2,‥と平面A
に相当する線要素aの端点uとの距離と、平面Bに相当
する線要素の候補の線要素群b1,b2,‥の画素数を
考慮した評価関数を設定し、その評価関数が最小、ある
いは、最大となる線要素biと交点pi(iは自然数)
をそれぞれ平面Aに相当する線要素aと平面Bに相当す
る線要素との交点pと平面Bに相当する線要素bとする
方法である。
Another method is to use the intersection points p1, p2, ... And the plane A.
, And the number of pixels of the line element groups b1, b2, ... Candidate line elements corresponding to the plane B are set, and the evaluation function is set to the minimum. Alternatively, the maximum line element bi and the intersection point pi (i is a natural number)
Is the intersection point p of the line element a corresponding to the plane A and the line element corresponding to the plane B and the line element b corresponding to the plane B, respectively.

【0039】一例としては、交点p1,p2,‥と平面
Aに相当する線要素aの端点uとのそれぞれの距離m
1,m2,‥とし、平面Bに相当する線要素の候補とな
る線要素群b1,b2,‥のそれぞれの画素数をn1,
n2,‥とし、評価関数fi=−mi+w×ni(wは
重み係数)を最大とする交点pi及び線要素biを、そ
れぞれ、交点p及び平面Bに相当する線要素bとする方
法である。
As an example, the distance m between each of the intersections p1, p2, ... And the end point u of the line element a corresponding to the plane A is m.
, M2, ... Let n1, which is the number of pixels in each of the line element groups b1, b2, ... Candidate line elements corresponding to the plane B.
In this method, the intersection point p i and the line element bi maximizing the evaluation function fi = −mi + w × ni (w is a weighting coefficient) are set to n 2, ... And the line element b corresponding to the intersection point p and the plane B, respectively.

【0040】この方法によれば、ノイズ等により発生し
た短い線要素と平面Aに相当する線要素aとの交点と、
平面Aに相当する線要素aの端点uの距離が、偶然小さ
くなった場合でも、画素数を考慮しているので、ノイズ
等により発生した短い線要素を、平面Bに相当する線要
素bとして誤認識することがない。
According to this method, the intersection of the short line element generated by noise or the like and the line element a corresponding to the plane A,
Even if the distance of the end point u of the line element a corresponding to the plane A accidentally becomes small, the number of pixels is taken into consideration. Therefore, a short line element generated by noise or the like is set as the line element b corresponding to the plane B. There is no false recognition.

【0041】以上の手順により、平面Aに相当する線要
素a,平面Bに相当する線要素b、および、その二つの
線要素,平面Aに相当する線要素aと平面Bに相当する
線要素bの交点pを検出し、手順54が終了する。
By the above procedure, the line element a corresponding to the plane A, the line element b corresponding to the plane B, and the two line elements thereof, the line element a corresponding to the plane A and the line element corresponding to the plane B. The intersection p of b is detected, and the procedure 54 ends.

【0042】次に、手順55で、平面Cに相当する線要
素c,平面Dに相当する線要素d、および、その二つの
線要素,平面Cに相当する線要素c,平面Dに相当する
線要素dの交点qを検出する。なお、検出手順は手順5
4と同様の処理である。
Next, in step 55, the line element c corresponding to the plane C, the line element d corresponding to the plane D, and the two line elements thereof, the line element c corresponding to the plane C and the plane D corresponding. The intersection q of the line element d is detected. The detection procedure is procedure 5
The process is the same as that of 4.

【0043】次に、手順56で、点pと点qの座標を、
図1のカメラ座標系28から図2のセンサ座標系1に座
標変換する。
Next, in step 56, the coordinates of the points p and q are
Coordinate conversion from the camera coordinate system 28 of FIG. 1 to the sensor coordinate system 1 of FIG.

【0044】次に、手順57で、センサ座標系1に座標
変換した点pと点qの座標から開先幅Wを計算する。
Next, in step 57, the groove width W is calculated from the coordinates of the points p and q that have been coordinate-converted to the sensor coordinate system 1.

【0045】ここでは、スリット光25と被溶接物2
1,22とのなす角φ1が90度より小さく、0度より
大きい場合を例にとり手順を説明してきたが、スリット
光25と被溶接物21,22とのなす角φ1が180度
より小さく、90度より大きい場合でも、誤認識するこ
となく開先幅Wを検出できる。
Here, the slit light 25 and the workpiece 2 are welded.
The procedure has been described by taking the case where the angle φ1 formed by the 1 and 22 is smaller than 90 degrees and larger than 0 degree as an example, but the angle φ1 formed by the slit light 25 and the objects to be welded 21 and 22 is smaller than 180 degrees, Even if it is larger than 90 degrees, the groove width W can be detected without erroneous recognition.

