JP4876599B2 - Quality detection method and apparatus for butt welds - Google Patents

Quality detection method and apparatus for butt welds Download PDF

Info

Publication number
JP4876599B2
JP4876599B2 JP2006023521A JP2006023521A JP4876599B2 JP 4876599 B2 JP4876599 B2 JP 4876599B2 JP 2006023521 A JP2006023521 A JP 2006023521A JP 2006023521 A JP2006023521 A JP 2006023521A JP 4876599 B2 JP4876599 B2 JP 4876599B2
Authority
JP
Japan
Prior art keywords
light
cutting
welding
image
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006023521A
Other languages
Japanese (ja)
Other versions
JP2007203322A (en
Inventor
俊文 児玉
嘉之 梅垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006023521A priority Critical patent/JP4876599B2/en
Publication of JP2007203322A publication Critical patent/JP2007203322A/en
Application granted granted Critical
Publication of JP4876599B2 publication Critical patent/JP4876599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、突合せ溶接部の良否検出方法及び装置に係り、特に、鋼帯等をフラッシュバット法等の突合せ溶接する工程において、溶接によって生じる盛上がり部を除去した後に溶接部の良否を検査する方法及び装置に関する。   The present invention relates to a method and an apparatus for detecting the quality of a butt weld, and in particular, a method for inspecting the quality of a weld after removing a raised portion caused by welding in a butt welding process such as a flash butt method. And an apparatus.

従来、冷延工程や酸洗工程ではプロセスへ鋼帯を連続的に供給するため、ルーパー等によりラインを停止させずに先行コイルと後行コイルを溶接により接続する設備、具体的にはフラッシュバット、シーム溶接、スポット溶接等の溶接機および肉盛り切削手段等の付帯装置が設けられているのが一般的である。この肉盛りは溶接時に鋼帯突合せ部が溶融した状態で板の長手方向に押付けることに伴って溶融金属が断面からはみ出すもので、溶接直後に肉盛りの形状に応じたバイト、砥石等の切削工具で平面状に切削するのが一般的である。ところでこれらの溶接機によるコイル間の溶接の良否判定は、後続の工程におけるコイルの溶接部破断などのトラブルを防止する上で重要である。なぜなら一般には接続された鋼帯も母材と同様なライン、ピンチロールや圧延ロール等を通過するため、溶接部ができるだけ母材と同様の形状となっていることが必要だからである。   Conventionally, in the cold rolling process and pickling process, the steel strip is continuously supplied to the process. Therefore, equipment that connects the preceding coil and the succeeding coil by welding without stopping the line with a looper or the like, specifically, a flash bat In general, a welding machine such as seam welding and spot welding and ancillary devices such as a build-up cutting means are provided. This build-up is that the molten metal protrudes from the cross-section as it is pressed in the longitudinal direction of the plate in the state where the steel strip butt is melted during welding, such as a bite, grindstone, etc. according to the shape of the build immediately after welding. It is common to cut in a planar shape with a cutting tool. By the way, the quality determination of the welding between coils by these welding machines is important for preventing troubles such as the fracture of the welded portion of the coil in the subsequent process. This is because, in general, the connected steel strip also passes through the same lines, pinch rolls, rolling rolls, and the like as the base material, so that the welded portion needs to have the same shape as the base material as much as possible.

この溶接部良否判定としては、古くから肉盛り切削後に鋼帯を一旦停止させて溶接部の表裏面を観察する目視検査、ハンマーを用いて溶接部の強度を確認するハンマーテスト、また自動検査の方法としては、特許文献1に開示されているような、溶接電力および溶接時間に基づいて判別する方法、特許文献2に開示されているような、溶接電極内に超音波探触子を埋め込んで超音波の透過強度に基づいて溶接状態の良否を判別する方法、特許文献3に開示されているような、溶接直後に測定する表面温度に基づいて溶接状態の良否を判別する方法、など種々の方法が提案されている。   For the quality judgment of welded parts, the steel strip is temporarily stopped after the build-up cutting, and a visual inspection that observes the front and back surfaces of the welded part, a hammer test that confirms the strength of the welded part using a hammer, and an automatic inspection As a method, a method of discriminating based on welding power and welding time as disclosed in Patent Document 1, an ultrasonic probe is embedded in a welding electrode as disclosed in Patent Document 2. Various methods such as a method for determining the quality of a welding state based on the transmission intensity of ultrasonic waves, a method for determining the quality of a welding state based on a surface temperature measured immediately after welding, as disclosed in Patent Document 3. A method has been proposed.

また、別な従来技術としては、溶接後の盛り上がり除去後の溶接部形状を測定し、それに基づいて溶接部の良否を判別する方法も複数提案されている。すなわち特許文献4においては光切断法で検出する盛り上がり除去後の溶接部形状の微分波形の変動成分の大小により良否判別を行う方法が提案されており、また、特許文献5においては、突合せ溶接部の表裏面から2次元距離計でそれぞれ検出する溶接部形状と先行、後行材の板厚情報に基づき、突合せの目違い量やビード残りを算出し良否判定に用いる方法が提案されている。   In addition, as another conventional technique, a plurality of methods for measuring the shape of the welded portion after the swell removal after welding and determining the quality of the welded portion based on the measured shape are proposed. That is, Patent Document 4 proposes a method for determining pass / fail according to the magnitude of the fluctuation component of the differential waveform of the welded portion shape after the swell removal detected by the optical cutting method. In Patent Document 5, a butt weld is proposed. A method has been proposed in which the amount of misalignment of the butt and the remaining bead are calculated and used for pass / fail judgment based on the welded portion shape detected by the two-dimensional distance meter from the front and back surfaces and the thickness information of the preceding and following materials.

特開昭50−83245号公報JP-A-50-83245 特開昭52−150760号公報JP-A-52-150760 特開昭56−99082号公報JP 56-99082 A 特開平1−209307号公報JP-A-1-209307 特開平5−154510号公報JP-A-5-154510

しかしながら、上記の目視検査、ハンマーテストは、溶接電極等が入り組んでいる溶接機内で作業することはできず、鋼帯を溶接部が溶接機下流側で露出する位置まで移動後、暫く停止させる必要があるために、生産効率が下がり、また良否検査は作業者の主観に依存するために再現性、客観性に欠けるという問題点があった。   However, the above visual inspection and hammer test cannot be performed in a welding machine in which welding electrodes are complicated, and it is necessary to stop the steel strip for a while after moving the steel strip to a position where the weld is exposed downstream of the welding machine. As a result, production efficiency is lowered, and the quality inspection is dependent on the subjectivity of the worker, so that there are problems of lack of reproducibility and objectivity.

また、特許文献1に記載の方法では、溶接する鋼帯の鋼種や板厚毎の理想的溶接エネルギー効率を予め把握し、実操業においてもこれらの因子毎に判別因子を切り替える必要があるので運用が複雑になるという問題点や、溶接部や溶接機の汚れや劣化による溶接効率の変化が溶接エネルギーと溶接部品質との相関に影響を与えるという問題点があった。   Moreover, in the method described in Patent Document 1, it is necessary to grasp in advance the ideal welding energy efficiency for each steel type and thickness of the steel strip to be welded, and to switch the discriminating factor for each of these factors even in actual operation. However, there is a problem that a change in welding efficiency due to contamination and deterioration of a welded part or a welder affects the correlation between welding energy and welded part quality.

また、特許文献2に記載の方法は電極毎に超音波探触子を埋め込むのでコスト高になること、透過波が極小となる時点と通電終了時点との差から判別を行うか、溶接部良否への影響因子は超音波減衰から推定される溶接部の大きさのみではないので、判別の信頼性に疑問がある。   In addition, the method described in Patent Document 2 is costly because an ultrasonic probe is embedded for each electrode, whether the determination is made based on the difference between the time when the transmitted wave is minimized and the time when the energization is completed, Since the influence factor is not only the size of the weld estimated from the ultrasonic attenuation, there is doubt about the reliability of discrimination.