【0046】次に、本発明の第2の実施例について図
3,図5、および、図8ないし図10を用いて説明す
る。
Next, a second embodiment of the present invention will be described with reference to FIGS. 3, 5 and 8 to 10.

【0047】図8は本発明を適用した装置の構成を模式
的に示す斜視図、図9は第2の実施例における図5の手
順54を詳しく説明するためのフローチャート、図10
は本発明の処理を説明するための模式図である。
FIG. 8 is a perspective view schematically showing the construction of an apparatus to which the present invention is applied, FIG. 9 is a flow chart for explaining the procedure 54 of FIG. 5 in the second embodiment in detail, and FIG.
FIG. 4 is a schematic diagram for explaining the process of the present invention.

【0048】図8を用いて、本実施例のスリット光照射
手段24と撮像手段26の配置を説明する。
The arrangement of the slit light irradiation means 24 and the image pickup means 26 of this embodiment will be described with reference to FIG.

【0049】スリット光照射手段24は、スリット光2
5と被溶接物21,22とのなす角φ1が90度より小
さく0度より大きくなるように配置し、撮像手段26
は、撮像手段26の中心線と被溶接物21,22とのな
す角φ2が、スリット光25と被溶接物21,22との
なす角φ1より小さく0度より大きくなるように配置す
る。
The slit light irradiating means 24 is used for the slit light 2
5 and the objects to be welded 21, 22 are arranged so that the angle φ1 formed between them is smaller than 90 degrees and larger than 0 degrees.
Is arranged such that the angle φ2 formed by the center line of the imaging means 26 and the objects to be welded 21, 22 is smaller than the angle φ1 formed by the slit light 25 and the objects to be welded 21, 22 and larger than 0 degree.

【0050】図8に示した配置にすると、2次反射像
は、図8で、1次反射像より溶接トーチに近いところに
発生するので、撮像手段により撮像される反射像は、図
3に示すように、2次反射像4B,4Dが1次反射像3
B,3Dの内側に撮像される。
In the arrangement shown in FIG. 8, the secondary reflection image is generated closer to the welding torch than the primary reflection image in FIG. 8, so that the reflection image captured by the image pickup means is shown in FIG. As shown, the secondary reflection images 4B and 4D are the primary reflection images 3
Images are taken inside B and 3D.

【0051】図5の手順54を、図7に示したフローチ
ャートの手順により行うことによっても、平面Aに相当
する線要素a,平面Bに相当する線要素b、および、そ
の二つの線要素,平面Aに相当する線要素aと平面Bに
相当する線要素bの交点pを求めることができるが、図
3のように、2次反射像4B,4Dが1次反射像3B,
3Dの内側に撮像されることを利用し、図9のフローチ
ャートに示した手順により求めることもできる。
By performing the procedure 54 of FIG. 5 by the procedure of the flow chart shown in FIG. 7, the line element a corresponding to the plane A, the line element b corresponding to the plane B, and the two line elements thereof, The intersection p of the line element a corresponding to the plane A and the line element b corresponding to the plane B can be obtained, but as shown in FIG. 3, the secondary reflection images 4B and 4D are the primary reflection images 3B,
It is also possible to obtain it by the procedure shown in the flowchart of FIG. 9 using the fact that the image is captured inside 3D.

【0052】その手順を説明する。ここで、図5の手順
54以外の手順は、第1実施例と同じなので、ここでは
説明を省略し、手順54についてのみ、図9,図10を
用いて、詳しく説明する。
The procedure will be described. Here, since the procedure other than the procedure 54 in FIG. 5 is the same as that of the first embodiment, the description thereof is omitted here, and only the procedure 54 will be described in detail with reference to FIGS. 9 and 10.

【0053】まず、手順541,542で、図7に示し
たフローチャートの手順と同様に、平面Aに相当する線
要素aを検出し、平面Bに相当する線要素の候補となる
線要素群b1,b2,‥を検出する(図10参照)。
First, in steps 541 and 542, the line element a corresponding to the plane A is detected and the line element group b1 which is a candidate for the line element corresponding to the plane B is detected in the same manner as the procedure of the flowchart shown in FIG. , B2, ... Are detected (see FIG. 10).

【0054】次に、手順546で、平面Bに相当する線
要素の候補となる線要素群b1,b2,‥のうちで、方
向角の絶対値|θ|(平面Bに相当する線要素bの方向
角は負の値をとり、平面Dに相当する線要素dの方向角
は正の値をとるため、絶対値をとっている)が最も小さ
いものを、平面Bに相当する線要素bとする。
Next, in step 546, the absolute value of the direction angle | θ | (the line element b corresponding to the plane B is selected from the line element groups b1, b2, ... Which are candidates for the line element corresponding to the plane B. Takes a negative value, and the direction angle of the line element d corresponding to the plane D takes a positive value. Therefore, the one having the smallest absolute value) is the line element b corresponding to the plane B. And

【0055】そして、手順547で、平面Aに相当する
線要素aと平面Bに相当する線要素bの交点pを計算す
る。
Then, in step 547, the intersection point p of the line element a corresponding to the plane A and the line element b corresponding to the plane B is calculated.

【0056】以上により、平面Aに相当する線要素a,
平面Bに相当する線要素b、および、平面Aに相当する
線要素aと平面Bに相当する線要素bの交点pを検出で
きる。
From the above, the line element a corresponding to the plane A,
It is possible to detect the line element b corresponding to the plane B, and the intersection point p of the line element a corresponding to the plane A and the line element b corresponding to the plane B.

【0057】本実施例の方法によれば、2次反射像が、
1次反射像に対して一定の方向に撮像される(図10の
ように、2次反射像4B,4Dが1次反射像3B,3D
の内側に撮像される)ので、1次反射像と容易に区別で
き、2次反射像を1次反射像として誤認識することがな
くなる。また、ステップ数も、第1実施例より少なくて
すむ。
According to the method of this embodiment, the secondary reflection image is
An image is taken in a fixed direction with respect to the primary reflection image (as shown in FIG. 10, the secondary reflection images 4B and 4D are changed to the primary reflection images 3B and 3D).
Image is captured inside), and thus the secondary reflection image can be easily distinguished from the primary reflection image, and the secondary reflection image is not erroneously recognized as the primary reflection image. Also, the number of steps is smaller than that in the first embodiment.

【0058】さらに、本実施例のように、スリット照射
手段24を配置すれば、スリット照射手段24と溶接ト
ーチ23の間に空間ができて、装置の設計で余裕が生ま
れる(例えば、監視用のカメラをその空間に配置できる
など)。
Further, if the slit irradiation means 24 is arranged as in this embodiment, a space is created between the slit irradiation means 24 and the welding torch 23, and a margin is created in the design of the apparatus (for example, for monitoring). A camera can be placed in that space).

【0059】次に、本発明の第3の実施例について図
4,図5、および、図11ないし図13を用いて説明す
る。
Next, a third embodiment of the present invention will be described with reference to FIGS. 4, 5 and 11 to 13.

【0060】図11は本発明を適用した装置の構成を模
式的に示す斜視図、図12は第2の実施例における図5
の手順54を詳しく説明するためのフローチャート、図
13は本発明の処理を説明するための模式図である。
FIG. 11 is a perspective view schematically showing the structure of an apparatus to which the present invention is applied, and FIG. 12 is the same as FIG. 5 in the second embodiment.
FIG. 13 is a flow chart for explaining the procedure 54 of FIG. 5 in detail, and FIG. 13 is a schematic view for explaining the processing of the present invention.

【0061】図11を用いて、本実施例のスリット光照
射手段24と撮像手段26の配置を説明する。
The arrangement of the slit light irradiation means 24 and the image pickup means 26 of this embodiment will be described with reference to FIG.

【0062】スリット光照射手段24は、スリット光2
5と被溶接物21,22とのなす角φ1が180度より
小さく90度より大きくなるように配置し、撮像手段2
6は、撮像手段26の中心線と被溶接物21,22との
なす角φ2が、90度より小さく0度より大きくなるよ
うに配置する。
The slit light irradiating means 24 is used for the slit light 2
5 and the objects to be welded 21, 22 are arranged so that the angle φ1 formed between them is smaller than 180 degrees and larger than 90 degrees.
6 is arranged so that the angle φ2 formed by the center line of the imaging means 26 and the objects to be welded 21, 22 is smaller than 90 degrees and larger than 0 degrees.

【0063】図11に示した配置にすると、2次反射像
は、図11で、1次反射像より溶接トーチに近いところ
に発生するので、撮像手段により撮像される反射像は、
図4に示すように、2次反射像4B,4Dが1次反射像
3B,3Dの外側に撮像される。
With the arrangement shown in FIG. 11, the secondary reflection image is generated closer to the welding torch than the primary reflection image in FIG. 11, so the reflection image picked up by the image pickup means is
As shown in FIG. 4, the secondary reflection images 4B and 4D are captured outside the primary reflection images 3B and 3D.

【0064】図5の手順54を、図7に示したフローチ
ャートの手順により行うことによっても、平面Aに相当
する線要素a,平面Bに相当する線要素b、および、そ
の二つの線要素,平面Aに相当する線要素aと平面Bに
相当する線要素bの交点pを求めることができるが、図
4のように、2次反射像4B,4Dが1次反射像3B,
3Dの外側に撮像されることを利用し、図12のフロー
チャートに示した手順により求めることもできる。
By performing the procedure 54 of FIG. 5 according to the procedure of the flowchart shown in FIG. 7, the line element a corresponding to the plane A, the line element b corresponding to the plane B, and the two line elements thereof, The intersection p of the line element a corresponding to the plane A and the line element b corresponding to the plane B can be obtained, but as shown in FIG. 4, the secondary reflection images 4B and 4D are the primary reflection images 3B,
It is also possible to obtain it by the procedure shown in the flowchart of FIG. 12 by utilizing the fact that the image is captured outside 3D.