また、特許文献3に記載の方法では、表面の最高温度およびそのばらつきでの評価となるので、目違いなどによる溶接不良を正確に検出できないばかりか、放射温度計の視野が溶接線からずれた場合の誤差、表面のスケール付着状況等による放射率変化の影響を大きく受けるため、信頼性の高い検出が困難であるという問題点があった。   In addition, the method described in Patent Document 3 is evaluated based on the maximum temperature of the surface and its variation, so that it is not only possible to accurately detect welding defects due to misunderstandings, etc., but also the field of view of the radiation thermometer has deviated from the weld line. There is a problem that it is difficult to detect with high reliability because it is greatly affected by emissivity changes due to errors in the case and the state of scale adhesion on the surface.

また、特許文献4に記載の方法では、光切断法で盛り上がり除去後の溶接部形状を算出するので、温度法などに比べ測定範囲を広く取れるという利点はあるが、光切断法で検出する鋼帯表面の形状波形はたとえ母板部であっても散乱等の影響で微小変動(高周波成分)を含むため微分演算によって微小変動成分も強調されてしまい、溶接部不良検出のS/Nが低下する、という問題点があった。   In addition, the method described in Patent Document 4 calculates the welded portion shape after bulge removal by the optical cutting method, so there is an advantage that a wider measurement range can be obtained compared to the temperature method or the like, but the steel detected by the optical cutting method Even if the shape waveform on the surface of the band is a base plate portion, it contains minute fluctuations (high-frequency components) due to the influence of scattering, etc., so the minute fluctuation components are also emphasized by the differential operation, and the S / N for detecting defective welds is reduced. There was a problem that.

又、特許文献5に記載の方法では、ビード残りを母板部の距離値と測定範囲内の最高点との差として定義しているために、最も板破断に有害な溶接不良因子である切削部縁部の段差を直接検知できず、あるいは突合せ部の曲がり等の変形を段差と誤検出してしまうこと、さらに目違いが存在しても溶接と切削が正常であれば板破断が起こらないケースもあり目違い量が溶接部良否の主要因子たり得ない、といった問題点があった。またこの方法で使用している2次元距離計は一般にレーザー光の走査範囲内で対象表面の反射率変化をオートゲイン補正しながら測定するが、一般にビード切削後の切削部は非常に強い鏡面状態となっていて周囲の母板部とは反射率が大きく異なるため、通常の2次元距離計で切削面を含んだ溶接部の形状を正しく測定できないという問題点があった。   Further, in the method described in Patent Document 5, since the bead residue is defined as the difference between the distance value of the base plate portion and the highest point in the measurement range, cutting that is the most harmful factor for welding failure is the cutting failure. The step of the edge cannot be detected directly, or a deformation such as a bending of the butt portion is erroneously detected as a step, and even if there is a mistake, plate breakage will not occur if welding and cutting are normal There was a case, and there was a problem that the wrong amount could not be the main factor for the quality of the weld. The two-dimensional rangefinder used in this method generally measures the reflectance change of the target surface within the scanning range of the laser light while correcting the auto gain, but the cutting part after bead cutting is generally very strong in the mirror surface state. Therefore, since the reflectance is significantly different from the surrounding base plate, there is a problem in that the shape of the welded portion including the cutting surface cannot be correctly measured with a normal two-dimensional distance meter.

本発明は、前記従来の問題点を解決するべくなされたもので、突合せ溶接部の良否判定の確実性を高めることを課題とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to improve the reliability of the quality determination of the butt weld.

本発明は、突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する方法において、溶接線に対して、略直交方向のスリット光を、溶接線方向に走査して複数位置における画像を撮像し、前記撮像した画像の各々において、光切断法にもとづき溶接部断の高さを算出するとともに、前記各画像の反射光の強度分布を算出し、該反射光の強度分布において所定強度以下となる領域を求め、その領域の端部を基準に設定される所定領域内での前記断面の高さの最大値と最小値の差を該断面形状の変化量として算出し、該変化量が所定値以上であるか否かを判定する処理を前記撮像した全ての画像について行い、前記変化量が所定値以上となった画像数から、突き合わせ溶接部の良否を判定するようにして、前記課題を解決したものである。 The present invention relates to a method for inspecting the quality of a welded portion after removing a raised portion after butt welding, and scanning images of a plurality of positions by scanning slit light in a direction substantially orthogonal to the weld line in the direction of the weld line. imaged, in each of the image the imaging, a predetermined strength with, calculates the intensity distribution of the reflected light of the respective image, in the intensity distribution of the reflected light to calculate the height of the weld Budan surface based on light-section method The following area is obtained, and the difference between the maximum value and the minimum value of the height of the cross section within a predetermined area set with reference to the end of the area is calculated as the change amount of the cross section , and the change amount Is performed for all the captured images, and from the number of images in which the amount of change is equal to or greater than a predetermined value, the quality of the butt weld is determined. That solves the problem .

本発明は、又、突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する溶接部良否検査装置であって、溶接線に対して、略直交方向のスリット光を照射する光源と、該スリット光を溶接線方向に走査して複数位置における画像を撮像する撮像手段と、前記撮像した画像の各々において、光切断法にもとづき溶接部断の高さを算出するとともに、前記各画像の反射光の強度分布を算出する画像処理手段と、該反射光の強度分布において所定強度以下となる領域を求め、その領域の端部を基準に設定される所定領域内での前記断面の高さの最大値と最小値の差を該断面形状の変化量として算出し、該変化量が所定値以上であるか否かを判定する処理を前記撮像した全ての画像について行い、前記変化量が所定値以上となった画像数から、突き合わせ溶接部の良否を判定する判定手段と、を備えたことを特徴とする、突合せ溶接部の良否検査装置を提供するものである。 The present invention is also a weld quality inspection device that inspects the quality of the weld after removing the bulge after butt welding, and a light source that irradiates slit light in a substantially orthogonal direction with respect to the weld line; imaging means for capturing an image at a plurality of positions by scanning the slit light in the weld line direction, in each of the image the imaging, and calculates the height of the weld Budan surface based on light-section method, wherein each image Image processing means for calculating the intensity distribution of the reflected light, and obtaining an area having a predetermined intensity or less in the intensity distribution of the reflected light, and increasing the height of the cross section within the predetermined area set with reference to the end of the area. calculating the difference between the maximum value and the minimum value of the as the amount of change the cross-sectional shape is performed for all the image variation amount is the imaging of the process of determining whether or not a predetermined value or more, the amount of change Whether the number of images exceeds the specified value Characterized determination means for determining quality of the weld butt, further comprising a, there is provided a quality inspection apparatus for butt welds.

本発明は、溶接盛り上り部除去後の溶接線を含む領域の立体形状とそのうちのビード除去部分を同時に検出するようにしたので、溶接エネルギーや温度、超音波減衰といった間接指標でなく溶接点破断に直接影響するビード除去部周縁部の削り残し段差等の形状因子によって判別することが出来るようになり、突合せ溶接部の良否判定の確実性を高めることができた。また、これらの検査は数値指標により自動的に行うので、従来の目視観察やハンマリング試験において問題であった検査員依存性はなく、再現性、客観性に優れていることは明らかである。   In the present invention, since the three-dimensional shape of the region including the weld line after removal of the weld swell and the bead removal portion thereof are detected at the same time, the welding point fracture is not an indirect indicator such as welding energy, temperature, or ultrasonic attenuation. This makes it possible to discriminate according to the shape factor such as the uncut portion of the peripheral portion of the bead removal portion that directly affects the bend, and the reliability of the quality determination of the butt welded portion can be improved. In addition, since these inspections are automatically performed by numerical indexes, it is clear that there is no dependency on the inspector, which has been a problem in conventional visual observation and hammering tests, and that the reproducibility and objectivity are excellent.