【0065】その手順を説明する。ここで、図5の手順
54以外の手順は、第1実施例と同じなので、ここでは
説明を省略し、手順54についてのみ、図12,図13
を用いて、詳しく説明する。
The procedure will be described. Here, the procedure other than the procedure 54 of FIG. 5 is the same as that of the first embodiment, and therefore the description thereof is omitted here, and only the procedure 54 will be described with reference to FIGS.
Will be described in detail.

【0066】まず、手順541,542で、図7に示し
たフローチャートの手順と同様に、平面Aに相当する線
要素aを検出し、平面Bに相当する線要素の候補となる
線要素群b1,b2,‥を検出する(図13参照)。
First, in steps 541 and 542, similarly to the procedure of the flowchart shown in FIG. 7, the line element a corresponding to the plane A is detected, and the line element group b1 that is a candidate for the line element corresponding to the plane B is detected. , B2, ... (See FIG. 13).

【0067】次に、手順548で、平面Bに相当する線
要素の候補となる線要素群b1,b2,‥のうちで、方
向角の絶対値|θ|(平面Bに相当する線要素bの方向
角は負の値をとり、平面Dに相当する線要素dの方向角
は正の値をとるため、絶対値をとっている)が最も大き
いものを、平面Bに相当する線要素bとする。
Next, in step 548, the absolute value of the direction angle | θ | (the line element b corresponding to the plane B is selected from the line element groups b1, b2, ... Which are candidates for the line element corresponding to the plane B. Takes a negative value, and the direction angle of the line element d corresponding to the plane D takes a positive value, and thus has the largest absolute value. The line element b corresponding to the plane B has the largest absolute value. And

【0068】そして、手順549で、平面Aに相当する
線要素aと平面Bに相当する線要素bの交点pを計算す
る。
Then, in step 549, the intersection point p of the line element a corresponding to the plane A and the line element b corresponding to the plane B is calculated.

【0069】以上により、平面Aに相当する線要素a,
平面Bに相当する線要素b、および、平面Aに相当する
線要素aと平面Bに相当する線要素bの交点pを検出で
きる。
From the above, the line element a corresponding to the plane A,
It is possible to detect the line element b corresponding to the plane B, and the intersection point p of the line element a corresponding to the plane A and the line element b corresponding to the plane B.

【0070】第3実施例の方法によれば、2次反射像
が、1次反射像に対して一定の方向に撮像される(図1
0のように、2次反射像4B,4Dが1次反射像3B,
3Dの外側に撮像される)ので、1次反射像と容易に区
別でき、2次反射像を1次反射像として誤認識すること
がなくなる。また、ステップ数も、第1実施例より少な
くてすむ。
According to the method of the third embodiment, the secondary reflection image is picked up in a fixed direction with respect to the primary reflection image (FIG. 1).
0, the secondary reflection images 4B, 4D are the primary reflection images 3B,
Since it is imaged outside 3D), it can be easily distinguished from the primary reflection image, and the secondary reflection image will not be erroneously recognized as the primary reflection image. Also, the number of steps is smaller than that in the first embodiment.

【0071】さらに、本実施例のように、スリット照射
手段24を配置すれば、撮像手段26の中心線と被溶接
物21,22とのなす角を90度に近づけることがで
き、その場合、アーク光の影響を小さくすることができ
る。
Further, by arranging the slit irradiation means 24 as in this embodiment, the angle formed by the center line of the imaging means 26 and the objects to be welded 21 and 22 can be brought close to 90 degrees. In that case, The influence of arc light can be reduced.

【0072】[0072]

【発明の効果】本発明によれば、2次反射像を誤検出す
ることなく正確に開先の位置,形状を計測することがで
きる。
According to the present invention, the position and shape of the groove can be accurately measured without erroneously detecting the secondary reflected image.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の処理手順の説明図。FIG. 1 is an explanatory diagram of a processing procedure according to a first embodiment of this invention.

【図2】本発明の第1の実施例を適用した装置の斜視
図。
FIG. 2 is a perspective view of an apparatus to which the first embodiment of the present invention is applied.

【図3】図2の撮像手段で撮像した開先の光切断像の説
明図。
FIG. 3 is an explanatory view of a light section image of a groove taken by the image pickup means of FIG.

【図4】図2の撮像手段で撮像した開先の光切断像の説
明図。
FIG. 4 is an explanatory view of a light section image of a groove taken by the image pickup means of FIG.