本発明は、光切断法の装置構成を利用して対象物の横断方向の形状分布と表面の反射率情報に着目した反射光強度の分布を同時に、かつ溶接線に沿って多数検出し、溶接部の3次元的形状とビード付近の平面的な画像情報に基づいて溶接部の良否判定を行おうというものである。   The present invention detects a large number of reflected light intensity distributions focusing on the shape distribution in the transverse direction of the object and the reflectance information of the surface at the same time and along the weld line by utilizing the apparatus configuration of the light cutting method, and welding The quality of the welded part is determined based on the three-dimensional shape of the part and the planar image information in the vicinity of the bead.

これを実現させるためには、溶接ビード切削直後のビード部に、そのビード部と略直交方向に延びるスリット光(レーザ・スポット光を高速走査することにより見かけ上、スリット光とみなす光も含む)を照射し、その拡散反射光(乱反射光)を画像として撮像してその反射光の位置と輝度をそれぞれ検出する。一般的には、反射光の位置の検出は2値化処理による細線化処理手法を用い、反射光の輝度検出はスリット光に対し略直交方向の輝度分布において最大輝度を求めることで、それぞれ検出可能である。   In order to realize this, slit light extending in a direction substantially orthogonal to the bead portion immediately after the welding bead cutting (including light that is apparently considered as slit light by high-speed scanning of the laser spot light). , The diffuse reflected light (diffuse reflected light) is imaged as an image, and the position and brightness of the reflected light are detected. In general, the position of the reflected light is detected using a thinning method using binarization, and the brightness of the reflected light is detected by obtaining the maximum brightness in the brightness distribution in a direction substantially orthogonal to the slit light. Is possible.

しかしながら、ビード切削直後の切削帯は鏡面状態になっているため、反射光は鏡面反射成分が強く、ほとんどが正反射方向となり、拡散反射光成分は少なく、その光量は少なくなる。一方で溶接部でない母材部(素材部)は、ランダムな表面状態であるため拡散反射成分が強く、拡散反射光の光量が多くなる。従って、スリット光を鋼板に対して、所定入射角度の斜め方向に照射させて拡散反射方向からカメラなどの撮像装置で観察(撮像)すると、スリット光の反射像の輝度分布は、母材部(素材部)で明るく、切削部では暗くなり、一般的な2値化処理による手法では、ビード切削部の反射光の位置検出が不可能な場合がある。   However, since the cutting band immediately after bead cutting is in a mirror surface state, the reflected light has a strong specular reflection component, most of which is in the regular reflection direction, the diffuse reflection light component is small, and the amount of light is small. On the other hand, since the base material part (material part) which is not a welded part is in a random surface state, the diffuse reflection component is strong and the amount of diffuse reflected light increases. Therefore, when the slit light is irradiated to the steel sheet in an oblique direction at a predetermined incident angle and observed (imaged) from the diffuse reflection direction with an imaging device such as a camera, the luminance distribution of the reflected image of the slit light is the base material portion ( The material portion is bright and the cutting portion is dark, and in some cases, the position of the reflected light from the bead cutting portion cannot be detected by a general binarization method.

そのような場合には、本出願人によって出願された特開2003−322513号公報に開示されている、2値化処理を含まない動的なモーメント演算に基づいた細線化処理を用いるのが良い。   In such a case, it is preferable to use a thinning process based on a dynamic moment calculation that does not include a binarization process disclosed in Japanese Patent Application Laid-Open No. 2003-322513 filed by the present applicant. .

そして、上述のように検出した反射光の輝度データにおいて、被検査体(ビード部)の横断方向(略直交方向)に沿ったスリット光の反射光の輝度が低下する領域をビード切削帯とし、上述のように検出した反射光の位置データから求めた形状データにおいて、切削帯と母材部の境界近辺(算出した境界位置を基準として設定される所定領域)での断面の高さの最大値と最小値の差を断面形状の変化量(あるいは変化率)として算出し、その変化量が閾値以上であるか否かを判定する。これにより、溶接部形状不良の有無を、突合せ母材の曲がり等の影響を受けず的確に検出することが可能となる。 And, in the brightness data of the reflected light detected as described above, a region where the brightness of the reflected light of the slit light along the transverse direction (substantially orthogonal direction) of the object to be inspected (bead portion) is a bead cutting band, In the shape data obtained from the position data of the reflected light detected as described above, the maximum height of the cross section in the vicinity of the boundary between the cutting band and the base material (predetermined region set based on the calculated boundary position) And the difference between the minimum value and the minimum value is calculated as a change amount (or change rate) of the cross-sectional shape, and it is determined whether the change amount is equal to or greater than a threshold value. As a result, it is possible to accurately detect the presence or absence of a welded part shape defect without being affected by the bending of the butt base material.

スリット光の反射光の撮像は、ビード部方向に沿って複数箇所において行い、複数の画像データを得る。これらの複数の画像データについて、上述の演算処理を行って、閾値以上となる画像数(測定箇所に相当)をカウントし、その値が所定数となる場合に、溶接部の異常と判断すれば、溶接線に沿った、突合せ溶接部の総合的な良否判定が可能である。ビード周縁部における段差発生の有無や段差が発生している領域の割合、また切削幅の変化、切削の曲がりといった、従来の目視点検での着眼点に即した判定方法を採用すればよい。   Imaging of the reflected light of the slit light is performed at a plurality of locations along the bead portion direction to obtain a plurality of image data. If these image data are subjected to the above-described arithmetic processing, the number of images that are equal to or greater than the threshold (corresponding to measurement locations) is counted, and if the value is a predetermined number, it is determined that the weld is abnormal. It is possible to determine the overall quality of the butt weld along the weld line. What is necessary is just to employ | adopt the determination method according to the point of interest in the conventional visual inspection, such as the presence or absence of the level | step difference generation | occurrence | production in a bead peripheral part, the ratio of the area | region where the level | step difference has generate | occur | produced, the change of cutting width, and the bending of cutting.

以下、図面を参照しながら、本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明にかかる方法を適用した突合せ溶接部の良否検出装置の構成の一例を示す概略図である。   FIG. 1 is a schematic view showing an example of the configuration of a quality detection device for a butt weld to which the method according to the present invention is applied.

図1において、1は測定ヘッド、2は画像処理装置、3は表示装置、4は被測定物である。   In FIG. 1, 1 is a measuring head, 2 is an image processing device, 3 is a display device, and 4 is an object to be measured.

測定ヘッド1は、溶接部の光切断画像を採取するもので、その構成の一例としては、光源10、光源レンズ11、カメラ(撮像手段)12、受光レンズ13、ミラー14などにより構成され、光源の波長や入射角度等の好適な測定条件は本発明者らが出願した特開2004−117053号公報に開示されているようなものを準用すればよい。光源からの光の入射角αおよびカメラ(撮像手段)光軸の角度βとすると、(α+β)が略90°であることが好ましい。また、光源としては点状に集束したスポット光を反射ミラー等により高速に扇状または平行に走査させるスキャン光を用いてもよいが、好適には光源からの放射光を線状に集束させるためのシリンドリカルレンズを用いて、これら光源とレンズを一体化したスリット光源を用いれば構造が簡素化される。なお、スリット光の短辺幅は溶接の段差に比べて十分小さいことが好ましい。なお、ここで、点光源を走査させる方式を採用した場合には少なくとも走査一周期以上の期間は、光源は点灯し、そのカメラの撮像周期(露光時間)はその期間以上とする必要がある。   The measuring head 1 collects a light-cut image of a welded portion. As an example of the configuration, the measuring head 1 includes a light source 10, a light source lens 11, a camera (imaging means) 12, a light receiving lens 13, a mirror 14, and the like. Appropriate measurement conditions such as the wavelength and the incident angle may be applied to those disclosed in Japanese Patent Application Laid-Open No. 2004-117053 filed by the present inventors. When the incident angle α of light from the light source and the angle β of the optical axis of the camera (imaging means), (α + β) is preferably approximately 90 °. Further, as the light source, scan light that scans spot light focused in a spot shape at high speed in a fan shape or in parallel by a reflection mirror or the like may be used. Preferably, however, the light emitted from the light source is linearly focused. The structure can be simplified by using a cylindrical light source and a slit light source in which these light source and lens are integrated. In addition, it is preferable that the short side width | variety of slit light is small enough compared with the level | step difference of welding. Here, when the method of scanning the point light source is adopted, the light source is turned on for at least a period of one scanning period or more, and the imaging cycle (exposure time) of the camera needs to be longer than that period.