【図5】開先位置,形状を計測する手順を説明するため
のフローチャート。
FIG. 5 is a flowchart for explaining a procedure for measuring a groove position and a shape.

【図6】図3の領域2を図5の操作52の処理すること
により得られる変化点データを示した説明図。
6 is an explanatory diagram showing change point data obtained by processing the area 2 in FIG. 3 by an operation 52 in FIG.

【図7】本発明の第1の実施例の図5の手順のフローチ
ャート。
FIG. 7 is a flowchart of the procedure of FIG. 5 according to the first embodiment of the present invention.

【図8】本発明の第2の実施例を適用した装置の斜視
図。
FIG. 8 is a perspective view of an apparatus to which a second embodiment of the present invention is applied.

【図9】本発明の第2の実施例の図5の手順のフローチ
ャート。
FIG. 9 is a flowchart of the procedure of FIG. 5 according to the second embodiment of the present invention.

【図10】本発明の第2の実施例の処理手順の説明図。FIG. 10 is an explanatory diagram of a processing procedure according to the second embodiment of this invention.

【図11】本発明の第3の実施例を適用した装置の斜視
図。
FIG. 11 is a perspective view of an apparatus to which a third embodiment of the present invention is applied.

【図12】本発明の第3の実施例の図5の手順のフロー
チャート。
FIG. 12 is a flowchart of the procedure of FIG. 5 according to the third embodiment of the present invention.

【図13】本発明の第3の実施例の処理手順の説明図。FIG. 13 is an explanatory diagram of a processing procedure according to the third embodiment of this invention.

【符号の説明】[Explanation of symbols]