なお、光源10と撮像手段12と溶接部40の位置関係は図2に示すとおりで、光源10から照射されるスリット光100は溶接部40の溶接線方向(例えば、連続ラインにおける鋼板搬送方向の直交方向である幅方向に対応する)に略直交方向に照射されるような位置関係となっている。   The positional relationship among the light source 10, the imaging means 12, and the welded portion 40 is as shown in FIG. 2, and the slit light 100 irradiated from the light source 10 is in the weld line direction of the welded portion 40 (for example, in the direction of conveying the steel plate in the continuous line). (Corresponding to the width direction, which is the orthogonal direction), the positional relationship is such that the light is irradiated in a substantially orthogonal direction.

また装置の使用環境を勘案して、測定ヘッド1は光路をさえぎらない開口部16、17を除いて密閉構造とし、図示しない空冷等の冷却手段により溶接の熱などから機器を防護することが望ましい。更に、測定ヘッド1は溶接線に沿った複数箇所での溶接部40の光切断画像を採取するので、図示しない移動機構により突合せ溶接部に概一定ギャップで正対したまま鋼帯の幅方向に移動できるようになっていることが望ましい。   In consideration of the use environment of the apparatus, it is desirable that the measuring head 1 has a sealed structure except for the openings 16 and 17 that do not block the optical path, and protects the device from the heat of welding by cooling means such as air cooling (not shown). . Further, since the measuring head 1 collects light cutting images of the welded portion 40 at a plurality of locations along the weld line, the measuring head 1 is arranged in the width direction of the steel strip while facing the butt welded portion with a substantially constant gap by a moving mechanism (not shown). It is desirable to be able to move.

画像処理装置2は、測定ヘッド1の動作を制御し、また溶接部40の各位置で測定ヘッド1が採取した光切断画像群から、溶接部の3次元的な形状および輝度分布画像を生成、また判別するもので、その構成としては、光源電源20、カメラ電源21、画像データ変換回路22、画像処理回路23、判別回路24、などで構成すればよい。   The image processing device 2 controls the operation of the measuring head 1 and generates a three-dimensional shape and luminance distribution image of the welded portion from a group of light cut images taken by the measuring head 1 at each position of the welded portion 40. Further, it is discriminated, and the configuration may be constituted by a light source power source 20, a camera power source 21, an image data conversion circuit 22, an image processing circuit 23, a discrimination circuit 24, and the like.

このうち、光源電源20、カメラ電源21は、それぞれスリット光源10、カメラ12に所定の駆動電力を供給するものであり、公知の電源回路で機器に応じた電圧、容量のものを使用すればよい。   Among these, the light source power source 20 and the camera power source 21 supply predetermined driving power to the slit light source 10 and the camera 12, respectively, and a known power source circuit having a voltage and capacity corresponding to the device may be used. .

画像データ変換回路22は、カメラ12の各画素で受光した反射強度を輝度情報(電圧)をそれぞれ2次元の画素位置に対応した数値列に変換する、画像入力手段である。   The image data conversion circuit 22 is an image input unit that converts the reflection intensity received by each pixel of the camera 12 into luminance information (voltage) into a numerical string corresponding to each two-dimensional pixel position.

画像処理回路23は、断面形状算出部230、輝度分布算出部231、形状データメモリ232、輝度データメモリ233で構成される。断面形状算出部230は、画像データ変換回路22から撮像した画像データを入力して、その画像データから光切断法によって断面形状座標を算出し、そのデータを形状データメモリ232に記憶する。断面形状算出部における断面形状の算出手法は、光切断像の切削部と非切削部における輝度レベルの違いの影響を受けない、ビード切削形状の光切断画像を前述の特開2003−322513号公報に開示された動的モーメント演算に基づく細線化処理を行ない、光切断線を抽出する。輝度レベルの違いが問題にならない程度であれば、一般的な2値化処理による細線化処理を用いても良い。そして、抽出された切断線に基づいて、断面形状を算出する。輝度分布算出部231は、同様に画像データ変換回路22から撮像した画像データを入力して、スリット光が被検査体表面において反射し、観察される反射光強度(輝度)分布データを算出し、輝度データメモリ233に記憶する。   The image processing circuit 23 includes a cross-sectional shape calculation unit 230, a luminance distribution calculation unit 231, a shape data memory 232, and a luminance data memory 233. The cross-sectional shape calculation unit 230 receives the image data captured from the image data conversion circuit 22, calculates cross-sectional shape coordinates from the image data by a light cutting method, and stores the data in the shape data memory 232. The method for calculating the cross-sectional shape in the cross-sectional shape calculation unit is that the bead-cut shape of the light cut image is not affected by the difference in the brightness level between the cut portion and the non-cut portion of the light cut image. The thinning process based on the dynamic moment calculation disclosed in the above is performed to extract the light section line. As long as the difference in luminance level is not a problem, a thinning process using a general binarization process may be used. Then, a cross-sectional shape is calculated based on the extracted cutting line. Similarly, the luminance distribution calculation unit 231 inputs the image data captured from the image data conversion circuit 22, calculates the reflected light intensity (luminance) distribution data in which the slit light is reflected on the surface of the object to be inspected, Stored in the luminance data memory 233.

判別回路24は、形状データメモリ232の断面形状データ、輝度データメモリ233の輝度分布データに基づき溶接点良否の判別を行うもので、その構成の一例としては、図3に示すように、輝度変化探索回路240、切削部段差検出回路241、段差発生判定回路242、段差発生領域計数カウンタ243、切削不良判別回路244から構成される。これらのいずれも、比較回路等の論理演算素子で構成してもよいし、それに相当するプログラム演算機能を備えた計算機により構成してもよい。   The discrimination circuit 24 discriminates whether or not the welding point is good based on the cross-sectional shape data of the shape data memory 232 and the luminance distribution data of the luminance data memory 233. As an example of the configuration, as shown in FIG. It comprises a search circuit 240, a cutting part step detection circuit 241, a step generation determination circuit 242, a step generation region count counter 243, and a cutting defect determination circuit 244. Any of these may be configured by a logical operation element such as a comparison circuit, or may be configured by a computer having a program operation function corresponding thereto.

輝度変化探索回路240は、輝度分布データの輝度変化に基づいてビード周縁部(ビード切削領域端部の周辺部)の領域範囲を算出する。溶接線方向に走査して測定する各測定位置の輝度分布データにおいて、中央部付近で輝度が減少している領域の境界部をビード切削部として算出するものであるが、適切な閾値設定と中央から左右方向への探索法などで算出する。   The luminance change search circuit 240 calculates the area range of the bead peripheral edge (periphery of the bead cutting area edge) based on the luminance change of the luminance distribution data. In the luminance distribution data at each measurement position measured by scanning in the welding line direction, the boundary part of the area where the luminance is reduced near the center is calculated as the bead cutting part. The calculation is performed using a search method in the horizontal direction.

また、切削部段差検出回路241、段差発生判定回路242、段差発生領域計数カウンタ243、切削不良判別回路244の処理は、輝度変化探索回路240で算出したビード切削領域の両端についてそれぞれ行うが、ビード切削領域の開始点と終了点は同じ処理であるので、開始点について説明する。   Further, the processing of the cutting part step detection circuit 241, the step generation determination circuit 242, the step generation region count counter 243, and the cutting defect determination circuit 244 is performed on both ends of the bead cutting region calculated by the luminance change search circuit 240, respectively. Since the start point and end point of the cutting area are the same process, the start point will be described.

具体的には、切削部段差検出回路241は、上記輝度変化探索回路240が出力するビード周縁部開始点の座標を中心とし溶接線と直交方向に所定の幅をもつ座標領域における切削形状(高さ)データの最大変化量(最大値と最小値の差)、すなわち凹凸の最大変化量、を算出する。 Specifically, the cutting step difference detection circuit 241 has a cutting shape (high height) in a coordinate region having a predetermined width in the direction orthogonal to the weld line with the coordinates of the bead peripheral edge starting point output from the luminance change search circuit 240 as the center. A) The maximum change amount of data (difference between the maximum value and the minimum value), that is, the maximum change amount of the unevenness is calculated.

そして、段差発生判定回路242は、その切削形状データの最大変化量が閾値T1を超えているか判別する。   Then, the step generation determination circuit 242 determines whether the maximum change amount of the cutting shape data exceeds the threshold value T1.

段差発生領域計数カウンタ243では、その閾値を超えている場合には、カウント値をインクリメントし、閾値を超えた測定箇所の数をカウント(計数)する。なお、切削部の開始点と終了点についてこの処理をそれぞれ行うことになる。   In the step difference region count counter 243, when the threshold value is exceeded, the count value is incremented, and the number of measurement points exceeding the threshold value is counted (counted). This process is performed for the start point and the end point of the cutting part.

切削不良判別回路244は、段差発生領域計数カウンタ243の値を読み込んで、段差発生判定回路242が最大変化量の良否を判断するための閾値T1を超えていると判定した測定箇所の数が、測定箇所の全数に占める割合を算出し、これが第2の閾値T2を超えていれば、不良と出力するものである。なお、測定箇所の全数が測定対象毎でほとんど変わらなければ、全数に対する比率でなくとも、単純に閾値T1を超えた計数値で評価しても良い。   The cutting defect determination circuit 244 reads the value of the step generation area count counter 243, and the number of measurement points determined by the step generation determination circuit 242 to exceed the threshold T1 for determining whether the maximum change amount is good or not is The proportion of the total number of measurement points is calculated, and if this exceeds the second threshold value T2, a failure is output. It should be noted that if the total number of measurement points does not vary from measurement object to measurement object, the evaluation may be made simply with a count value exceeding the threshold T1, not the ratio to the total number.

そして、表示装置3は、切削不良判定回路244の出力に従って画面や音等で作業員に注意を喚起するか、図示しない信号線を経由して外部の操業管理装置(ビジネスコンピュータ等)に不良情報を送信するものであり、公知の警報機、CRT装置、通信装置等で構成することが出来る。   Then, the display device 3 alerts the worker with a screen or sound according to the output of the cutting failure determination circuit 244, or sends failure information to an external operation management device (business computer or the like) via a signal line (not shown). , And can be constituted by a known alarm device, CRT device, communication device, or the like.

以下に、本実施例の動作を測定例のデータを用いて説明する。   Hereinafter, the operation of this embodiment will be described using data of measurement examples.

図4は、測定ヘッド1が溶接部40のある任意の箇所において、溶接線に対し直交方向にスリット光を照射して、その反射光を検出した光切断画像を画像処理回路23により処理した結果である。図4において、(a)は断面形状算出部230で算出した断面形状データ、(b)は輝度分布算出部231で算出した輝度分布データである。図4(a)の横軸は溶接線に直交する位置座標、縦軸は断面形状を示す被測定対象表面の高さ座標である。図4の(a)の断面形状は、一般的に知られる2値化処理による細線化処理で算出してもよいが、ここでは検出精度の高い、特開2003−322513号公報に開示された方法を用いるとして、以下に説明する。スリット光の反射光をCCDカメラなどの二次元撮像手段で撮像し、図5に示す2次元の光切断画像を得る。図5の二次元メッシュの左下隅の画素をX=X1、Y=Y1とし、幅方向にX軸、管軸方向にY軸をとり、各画素の座標をX=Xi(i=1,2、・・・、m)、Y=Yj(i=1、2、・・・、n)、画素の輝度をI(Xi、Yj)とし、次式で定義される加重平均S(Xi)を、X=Xiにおける光切断線のY座標と決定する。   FIG. 4 shows the result of processing the light cut image in which the measurement head 1 irradiates slit light in the direction orthogonal to the weld line at an arbitrary position of the weld 40 and detects the reflected light by the image processing circuit 23. It is. 4, (a) is the cross-sectional shape data calculated by the cross-sectional shape calculating unit 230, and (b) is the luminance distribution data calculated by the luminance distribution calculating unit 231. The horizontal axis of FIG. 4A is a position coordinate orthogonal to the welding line, and the vertical axis is the height coordinate of the surface to be measured showing the cross-sectional shape. The cross-sectional shape of FIG. 4A may be calculated by a thinning process using a generally known binarization process, but here is disclosed in Japanese Patent Laid-Open No. 2003-322513, which has high detection accuracy. The method will be described below. The reflected light of the slit light is picked up by a two-dimensional image pickup means such as a CCD camera to obtain a two-dimensional light cut image shown in FIG. The pixel at the lower left corner of the two-dimensional mesh in FIG. 5 is set to X = X1, Y = Y1, the X axis in the width direction and the Y axis in the tube axis direction, and the coordinates of each pixel are X = Xi (i = 1, 2). ,..., M), Y = Yj (i = 1, 2,..., N), the pixel brightness is I (Xi, Yj), and the weighted average S (Xi) defined by the following equation is , X is determined as the Y coordinate of the light section line at Xi.

S(Xi)=ΣYj I(Xi,Xj)/ΣI(Xi,Yj)・・・(1)   S (Xi) = ΣYj I (Xi, Xj) / ΣI (Xi, Yj) (1)

なお、スリット光の照射領域外の地合部に発生する間接反射光や背光などの外乱成分による誤差要因を排除するために、以下の(1)〜(3)の手順により、各X座標において、光切断線のY座標を求める。   In order to eliminate error factors due to disturbance components such as indirect reflected light and back light generated in the formation part outside the slit light irradiation area, the following (1) to (3) are used for each X coordinate. The Y coordinate of the light section line is obtained.

(1)Y軸方向の最大輝度となるY座標Y0とその点での輝度I0を求める。   (1) The Y coordinate Y0 that is the maximum luminance in the Y-axis direction and the luminance I0 at that point are obtained.

(2)予め定めた画素数Nwを用い0≦Y≦Y0−NwΔY、Y0+NwΔY≦Y≦Yn(Ynは光切断画像のY方向端の画素の代表点のY座標。ΔYは一画素のY方向長さ)の範囲の最大輝度I1を求める。   (2) Using a predetermined number of pixels Nw, 0 ≦ Y ≦ Y0−NwΔY, Y0 + NwΔY ≦ Y ≦ Yn (Yn is the Y coordinate of the representative point of the end pixel in the Y direction of the light section image. ΔY is the Y direction of one pixel) The maximum luminance I1 in the range of (length) is obtained.

(3)I0とI1の間の適切な値(たとえば平均値(I0+I1)/2)を閾値J1とし、Y方向の画素輝度がJ1より大なるYの範囲において上述の式(1)より、S(Xi)を算出する。   (3) An appropriate value between I0 and I1 (for example, average value (I0 + I1) / 2) is set as a threshold value J1, and in the range of Y in which the pixel luminance in the Y direction is larger than J1, the above equation (1) shows that S (Xi) is calculated.

(4)管軸方向へのスリット光照射域の相対移動に伴い、上記(1)〜(3)の手順を繰り返す。   (4) With the relative movement of the slit light irradiation area in the tube axis direction, the above procedures (1) to (3) are repeated.

以上の演算によって、溶接部のビード切削形状の光切断画像の位置を、光切断像の切削部と非切削部における輝度レベルの違いの影響を受けずに精度よく検出できる。   By the above calculation, the position of the light cutting image of the bead cutting shape of the welded portion can be accurately detected without being affected by the difference in luminance level between the cutting portion and the non-cutting portion of the light cutting image.