1…カメラ座標系、21,22…被溶接物、23…溶接
トーチ、24…スリット照射手段、25…スリット光、
26…撮像手段、27…画像処理手段、28…センサ座
標系。
1 ... Camera coordinate system, 21, 22 ... Welding object, 23 ... Welding torch, 24 ... Slit irradiation means, 25 ... Slit light,
26 ... Imaging means, 27 ... Image processing means, 28 ... Sensor coordinate system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽田 光明 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 今永 昭慈 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小林 正宏 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 上原 壮夫 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 日野 英司 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuaki Haneda, 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Seisakusho Co., Ltd. (72) Inventor Akiji Imanaga 502, Jinritsucho, Tsuchiura-shi, Ibaraki Nissha Co., Ltd. Machinery Research Laboratory, Tate Works (72) Masahiro Kobayashi 3-1-1, Sachimachi, Hitachi, Ibaraki Prefecture Hitachi Co., Ltd. Hitachi Factory, Hitachi (72) Inventor, Takeo Uehara 3-1-1, Sachimachi, Hitachi, Ibaraki No. Hitachi Ltd., Hitachi Plant (72) Inventor Eiji Hino 3-1-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi Ltd., Hitachi Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】外表面部と、前記外表面部とのなす角が9
0度より大きく180度より小さい斜面部を有する二つ
の被溶接物を突き合わせた開先の位置,形状をスリット
光照射手段から前記開先にスリット光を照射し、前記ス
リット光が前記開先に反射した反射像を撮像手段により
撮像し、前記撮像手段で撮像したスリット光の反射像を
画像処理手段により画像処理することによって計測する
開先位置,形状の計測方法において、 被溶接物の外表面部に相当する線要素を検出する第1の
ステップと、前記被溶接物の外表面部に相当する線要素
の斜面部側の端点を検出する第2のステップと、開先の
斜面部に相当する線要素の候補の線要素群を検出する第
3のステップと、開先の斜面部に相当する線要素の候補
の線要素群と前記被溶接物の外表面部に相当する線要素
との交点をそれぞれ計算する第4のステップと、開先の
斜面部に相当する線要素の候補が複数である場合、少な
くとも、前記被溶接物の外表面部に相当する線要素の開
先の斜面部側の端点から、開先の斜面部に相当する線要
素の候補の線要素と前記被溶接物の外表面部に相当する
線要素との交点までの距離を考慮して、開先の斜面部に
相当する線要素を一つに決定する第5のステップを有し
ていることを特徴とする開先位置,形状の計測方法。
1. An angle between an outer surface portion and the outer surface portion is 9
The slit light irradiating means irradiates the groove with slit light so that the slit light irradiates the groove with the position and shape of the groove in which two objects to be welded having a slope portion larger than 0 degree and smaller than 180 degrees are abutted. In the method of measuring the groove position and shape, in which the reflected reflection image is imaged by the image pickup means, and the reflected image of the slit light imaged by the image pickup means is image-processed by the image processing means, the outer surface of the workpiece. A first step of detecting a line element corresponding to a portion, a second step of detecting an end point of the line element corresponding to the outer surface of the workpiece on the slope side, and a slope of the groove A third step of detecting a line element group of candidate line elements, and a line element group of candidate line elements corresponding to the slope of the groove and a line element corresponding to the outer surface of the workpiece. Fourth to calculate each intersection Step and, when there are a plurality of line element candidates corresponding to the slope portion of the groove, at least from the end point on the slope side of the groove of the line element corresponding to the outer surface portion of the workpiece, Considering the distance to the intersection of a line element candidate of a line element corresponding to the slope and the line element corresponding to the outer surface of the workpiece, one line element corresponding to the slope of the groove is considered. A groove position and shape measuring method, which comprises a fifth step for determining.
【請求項2】前記第5のステップが、開先の斜面部に相
当する線要素の候補が複数である場合、前記被溶接物の
外表面部に相当する線要素の開先の斜面部側の端点か
ら、開先の斜面部に相当する線要素の候補の線要素と前
記被溶接物の外表面部に相当する線要素との交点までの
距離の他に、少なくとも、開先の斜面部に相当する線要
素の候補の画素数も考慮して、開先の斜面部に相当する
線要素を一つに決定するステップである請求項1に記載
の開先位置,形状の計測方法。
2. In the fifth step, when there are a plurality of line element candidates corresponding to the slope portion of the groove, the slope portion side of the groove of the line element corresponding to the outer surface portion of the workpiece is welded. From the end point to the intersection of the line element corresponding to the outer surface of the work piece and the candidate line element of the line element corresponding to the slope of the groove, at least the slope of the groove The method for measuring a groove position and shape according to claim 1, which is a step of determining one line element corresponding to the slope portion of the groove in consideration of the number of pixels of the line element candidate corresponding to.
【請求項3】外表面部と、前記外表面部とのなす角が9
0度より大きく180度より小さい斜面部を有する二つ
の被溶接物を突き合わせた開先の位置,形状を、 スリット光照射手段から前記開先にスリット光を照射
し、前記スリット光が前記開先に反射した反射像を撮像
手段により撮像し、前記撮像手段で撮像したスリット光
の反射像を画像処理手段により画像処理することによっ
て、 計測する開先位置,形状の計測装置において、 前記画像処理手段が、被溶接物の外表面部に相当する線
要素を検出する第1の手段と、前記被溶接物の外表面部
に相当する線要素の斜面部側の端点を検出する第2の手
段と、開先の斜面部に相当する線要素の候補の線要素群
を検出する第3の手段と、開先の斜面部に相当する線要
素の候補の線要素群と前記被溶接物の外表面部に相当す
る線要素との交点をそれぞれ計算する第4の手段と、開
先の斜面部に相当する線要素の候補が複数である場合、
少なくとも、前記被溶接物の外表面部に相当する線要素
の開先の斜面部側の端点から、開先の斜面部に相当する
線要素の候補の線要素と前記被溶接物の外表面部に相当
する線要素との交点までの距離を考慮して、開先の斜面
部に相当する線要素を一つに決定する第5の手段を有し
ていることを特徴とする開先位置,形状の計測装置。
3. The angle formed by the outer surface portion and the outer surface portion is 9
The slit light irradiating means irradiates the groove with slit light so that the slit light irradiates the groove with the position and shape of the groove where two objects to be welded having a slope portion larger than 0 degree and smaller than 180 degrees are abutted. In the measuring device for measuring the groove position and shape, the reflected image reflected by the image pickup means is imaged by the image pickup means, and the reflected image of the slit light picked up by the image pickup means is image-processed by the image processing means. A first means for detecting a line element corresponding to the outer surface portion of the object to be welded, and a second means for detecting an end point on the sloped side of the line element corresponding to the outer surface portion of the object to be welded. A third means for detecting a line element group of candidate line elements corresponding to the slope portion of the groove, a line element group of candidate line elements corresponding to the slope portion of the groove, and the outer surface of the workpiece. The intersection with the line element corresponding to the If a fourth means for calculation, the candidate of a line element corresponding to the inclined surface portion of the groove is plural,
At least, from the end point on the slope side of the groove of the line element corresponding to the outer surface of the workpiece, the candidate line element of the line element corresponding to the slope of the groove and the outer surface of the workpiece. A groove position having a fifth means for determining one line element corresponding to the slope of the groove in consideration of the distance to the intersection with the line element corresponding to, Shape measuring device.
【請求項4】前記第5の手段が、開先の斜面部に相当す
る線要素の候補が複数である場合、前記被溶接物の外表
面部に相当する線要素の開先の斜面部側の端点から、開
先の斜面部に相当する線要素の候補の線要素と前記被溶
接物の外表面部に相当する線要素との交点までの距離の
他に、少なくとも、開先の斜面部に相当する線要素の候
補の画素数も考慮して、開先の斜面部に相当する線要素
を一つに決定する手段である請求項3に記載の開先位
置,形状の計測装置。
4. When the fifth means has a plurality of line element candidates corresponding to the slope portion of the groove, the slope portion side of the groove of the line element corresponding to the outer surface portion of the object to be welded. From the end point to the intersection of the line element corresponding to the outer surface of the work piece and the candidate line element of the line element corresponding to the slope of the groove, at least the slope of the groove The groove position / shape measuring device according to claim 3, which is a means for determining one line element corresponding to the slope portion of the groove in consideration of the number of pixels of the line element candidate corresponding to.
【請求項5】外表面部と、前記外表面部とのなす角が9
0度より大きく180度より小さい斜面部を有する二つ
の被溶接物を突き合わせた開先の位置,形状を、スリッ
ト光照射手段から前記開先にスリット光を照射し、前記
スリット光が前記開先に反射した反射像を撮像手段によ
り撮像し、前記撮像手段で撮像したスリット光の反射像
を画像処理手段により画像処理することによって、計測
する開先位置,形状の計測装置において、前記スリット
光照射手段が、スリット光照射手段と被溶接物とのなす
角が0度より大きく、90度より小さくなるように配置
されており、前記撮像手段が、撮像手段と被溶接物との
なす角が0度より大きく、スリット光照射手段と被溶接
物とのなす角より小さくなるように配置されており、前
記画像処理手段が、前記撮像手段により得られるスリッ
ト光の反射画像を画像処理して得られる開先の斜面部に
相当する線要素の候補が複数である場合に、前記開先の
斜面部に相当する線要素の候補の線要素群のなかで、ヘ
ッセの標準形で表わした、xy直行座標系の原点から線
要素を延長した直線に直行するベクトルとx軸とのなす
角θの絶対値|θ|が最も小さい線要素を前記開先の斜
面部に相当する線要素として検出する手段を有している
ことを特徴とする開先位置,形状の計測装置。
5. The angle formed by the outer surface portion and the outer surface portion is 9
The slit light irradiating means irradiates the groove with slit light so that the slit light irradiates the groove with the position and shape of the groove where two objects to be welded having a slope portion larger than 0 degree and smaller than 180 degrees are abutted. In the measuring device for measuring the groove position and the shape, the slit light irradiation is performed by capturing the reflected image reflected by the image capturing means with the image capturing means, and image-processing the reflected image of the slit light captured by the image capturing means with the image processing means. The means is arranged such that the angle formed by the slit light irradiating means and the object to be welded is larger than 0 degree and smaller than 90 degrees, and the imaging means makes the angle formed by the imaging means and the object to be welded 0. The angle is larger than the angle and is smaller than the angle formed by the slit light irradiating means and the object to be welded, and the image processing means displays a reflection image of the slit light obtained by the imaging means. When there are a plurality of line element candidates corresponding to the slope portion of the groove obtained by image processing, in the line element group of candidate line elements corresponding to the slope portion of the groove, the standard form of Hesse The linear element having the smallest absolute value | θ | of the angle θ formed by the vector orthogonal to the straight line extending the linear element from the origin of the xy orthogonal coordinate system and represented by A groove position / shape measuring device having a means for detecting it as a line element.
【請求項6】外表面部と、前記外表面部とのなす角が9
0度より大きく180度より小さい斜面部を有する二つ
の被溶接物を突き合わせた開先の位置,形状をスリット
光照射手段から前記開先にスリット光を照射し、前記ス
リット光が前記開先に反射した反射像を撮像手段により
撮像し、前記撮像手段で撮像したスリット光の反射像を
画像処理手段により画像処理することによって、計測す
る開先位置,形状の計測装置において、前記スリット光
照射手段が、スリット光照射手段と被溶接物とのなす角
が90度より大きく、180度より小さくなるように配
置されており、前記撮像手段が、撮像手段と被溶接物と
のなす角が0度より大きく、90度より小さくなるよう
に配置されており、前記画像処理手段が、前記撮像手段
により得られるスリット光の反射画像を画像処理して得
られる開先の斜面部に相当する線要素の候補が複数であ
る場合に、前記開先の斜面部に相当する線要素の候補の
線要素群のなかで、ヘッセの標準形で表わした、xy直
行座標系の原点から線要素を延長した直線に直行するベ
クトルとx軸とのなす角θの絶対値|θ|が最も大きい
線要素を前記開先の斜面部に相当する線要素として検出
する手段を有していることを特徴とする開先位置,形状
の計測装置。
6. The angle formed by the outer surface portion and the outer surface portion is 9
The slit light irradiating means irradiates the groove with slit light so that the slit light irradiates the groove with the position and shape of the groove in which two objects to be welded having a slope portion larger than 0 degree and smaller than 180 degrees are abutted. In the measuring device of the groove position and shape for measuring by measuring the reflected image of the reflected light reflected by the image pickup means and the reflected image of the slit light picked up by the image pickup means by the image processing means, the slit light irradiation means Is arranged such that the angle formed by the slit light irradiating means and the object to be welded is larger than 90 degrees and smaller than 180 degrees, and the imaging means forms an angle of 0 degree between the imaging means and the object to be welded. It is arranged so as to be larger and smaller than 90 degrees, and the slope of the groove obtained by the image processing means image-processing the reflection image of the slit light obtained by the image pickup means. When there are a plurality of line element candidates corresponding to, from the origin of the xy orthogonal coordinate system represented by the Hesse standard form in the line element group of the line element candidates corresponding to the slope of the groove. There is provided means for detecting a line element having the largest absolute value | θ | of the angle θ formed by the vector orthogonal to the straight line extending the line element and the x-axis as the line element corresponding to the slope of the groove. A groove position and shape measuring device characterized in that
JP7261227A 1995-10-09 1995-10-09 Method and device for measuring beveling position and its form Pending JPH09101113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7261227A JPH09101113A (en) 1995-10-09 1995-10-09 Method and device for measuring beveling position and its form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7261227A JPH09101113A (en) 1995-10-09 1995-10-09 Method and device for measuring beveling position and its form

Publications (1)

Publication Number Publication Date
JPH09101113A true JPH09101113A (en) 1997-04-15

Family

ID=17358914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7261227A Pending JPH09101113A (en) 1995-10-09 1995-10-09 Method and device for measuring beveling position and its form

Country Status (1)

Country Link
JP (1) JPH09101113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200931A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Apparatus for measuring shape of workpiece to be welded
CN102374850A (en) * 2010-08-12 2012-03-14 四川省自贡市海川实业有限公司 Measuring device for leaf crown cambered surface of turbine blade
KR101284852B1 (en) * 2011-04-07 2013-07-09 삼성중공업 주식회사 Apparatus for inspecting weld toe grinding and methord thereof
JP2013188790A (en) * 2012-03-15 2013-09-26 Kawasaki Heavy Ind Ltd Welding state monitoring device and welding state monitoring method in arc welding
JP2014032076A (en) * 2012-08-02 2014-02-20 Kobe Steel Ltd Method of measuring position and shape of welding groove

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200931A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Apparatus for measuring shape of workpiece to be welded
CN102374850A (en) * 2010-08-12 2012-03-14 四川省自贡市海川实业有限公司 Measuring device for leaf crown cambered surface of turbine blade
KR101284852B1 (en) * 2011-04-07 2013-07-09 삼성중공업 주식회사 Apparatus for inspecting weld toe grinding and methord thereof
JP2013188790A (en) * 2012-03-15 2013-09-26 Kawasaki Heavy Ind Ltd Welding state monitoring device and welding state monitoring method in arc welding
JP2014032076A (en) * 2012-08-02 2014-02-20 Kobe Steel Ltd Method of measuring position and shape of welding groove

Similar Documents

Publication Publication Date Title
Dinham et al. Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding
JP5025442B2 (en) Tire shape inspection method and apparatus
JP4687518B2 (en) Image processing method, three-dimensional measurement method using the method, and image processing apparatus
US7202957B2 (en) Three-dimensional visual sensor
KR101850968B1 (en) Weld bead detecting apparatus
JPH08136220A (en) Method and device for detecting position of article
Shah et al. A review paper on vision based identification, detection and tracking of weld seams path in welding robot environment
CN112085708B (en) Method and equipment for detecting defects of straight line edges in outer contour of product
Wang et al. A multi-BRIEF-descriptor stereo matching algorithm for binocular visual sensing of fillet welds with indistinct features
JP2017173142A (en) Image processing device, image processing method and micro joint cutting system
CN114581368A (en) Bar welding method and device based on binocular vision
JPH09101113A (en) Method and device for measuring beveling position and its form
CN108262583B (en) Welding seam type judging and positioning method and system
Molleda et al. A profile measurement system for rail manufacturing using multiple laser range finders
JP3151790B2 (en) Method and apparatus for detecting center position of weld groove / bead
JP6343312B2 (en) Measuring method of blade width of grooving tools
JP3758763B2 (en) Method for optical measurement of hole position
JPH1123479A (en) Method for inspecting surface flaw of welded part of steel pipe
JP2686053B2 (en) Defect inspection method by visual inspection
JP2955618B2 (en) Inspection method for weld surface defects of UO steel pipe
CN113358058B (en) Computer vision detection method for weld contour features based on discrete sequence points
JP2710685B2 (en) Defect detection method by visual inspection
JPH0772909B2 (en) Welding condition judgment method by visual inspection
JPH07120406A (en) Inspection method for welded part of seam welded pipe
JP2789169B2 (en) Inspection method for weld surface defects of UO steel pipe