また、更に非切削部の反射光強度がレンジオーバーを起こすほど十分高い場合や、地合部からのノイズが無視できるほど小さい場合には、そのような反射光強度が高い領域の断面線算出のための閾値を、輝度のレンジ最大値や、経験的に地合部の最大輝度以下とならない範囲で輝度のレンジの最大値よりも多少小さめに設定した、所定の固定閾値J2に置き換えるように、上記の手順を以下のようにしてもよい。   In addition, when the reflected light intensity of the non-cutting part is sufficiently high to cause a range over or when the noise from the formation part is so small that it can be ignored, the calculation of the cross-sectional line of the region where the reflected light intensity is high is performed. The threshold value for this is replaced with a predetermined fixed threshold value J2 that is set to be slightly smaller than the maximum value of the luminance range within a range that does not become less than the maximum luminance value of the formation portion and empirically, The above procedure may be as follows.

(1)Y軸方向の最大輝度となるY座標(複数存在する場合はその平均値)Y0とその点での輝度I0を求める。   (1) The Y coordinate (the average value when there are a plurality of values) Y0 and the luminance I0 at that point are obtained as the maximum luminance in the Y-axis direction.

(2)予め定めた画素数Nwを用い0≦Y≦Y0−NwΔY、Y0+NwΔY≦Y≦Yn(Ynは光切断画像のY方向端の画素の代表点のY座標。ΔYは一画素のY方向長さ)の範囲の最大輝度I1を求める。   (2) Using a predetermined number of pixels Nw, 0 ≦ Y ≦ Y0−NwΔY, Y0 + NwΔY ≦ Y ≦ Yn (Yn is the Y coordinate of the representative point of the end pixel in the Y direction of the light section image. ΔY is the Y direction of one pixel) The maximum luminance I1 in the range of (length) is obtained.

(3)I0が所定の固定閾値J2以上の場合は、X=XiにおけるY軸方向において画素輝度がJ2以上となるYの範囲においてS(Xi)を算出する。   (3) When I0 is equal to or greater than a predetermined fixed threshold J2, S (Xi) is calculated in a range of Y in which the pixel luminance is equal to or greater than J2 in the Y-axis direction when X = Xi.

(4)I0がJ2を下回る場合は、I0とI1の間の適切な値(たとえば平均値(I0+I1)/2)を閾値J3(前述のJ1に相当)とし、Y方向の輝度がJ3より大なるYの範囲においてS(Xi)を算出する。   (4) When I0 is lower than J2, an appropriate value between I0 and I1 (for example, average value (I0 + I1) / 2) is set to a threshold value J3 (corresponding to the above-mentioned J1), and the luminance in the Y direction is larger than J3. S (Xi) is calculated in the range of Y.

(5)管軸方向へのスリット光照射域の相対移動に伴い、上記(1)〜(4)の手順を繰り返す。   (5) The above procedures (1) to (4) are repeated with relative movement of the slit light irradiation area in the tube axis direction.

上記のように検出したスリット光の光切断線の位置データX、Y座標から、その画素アドレス、光源、撮像手段、被検査体の幾何学的な位置関係に基づき溶接部のビード切削形状の断面形状を算出する。   From the position data X and Y coordinates of the light cutting line of the slit light detected as described above, the cross section of the bead cutting shape of the welded portion based on the geometrical positional relationship of the pixel address, light source, imaging means, and inspection object Calculate the shape.

具体的には、溶接線方向および溶接線に対し直交する方向の両方と垂直な方向を0°とする方向角定義のもとで、光源の入射角をα、撮像手段の受光角をβとした場合、画像上の光切断線位置(Xi,S(Xi))は、次式
xi=Xi・・・(2)
yj=ΔY×S(Xi)×cosα/sin(α+β)・・・(3)
によりビード切削の断面形状の座標(xi,yj)として算出する。なお、ΔYは、一画素のy方向の実寸長さである。
Specifically, based on the direction angle definition in which the direction perpendicular to both the weld line direction and the direction orthogonal to the weld line is 0 °, the incident angle of the light source is α, and the light receiving angle of the imaging means is β. In this case, the optical cutting line position (Xi, S (Xi)) on the image is expressed by the following equation: xi = Xi (2)
yj = ΔY × S (Xi) × cos α / sin (α + β) (3)
To calculate the coordinates (xi, yj) of the cross-sectional shape of the bead cutting. Note that ΔY is the actual length of one pixel in the y direction.

図4(b)の横軸は溶接線に直交する位置座標、縦軸は反射輝度の値である。この反射輝度は、カメラで撮像して得られる図5に示すような光切断画像において、画像x方向の各座標位置において、y方向の輝度分布のうちの最大値(最大輝度)を算出したデータである。   The horizontal axis of FIG.4 (b) is a position coordinate orthogonal to a welding line, and a vertical axis | shaft is a value of reflected luminance. This reflection luminance is data obtained by calculating the maximum value (maximum luminance) of the luminance distribution in the y direction at each coordinate position in the image x direction in the light section image as shown in FIG. 5 obtained by imaging with the camera. It is.

なお、この実施例での測定では、突合せる鋼帯の一方に意図的に波打ちを生じさせ部分的に突合せ不良が生成するようにして溶接し、盛り上り除去後に測定を行った。これにより、測定箇所においても溶接部切削不良の他に、溶接部外側から20mm付近に至るまで母材の変形(反り)が生じているため、形状データのみで最大値探索を行うと母板反りのピーク位置(ア)、切削バイトの先端形状に起因した凹部(イ)を最高点、最低点と誤検出してしまうおそれがあるが、本発明では誤検出なく正確に検出できることを以下に示す。   In the measurement in this example, welding was performed such that one of the steel strips to be abutted was intentionally wavy and a butt failure was partially generated, and the measurement was performed after removing the swell. As a result, since the base material is deformed (warped) from the outside of the welded portion to the vicinity of 20 mm in addition to defective cutting of the welded portion at the measurement location, if the maximum value search is performed only with the shape data, the baseboard warpage is performed. The peak position (A) and the recess (A) due to the tip shape of the cutting tool may be erroneously detected as the highest point and the lowest point, but the present invention shows that it can be accurately detected without erroneous detection. .

図4のようなデータは、測定ヘッド1が溶接線に沿って移動する各位置において採取した光切断画像毎に出力され、判別回路24にデータを出力する。   The data as shown in FIG. 4 is output for each light cut image taken at each position where the measuring head 1 moves along the weld line, and the data is output to the determination circuit 24.

次に判別回路24の動作を図6に従って説明する。   Next, the operation of the discrimination circuit 24 will be described with reference to FIG.

まず、ステップS1で輝度分布データの全体の輝度の平均値を算出する。そして、ステップS2で輝度がステップS1で求めた平均値を下回る画素範囲の重心位置を算出し、図7に示す如く、その座標点をAとする。このA点は、輝度変化探索の開始点であり、ここから図の左側方向、右側方向に座標を移動して変化点を探索するための点である。   First, in step S1, an average value of the entire luminance of the luminance distribution data is calculated. In step S2, the barycentric position of the pixel range in which the luminance is lower than the average value obtained in step S1 is calculated, and the coordinate point is set to A as shown in FIG. This point A is a starting point for the luminance change search, and is a point for searching for the changing point by moving the coordinates from here to the left and right in the figure.

そして、ステップS3で、輝度分布のステップS1で求めた平均値より輝度が下回るうちでの最小輝度を求め、その輝度値をVとする。これに対して、ステップS2で求めたA点に対し、ステップS4で左側の領域での最大輝度を求め、その輝度値をLとし、ステップS5で右側の領域での最大輝度を求め、その輝度値をRとする。   In step S3, the minimum luminance is obtained while the luminance is lower than the average value obtained in step S1 of the luminance distribution, and the luminance value is set to V. On the other hand, with respect to the point A obtained in step S2, the maximum luminance in the left region is obtained in step S4, the luminance value is set to L, and the maximum luminance in the right region is obtained in step S5. Let the value be R.

この、V、L、Rを元に、左側の変化点を算出するための輝度閾値TL、右側の変化点を算出するための輝度閾値TRを求め、その値に基づいて変化点を決定する。そして、ステップS6で、TL=(V+L)/2とし、点Aから左側に移動して、各座標に対応する輝度値がTLを最初に超えた座標点を輝度変化点PLとする。同様に、ステップS7で、TR=(V+R)/2とし、点Aから右側に移動して、各座標に対応する輝度値がTRを最初に超えた座標点を輝度変化点PRとする。   Based on these V, L, and R, a luminance threshold TL for calculating the left change point and a luminance threshold TR for calculating the right change point are obtained, and the change point is determined based on these values. In step S6, TL = (V + L) / 2 is set, and the coordinate point where the luminance value corresponding to each coordinate first exceeds TL is set as the luminance change point PL by moving from the point A to the left side. Similarly, in step S7, TR = (V + R) / 2 is set, and the coordinate point at which the luminance value corresponding to each coordinate first exceeds TR is set as the luminance change point PR by moving to the right from the point A.

このようにして、輝度変化探索回路240が図4の測定データに関して算出した例を示すと、切削帯左縁の座標PLは、図4に記入した縦線である。そして、ここで求めた座標PR、すなわち切削範囲の左側端部を中心に、溶接部幅方向(溶接線と直交方向)に左右1mm幅(2mm幅)の範囲内での切削部形状(高さ)の変化量(最大値と最小値の差)は図に記入したとおり0.025mmと算出する。同様に切削右縁の座標PRは図4の線の位置、段差量は0.074mmと算出する。ここで、閾値は操業との関連で定めるべきものであるが、本実施例では好適値としてT1=0.06mm、T2=5%とした。 Thus, when the example which the brightness | luminance change search circuit 240 computed regarding the measurement data of FIG. 4 is shown, the coordinate PL of the left edge of a cutting strip is the vertical line written in FIG. Then, the coordinates PR obtained here, that is, the shape of the cutting portion (height ) within the range of 1 mm width (2 mm width) in the width direction of the welded portion (in the direction orthogonal to the weld line) centering on the left end of the cutting range. ) (The difference between the maximum value and the minimum value) is calculated as 0.025 mm as shown in the figure. Similarly, the coordinate PR of the right edge of the cutting band is calculated as the position of the line in FIG. 4, and the step amount is calculated as 0.074 mm. Here, the threshold values should be determined in relation to the operation, but in the present embodiment, T1 = 0.06 mm and T2 = 5% are preferable values.

例えば、段差発生閾値T1が、0.06mmの場合には、左側は正常であるが、右側は不良と判定されることになる。そして、段差発生領域計数カウンタ243のカウンタ値は、その値をインクリメントされることになる。そして、段差発生判定回路242は、溶接線方向に走査して、測定した画像群のそれぞれに対し、上記で算出した切削部両縁の段差量が予め設定した閾値を超えているか判定する。これは、本発明で求めた数値と、操業で発生する不良との対応付けを行ったり、また過去の操業経験により定めればよい。例えば、段差発生しきい値T1を超えている画像の数が全体の5%以上の場合、突合せ溶接部は不良と判定する、と設定すればよい。   For example, when the level difference occurrence threshold T1 is 0.06 mm, it is determined that the left side is normal but the right side is defective. Then, the counter value of the step occurrence area counting counter 243 is incremented. Then, the step occurrence determination circuit 242 scans in the welding line direction and determines whether the step difference amount calculated on both edges of the cutting part calculated above exceeds a preset threshold for each of the measured image groups. This may be determined by associating a numerical value obtained in the present invention with a defect that occurs in operation or by past operation experience. For example, when the number of images exceeding the level difference occurrence threshold T1 is 5% or more of the whole, the butt weld may be determined to be defective.

次に、比較のために熟練作業員が溶接良好と判定した、図4のサンプルとは異なるビード切削後の突合せ溶接部に対して本実施例の装置を用いた測定を行った。この測定例による切削開始点から溶接線直交方向に2mm幅の範囲内での切削部形状、スリット光の輝度分布(上記図4に対応するグラフ)は図8の通りであり、切削両縁部での段差量は左縁部において0.030mm、右縁部において0.032mmであった。図8の測定位置では切削部両縁での段差量は上記で定めたT1以下(例えば、T1=0.05mm)であり無害と判定される。なお、このサンプルに対して、突合せ溶接部の測定画像群のそれぞれに対し、同様にして算出した切削部両縁の段差量でT1を超えているものはなく、突合せ溶接部は無害と判定された。   Next, the measurement using the apparatus of the present embodiment was performed on a butt weld after bead cutting, which was different from the sample of FIG. The cutting part shape and the brightness distribution of the slit light (graph corresponding to FIG. 4 above) within the range of 2 mm width in the direction perpendicular to the weld line from the cutting start point according to this measurement example are as shown in FIG. The difference in level was 0.030 mm at the left edge and 0.032 mm at the right edge. At the measurement position shown in FIG. 8, the level difference at both edges of the cutting part is equal to or less than T1 determined above (for example, T1 = 0.05 mm), and is determined to be harmless. For this sample, none of the measured image groups of the butt welds have a step amount calculated in the same manner for both edges of the cut part exceeding T1, and the butt weld is determined to be harmless. It was.

なお、以上の説明においては、説明の簡便化のために、切削領域の開始点側の段差形状に対して判別を行うようにしたが、切削領域の終了点側に関しても全く同じ手順で判別を行って不良判定点数が大きい方を最終結果としてもよい。また、開始点および終了点ともに閾値を超えた場合は、各1カウントを合わせて計2カウントとしてもよいし、その測定箇所が異常であるとの主旨によって1カウントにしてもよい。この設定は、被測定対象、操業条件や装置の運用方法で適宜いずれかを選択できるようにしておけばよい。   In the above description, for simplification of explanation, the step shape on the start point side of the cutting area is discriminated, but the end point side of the cutting area is discriminated in exactly the same procedure. It is good also as a final result to go and the one where a defect determination score is large. Further, when both the start point and the end point exceed the threshold value, each 1 count may be combined to make a total of 2 counts, or may be 1 count according to the gist that the measurement location is abnormal. This setting may be made so that any one can be selected as appropriate depending on the measurement target, the operation conditions, and the operation method of the apparatus.

本発明の実施形態の構成の一例を示す、一部ブロック図を含む断面図Sectional drawing including a partial block diagram which shows an example of a structure of embodiment of this invention 同じく要部を示す斜視図The perspective view which similarly shows the principal part 実施例のうち判別回路の詳細構成の一例を示す図The figure which shows an example of the detailed structure of a discrimination circuit among Examples 突合せ部反りにより切削不良が発生した溶接部に対して、本実施例を用いた測定例の動作を説明するグラフA graph explaining the operation of a measurement example using the present embodiment for a welded portion in which a cutting defect has occurred due to warpage of the butt portion カメラで撮像した光断面画像例を示す図The figure which shows the example of an optical cross-section image imaged with the camera 本発明の切削領域端部を探索する処理手順を示す流れ図The flowchart which shows the process sequence which searches the cutting area edge part of this invention 同じく処理結果の一例を示すグラフSimilarly, a graph showing an example of processing results 正常溶接部に対する本実施例の測定例を説明するグラフA graph explaining a measurement example of the present embodiment for a normal welded portion

符号の説明Explanation of symbols

1…測定ヘッド
2…画像処理装置
3…表示装置
4…被測定物
10…レーザ光源
12…カメラ
20…光源電源
21…カメラ電源
22…画像データ変換回路
23…画像処理回路
24…判別回路
40…突合せ溶接部
DESCRIPTION OF SYMBOLS 1 ... Measuring head 2 ... Image processing apparatus 3 ... Display apparatus 4 ... Measured object 10 ... Laser light source 12 ... Camera 20 ... Light source power supply 21 ... Camera power supply 22 ... Image data conversion circuit 23 ... Image processing circuit 24 ... Discrimination circuit 40 ... Butt weld

Claims (2)

突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する方法において、
溶接線に対して、略直交方向のスリット光を、溶接線方向に走査して複数位置における画像を撮像し、
前記撮像した画像の各々において、光切断法にもとづき溶接部断の高さを算出するとともに、前記各画像の反射光の強度分布を算出し、
該反射光の強度分布において所定強度以下となる領域を求め、その領域の端部を基準に設定される所定領域内での前記断面の高さの最大値と最小値の差を該断面形状の変化量として算出し、該変化量が所定値以上であるか否かを判定する処理を前記撮像した全ての画像について行い、前記変化量が所定値以上となった画像数から、突き合わせ溶接部の良否を判定することを特徴とする、突合せ溶接部の良否検査方法。
In the method of inspecting the quality of the welded part after removing the raised part after butt welding,
With respect to the welding line, the slit light in the substantially orthogonal direction is scanned in the welding line direction to capture images at a plurality of positions,
In each of the image the imaging, and calculates the height of the weld Budan surface based on light-section method, to calculate the intensity distribution of the reflected light of the respective image,
A region having a predetermined intensity or less in the intensity distribution of the reflected light is obtained, and the difference between the maximum value and the minimum value of the cross-section height within the predetermined region set with reference to the end of the region is determined as the cross-sectional shape. The amount of change is calculated and the process of determining whether the amount of change is equal to or greater than a predetermined value is performed for all the captured images. From the number of images where the amount of change is equal to or greater than the predetermined value, A quality inspection method for a butt weld, wherein the quality is determined.
突合せ溶接後の盛上がり部を除去した後に溶接部の良否を検査する溶接部良否検査装置であって、
溶接線に対して、略直交方向のスリット光を照射する光源と、
該スリット光を溶接線方向に走査して複数位置における画像を撮像する撮像手段と、
前記撮像した画像の各々において、光切断法にもとづき溶接部断の高さを算出するとともに、前記各画像の反射光の強度分布を算出する画像処理手段と、
該反射光の強度分布において所定強度以下となる領域を求め、その領域の端部を基準に設定される所定領域内での前記断面の高さの最大値と最小値の差を該断面形状の変化量として算出し、該変化量が所定値以上であるか否かを判定する処理を前記撮像した全ての画像について行い、前記変化量が所定値以上となった画像数から、突き合わせ溶接部の良否を判定する判定手段と、
を備えたことを特徴とする、突合せ溶接部の良否検査装置。
A welded part quality inspection device that inspects the quality of the welded part after removing the raised part after butt welding,
A light source that irradiates slit light in a substantially orthogonal direction with respect to the welding line;
Imaging means for scanning the slit light in the direction of the welding line and imaging images at a plurality of positions;
In each of the image the imaging, and calculates the height of the weld Budan surface based on light-section method, and image processing means for calculating the intensity distribution of the reflected light of the respective image,
A region having a predetermined intensity or less in the intensity distribution of the reflected light is obtained, and the difference between the maximum value and the minimum value of the cross-section height within the predetermined region set with reference to the end of the region is determined as the cross-sectional shape. The amount of change is calculated and the process of determining whether the amount of change is equal to or greater than a predetermined value is performed for all the captured images. From the number of images where the amount of change is equal to or greater than the predetermined value, A determination means for determining pass / fail;
An apparatus for inspecting the quality of a butt weld, characterized by comprising:
JP2006023521A 2006-01-31 2006-01-31 Quality detection method and apparatus for butt welds Expired - Fee Related JP4876599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023521A JP4876599B2 (en) 2006-01-31 2006-01-31 Quality detection method and apparatus for butt welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023521A JP4876599B2 (en) 2006-01-31 2006-01-31 Quality detection method and apparatus for butt welds

Publications (2)

Publication Number Publication Date
JP2007203322A JP2007203322A (en) 2007-08-16
JP4876599B2 true JP4876599B2 (en) 2012-02-15

Family

ID=38483240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023521A Expired - Fee Related JP4876599B2 (en) 2006-01-31 2006-01-31 Quality detection method and apparatus for butt welds

Country Status (1)

Country Link
JP (1) JP4876599B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159382A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for measuring weld bead cutting width
JP5553038B2 (en) * 2011-01-31 2014-07-16 Jfeスチール株式会社 Lighting device for detecting weld bead cutting part
JP5611177B2 (en) * 2011-11-24 2014-10-22 株式会社神戸製鋼所 Ablation abnormality detection device and anomaly detection method
JP6222646B2 (en) * 2012-11-01 2017-11-01 株式会社横河ブリッジホールディングス Welding flaw visual inspection system and welding flaw visual inspection method
FR3042594B1 (en) * 2015-10-16 2019-05-17 Airbus Operations NON-DESTRUCTIVE CONTROL SYSTEM FOR PARTS BY ULTRASONIC WAVE GENERATION USING AN EXCITATION LASER
CN114025904B (en) * 2019-06-28 2023-09-12 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method
CN113012090B (en) * 2019-12-20 2024-03-01 中国科学院沈阳计算技术研究所有限公司 Multi-workpiece quality detection method and device based on movable camera

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064072B2 (en) * 1991-11-29 2000-07-12 川崎製鉄株式会社 Method and apparatus for detecting weld shape during butt welding
JPH06241740A (en) * 1993-02-17 1994-09-02 Nippon Steel Corp Electro-resistance welded tube weld beam defective cutting and defect detecting method
JP2789169B2 (en) * 1994-09-21 1998-08-20 新日本製鐵株式会社 Inspection method for weld surface defects of UO steel pipe
JP3148658B2 (en) * 1996-11-26 2001-03-19 住友金属工業株式会社 Abnormal cause determination device for butt weld
JP2000271743A (en) * 1999-03-26 2000-10-03 Hitachi Metals Ltd Weld zone inspecting method, its inspecting device and welded pipe for piping
JP3823871B2 (en) * 2002-04-30 2006-09-20 Jfeスチール株式会社 Method and apparatus for measuring bead cutting shape of ERW welded pipe
JP2004093195A (en) * 2002-08-29 2004-03-25 Jfe Steel Kk Weld bead cut shape measuring method of electro-resistance-welded tube and measuring device
JP2005014026A (en) * 2003-06-24 2005-01-20 Enshu Ltd Weld zone inspection method, and welding support system

Also Published As

Publication number Publication date
JP2007203322A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4876599B2 (en) Quality detection method and apparatus for butt welds
EP1500904B1 (en) Method of and device for measuring bead cutting shape of electric welded tube
JP5672480B2 (en) Apparatus and method for determining shape of terminal end of bead
US11260471B2 (en) Method and device for monitoring a joining seam during joining by means of a laser beam
JP5828817B2 (en) Shape inspection method for steel bars
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JP4793161B2 (en) Quality inspection method and apparatus for butt welds
JP2021058927A (en) Laser welding quality detecting method and laser welding quality detecting device
KR101439758B1 (en) Apparatus and method of inspecting defect of laser welding
JP2006170684A (en) Method and device for inspecting press failure
JP2003322513A (en) Measuring method and device for bead cut shape of electric resistance welded tube
JP5133651B2 (en) Laser welding evaluation method
CN209754273U (en) Laser welding detection equipment
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP2008196866A (en) Weld crack detection method and device
JP2006226834A (en) Surface inspection device and surface inspection method
JP2004093195A (en) Weld bead cut shape measuring method of electro-resistance-welded tube and measuring device
JPH1123479A (en) Method for inspecting surface flaw of welded part of steel pipe
JP6693612B1 (en) Laser beam abnormality detection method and laser processing apparatus
Lee et al. Welding bead and chamfer inspection by means of laser vision
JP2012002605A (en) Defect inspection method of welded surface
KR102073243B1 (en) Examining apparatus and method for triplex bonding layer
JP2002090306A (en) Self-diagnostic method for surface inspection device
JP2008175577A (en) Method and device for monitoring welded part of electro-resistance-welded pipe and manufacturing method of electro-resistance-welded pipe
JPS6242004A (en) Seam position detecting device for electric welded pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees