JP5115024B2 - Coupling check method for ultrasonic oblique angle flaw detector - Google Patents

Coupling check method for ultrasonic oblique angle flaw detector Download PDF

Info

Publication number
JP5115024B2
JP5115024B2 JP2007131980A JP2007131980A JP5115024B2 JP 5115024 B2 JP5115024 B2 JP 5115024B2 JP 2007131980 A JP2007131980 A JP 2007131980A JP 2007131980 A JP2007131980 A JP 2007131980A JP 5115024 B2 JP5115024 B2 JP 5115024B2
Authority
JP
Japan
Prior art keywords
ultrasonic
coupling check
flaw detection
transmission
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007131980A
Other languages
Japanese (ja)
Other versions
JP2008286639A (en
Inventor
幸理 飯塚
穣 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007131980A priority Critical patent/JP5115024B2/en
Publication of JP2008286639A publication Critical patent/JP2008286639A/en
Application granted granted Critical
Publication of JP5115024B2 publication Critical patent/JP5115024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波斜角探傷装置のカップリングチェック方法に係り、特に、溶接鋼管の溶接部に発生する微小な欠陥を超音波探傷で精度良く検出するための超音波斜角探傷装置に用いるのに好適なカップリングチェック方法に関する。   The present invention relates to a coupling check method for an ultrasonic oblique flaw detector, and more particularly, to an ultrasonic oblique flaw detector for accurately detecting minute defects generated in a welded portion of a welded steel pipe by ultrasonic flaw detection. The present invention relates to a coupling check method suitable for the above.

溶接鋼管では溶接部の品質が非常に重要であり、製造工程においては一般に超音波斜角探傷によって溶接部のオンライン探傷が行われている。この方法は、被検材の検査面に対して斜めに超音波を入射させ、欠陥で反射した反射波から被検材の内外表面欠陥および内部欠陥を検出するものである。通常、例えば電縫管では5MHzで45゜の屈折角を持つ超音波ビームによる反射法が適用され、mmオーダーの大きさの欠陥、例えば溶込不良、溶け落ち、介在物による割れなどの欠陥が検出される。   In welded steel pipes, the quality of the welded part is very important, and in the manufacturing process, on-line flaw detection is generally performed by ultrasonic oblique flaw detection. In this method, ultrasonic waves are incident obliquely on the inspection surface of the test material, and internal and external surface defects and internal defects of the test material are detected from reflected waves reflected by the defects. In general, for example, in an ERW pipe, a reflection method using an ultrasonic beam having a refraction angle of 45 ° at 5 MHz is applied. Detected.

一方、最近では溶接鋼管に対する品質要求が厳しくなり、従来よりも小さい欠陥の検出が求められるようになってきている。例えば、電縫管では冷接欠陥や微小ペネトレータ、レーザー溶接管ではブローホールなどで、これらの欠陥の大きさは数10μm〜数100μmと非常に微小である。また、発生位置は溶接線に沿って内面から外面までのいずれの場所でも発生する可能性があり、欠陥の位置によっては超音波ビームの入射点と帰点が異なってしまう。これらの影響のため、従来実用されている超音波探傷法では検出できない場合が多く、より精度良く検出できる技術が求められている。   On the other hand, recently, quality requirements for welded steel pipes have become stricter, and detection of defects smaller than conventional ones has been required. For example, cold-welded defects and minute penetrators are used for electric-welded pipes, and blow holes are used for laser-welded pipes. These defects have a very small size of several tens to several hundreds of micrometers. In addition, the generation position may occur anywhere along the weld line from the inner surface to the outer surface, and the incident point and return point of the ultrasonic beam differ depending on the position of the defect. Because of these influences, there are many cases where detection cannot be performed by a conventional ultrasonic flaw detection method, and a technique capable of detecting with higher accuracy is required.

溶接鋼管などの溶接部に存在する微小欠陥を検出する方法として、アレイ探触子によりフォーカスビームを形成して検出能を向上させ、セクタスキャンによって溶接部の内面側から外面側までをスキャンするようにしてブローホールを検出できるような技術が知られている(例えば、特許文献1)。   As a method of detecting minute defects existing in welded parts such as welded steel pipes, a focus beam is formed by an array probe to improve the detection ability, and sector scanning scans from the inner surface side to the outer surface side of the welded portion. Thus, a technique that can detect a blowhole is known (for example, Patent Document 1).

このような超音波探傷においては、探傷を行なう前や探傷中に探触子から適切にビームが検査対象に入射しているかどうかの確認するカップリングチェックを行う必要がある。   In such ultrasonic flaw detection, it is necessary to perform a coupling check to confirm whether or not the beam is properly incident on the inspection object from the probe before or during flaw detection.

そこで、特許文献2では、図6に示す如く、4分の1円柱状のくさび60の表面上に、例えば1〜64CHの超音波振動子62を周状に並べて、くさび60の頂点よりにある16個の超音波振動子を使って垂直探傷を実施することにより、表面エコーを検出して、カップリングチェックを行うことが記載されている。図において、1は鋼管、2は、その溶接部である。   Therefore, in Patent Document 2, as shown in FIG. 6, ultrasonic transducers 62 of 1 to 64 CH, for example, are arranged circumferentially on the surface of a quarter cylindrical wedge 60, and are located above the apex of the wedge 60. It describes that a vertical flaw detection is performed using 16 ultrasonic transducers to detect a surface echo and perform a coupling check. In the figure, 1 is a steel pipe and 2 is a welded portion thereof.

特開平11−183446号公報Japanese Patent Laid-Open No. 11-183446 特開2006−47328号公報JP 2006-47328 A

しかしながら、特許文献2に記載の技術では、曲率を持ったくさび60が必要であり、また、カップリングチェックを行なう必要がある位置は一箇所(一点)であるため、超音波の入射点が一点に限られてしまうという問題がある。つまり、くさびを用いない、水浸探傷の場合には適用できないし、カップリングチェックを行なう領域が広範囲である場合にも対応できないという問題点を有していた。更に、くさびを用いた場合であっても、くさびは音速が大きく走査線による減衰の差が大きいので、特にリニアアレイ探触子のように走査線の長さが違うと、感度変動が大きくなり、正確なカップリングチェックができない恐れもあった。   However, in the technique described in Patent Document 2, a wedge 60 having a curvature is required, and the position where the coupling check needs to be performed is one point (one point). There is a problem that it is limited to. In other words, there is a problem that it cannot be applied to the case of water immersion flaw detection without using a wedge, and it cannot be applied to a case where the area where the coupling check is performed is wide. Furthermore, even when a wedge is used, the wedge has a high sound speed and a large difference in attenuation due to the scanning line. Therefore, especially when the length of the scanning line is different as in a linear array probe, the fluctuation in sensitivity increases. There was also a risk that an accurate coupling check could not be performed.

本発明は、前記事情に鑑みてなされたもので、水浸法で、カップリングチェックを行なう領域が広い超音波探傷において、別体のチェック手段を設けることなく、正確なカップリングチェックを容易に行えるようにすることを課題とする。   The present invention has been made in view of the above circumstances, and in ultrasonic flaw detection with a water immersion method and a wide area for performing a coupling check, an accurate coupling check can be easily performed without providing a separate check means. The challenge is to be able to do it.

本発明の請求項1に係る発明は、検査対象に対し超音波を送波する送波部と、検査対象からの反射波の一部又は全部を受波する受波部とを有し、前記送波部及び前記受波部が、一又は二以上のアレイ探触子上の異なる振動子群からなり、かつ、局部水浸ノズル内に保持される送受信部を備え、検査対象に対して開口幅が広い超音波ビームを集束して送波するようにされた超音波斜角探傷装置のカップリングチェックに際し、超音波ビームの開口幅を探傷時より狭めて、前記送受信部から指向性が低い超音波ビームを送信し、水を介して検査対象表面に略垂直に当て、前記送受信部にて表面エコーを検出することを特徴とする超音波斜角探傷装置のカップリングチェック方法である。 The invention according to claim 1 of the present invention includes a transmission unit that transmits ultrasonic waves to the inspection object, and a reception unit that receives part or all of the reflected waves from the inspection object, transmitting portion and the wave reception unit, Ri Do from different transducer groups on the one or more array probe, and includes a transceiver that will be held in the local water immersion nozzle, the inspection target When performing a coupling check of an ultrasonic oblique angle flaw detector designed to focus and transmit an ultrasonic beam having a wide aperture width, the ultrasonic beam aperture width is narrower than that at the time of the flaw detection, and directivity is transmitted from the transmitting / receiving unit. A coupling check method for an ultrasonic oblique flaw detection apparatus, wherein a low ultrasonic beam is transmitted, is applied to a surface to be inspected substantially perpendicularly through water, and a surface echo is detected by the transmission / reception unit .

又、本発明の請求項2に係る発明は、カップリングチェック時は、アレイ探触子上の振動子群の同時励振数を、探傷時より少なくして、超音波ビームの開口幅を狭めることを特徴とする請求項1に記載のカップリングチェック方法である。   In the invention according to claim 2 of the present invention, at the time of coupling check, the number of simultaneous excitations of the transducers on the array probe is made smaller than that at the time of flaw detection, thereby narrowing the aperture width of the ultrasonic beam. The coupling check method according to claim 1, wherein:

又、本発明の請求項3に係る発明は、前記カップリングチェックと探傷を交互に行うことを特徴とする請求項1または2に記載の超音波斜角探傷装置のカップリングチェック方法である。   The invention according to claim 3 of the present invention is the coupling check method for an ultrasonic oblique flaw detection apparatus according to claim 1 or 2, wherein the coupling check and the flaw detection are performed alternately.

本発明により、タンデム構成による斜角探傷であっても、別体のチェック手段を設けることなく、正確なカップリングチェックを容易に行うことが可能になる。又、音速が大きなくさびを用いた場合は、入射角が大きくなるため走査線による減衰の差が大きくなり、特に長さが長いリニアアレイ探触子において、位置による感度変動が問題となるが、本発明によれば、音速の小さな水を用いることができるので、くさびに比べて位置による感度変動が少ない正確なカップリングチェックを行うことが可能となる。   According to the present invention, even in the case of oblique flaw detection with a tandem configuration, an accurate coupling check can be easily performed without providing a separate check means. Also, when a wedge with a high sound speed is used, the incident angle becomes large, so the difference in attenuation due to the scanning line becomes large.In particular, in a linear array probe with a long length, sensitivity fluctuation due to position becomes a problem. According to the present invention, water with a low sound velocity can be used, so that it is possible to perform an accurate coupling check with less sensitivity fluctuations depending on the position than a wedge.

本発明の実施形態を、アレイ探触子を用いて、送波用振動子群と受波用振動子群を異ならせて探傷するタンデム探傷で、局部水浸により、溶接鋼管の溶接部を探傷する場合を例にあげて、以下に図面を参照しながら説明していく。図1は、本発明の構成例を説明する図である。図中、1は被検体である鋼管、2は溶接部、3は肉厚内部の欠陥、4は超音波を伝達させるための水、5はリニアアレイ探触子、6は送波用の振動子群、7は受波用の振動子群、8は送波ビーム、9は欠陥から受波用の振動子群に向かう超音波を示す部分(以下、受波ビームとも呼ぶ)をそれぞれ表す。   An embodiment of the present invention is a tandem flaw detection in which an array probe is used to detect a difference between a transmitting transducer group and a receiving transducer group, and a welded portion of a welded steel pipe is detected by local water immersion. An example of such a case will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of the present invention. In the figure, 1 is a steel pipe as an object, 2 is a welded part, 3 is a defect in the thickness, 4 is water for transmitting ultrasonic waves, 5 is a linear array probe, and 6 is vibration for transmission. A child group, 7 is a receiving transducer group, 8 is a transmitted beam, and 9 is a portion (hereinafter also referred to as a received beam) that indicates an ultrasonic wave from a defect toward the receiving transducer group.

ここでは、タンデム探傷であるので、図3に示すように、アレイ探触子の振動子群の一部を送波用振動子群とし、溶接部の各探傷位置に対して、所定の集束度で集束し、かつ、所定の偏向角や所定の入射角となるように、各振動子に対して、遅延時間を設定する。そして、溶接部で反射した超音波のうち、正反射成分を主に受波するように、内面反射後に、前記送波用振動子群とは異なる振動子群を用いた受波用振動子群をアレイ探触子の中から選択するように制御される。また、検出能を向上するために、管軸方向に対しても、音響レンズ、または、曲面振動子を用いて集束するようになっている。ここでは1つのアレイ探触子を用いた例で説明するが、2つ以上のアレイ探触子で探傷領域を分割したり、また、それぞれを送波用、受波用とした場合でも、本発明は適用可能である。   Here, since it is a tandem flaw detection, as shown in FIG. 3, a part of the transducer group of the array probe is used as a transmission transducer group, and a predetermined focusing degree is set for each flaw detection position of the welded portion. The delay time is set for each transducer so that the light beams are converged by the above-mentioned distance and the predetermined deflection angle and predetermined incident angle are obtained. Then, the ultrasonic transducer group using a transducer group different from the transducer group for transmitting after internal reflection so as to mainly receive the regular reflection component of the ultrasonic wave reflected by the welded portion Is controlled to be selected from among the array probes. Further, in order to improve detection ability, focusing is also performed in the tube axis direction using an acoustic lens or a curved vibrator. Although an example using one array probe will be described here, even if the flaw detection area is divided by two or more array probes, and each is used for transmission and reception, this The invention is applicable.

そして、溶接部は鋼管肉厚方向(管径方向)の内面から外面の範囲にわたって検査する必要があるので、図4に示すように、受波用振動子群、および、送波用振動子群の位置を制御して、超音波の集束位置が厚み方向で変化して、走査するようになっている。管軸方向に関しては、機械的に、鋼管あるいは探触子を移動させることによって、管体の溶接部全てを検査可能としている。図1および図3は、鋼管肉厚方向に走査する過程で、欠陥3の位置に送波ビームおよび受波ビームの集束点が一致するようなタイミングの状態を示したもので、一点鎖線の矢印の向きに超音波ビームが伝播している。また、一点鎖線の両側にある実線が、送波ビーム8および受波ビーム9の幅を示し、その中間に引いてある一点鎖線はそれぞれの走査線を示す。   Since the welded portion needs to be inspected over the range from the inner surface to the outer surface in the steel pipe thickness direction (tube diameter direction), as shown in FIG. 4, the receiving transducer group and the transmitting transducer group By controlling the position, the focal position of the ultrasonic wave changes in the thickness direction and is scanned. With respect to the pipe axis direction, all the welds of the pipe body can be inspected by mechanically moving the steel pipe or the probe. FIG. 1 and FIG. 3 show a timing state in which the focal point of the transmission beam and the reception beam coincides with the position of the defect 3 in the process of scanning in the thickness direction of the steel pipe. The ultrasonic beam propagates in the direction of. In addition, solid lines on both sides of the alternate long and short dash line indicate the widths of the transmitted beam 8 and the received beam 9, and alternate long and short dashed lines indicate the respective scanning lines.

図5は、上述のアレイ探触子を用いた探傷を行なうためのシステム構成を示したものである。被検体サイズ入力部30では、オペレータあるいはプロセスコンピュータから、探傷を行う鋼管の外径、肉厚の値が入力される。アレイ探触子記憶部31には、アレイ探触子5の周波数、振動子ピッチ、振動子数が記憶されている。   FIG. 5 shows a system configuration for performing flaw detection using the above-described array probe. In the object size input unit 30, values of the outer diameter and thickness of the steel pipe for flaw detection are input from an operator or a process computer. The array probe storage unit 31 stores the frequency, transducer pitch, and number of transducers of the array probe 5.

送受信制御部32では、鋼管のサイズおよびアレイ探触子の仕様に応じて、ビームサイズや送波用アレイ探触子の位置、送波用走査線の数、各走査線の送波用ビームの経路、各走査線の送波用振動子群の振動子数、送波用振動子群の位置、焦点距離、偏向角を計算し、さらに走査線毎に各振動子の遅延時間を計算する。このように決定された上記の各値をここではアレイ送信則と呼ぶ。   In the transmission / reception control unit 32, the beam size, the position of the array probe for transmission, the number of transmission scanning lines, the transmission beam of each scanning line, according to the size of the steel pipe and the specification of the array probe. The path, the number of transducers of the transmission transducer group for each scanning line, the position of the transducer group for transmission, the focal length, and the deflection angle are calculated, and the delay time of each transducer is calculated for each scanning line. Each value determined in this way is referred to herein as an array transmission rule.

送受信制御部32では、又、鋼管のサイズおよびアレイ探触子の仕様に応じて、アレイ探触子の位置、受波用走査線の数、各走査線の受波用ビームの経路、各走査線の受波用振動子群の振動子数、受波用振動子群の位置、焦点距離、偏向角を計算し、さらに走査線毎に各振動子の遅延時間を計算する。このように決定された上記の各値をここではアレイ受信則と呼ぶ。さらに、送受信制御部32にて計算されたビームの経路に基づき欠陥検出用のゲート位置を決定してゲート位置記憶部33に記憶する。   The transmission / reception control unit 32 also determines the position of the array probe, the number of reception scanning lines, the path of the reception beam of each scanning line, and each scanning according to the size of the steel pipe and the specifications of the array probe. The number of transducers in the line receiving transducer group, the position of the receiving transducer group, the focal length, and the deflection angle are calculated, and the delay time of each transducer is calculated for each scanning line. Each of the above values determined in this way is referred to herein as an array reception rule. Furthermore, a defect detection gate position is determined based on the beam path calculated by the transmission / reception control unit 32 and stored in the gate position storage unit 33.

なお、ここで、アレイ受信則は先に求めたアレイ送信則に基づいて決定しても良いし、反対にアレイ受信則を先に求めてそれに基づいてアレイ送信則を決定しても良い。このようにして決定されたアレイ送信則とアレイ受信則はそれぞれアレイ送信則記憶部34とアレイ受信則記憶部35にて記憶され、以下の送受信制御に用いられる。   Here, the array reception rule may be determined based on the previously obtained array transmission rule, or conversely, the array reception rule may be determined first and the array transmission rule may be determined based thereon. The array transmission rule and the array reception rule determined in this way are stored in the array transmission rule storage unit 34 and the array reception rule storage unit 35, respectively, and used for the following transmission / reception control.

アレイ送信部36では、アレイ送信則記憶部34に記憶されたアレイ送信則に基づいて、送波用の振動子群を選択し、各素子に遅延時間を付けて送信パルスを発生する。アレイ受信部37では、アレイ受信則記憶部35に記憶されたアレイ受信則に基づいて、受波用の振動子群を選択し、各素子に遅延時間を付けて信号を加算し、探傷波形を得る。ゲート部38では、ゲート部記憶部33に記憶されたゲート位置の信号を抽出する。   The array transmission unit 36 selects a transmission transducer group based on the array transmission rule stored in the array transmission rule storage unit 34, and generates a transmission pulse with a delay time added to each element. The array receiving unit 37 selects a transducer group for receiving waves based on the array receiving rule stored in the array receiving rule storage unit 35, adds a signal with a delay time to each element, and generates a flaw detection waveform. obtain. The gate unit 38 extracts a gate position signal stored in the gate storage unit 33.

欠陥判定部40では、判定しきい値入力部39に入力された欠陥判定しきい値と、ゲート内の信号強度とを比較し、信号強度がしきい値以上であれば欠陥と判定する。このようにして1走査線の探傷が終了したら、アレイ送信則記憶部34に記憶されたアレイ送信則に基づいて、次の送波用の振動子群を選択し、以下上記と同様に探傷を繰り返し行う。なお、欠陥の判定については、信号強度がしきい値以上となる場合が複数回あった時に欠陥と判定するようにしても良い。   The defect determination unit 40 compares the defect determination threshold value input to the determination threshold value input unit 39 with the signal intensity in the gate, and determines that the defect is a defect if the signal intensity is equal to or greater than the threshold value. When the flaw detection for one scanning line is completed in this way, the next transducer group for transmission is selected based on the array transmission rule stored in the array transmission rule storage unit 34, and the flaw detection is performed in the same manner as described above. Repeat. In addition, regarding the determination of the defect, the defect may be determined when the signal intensity is equal to or more than a threshold value a plurality of times.

リニアアレイ探触子5は、図1に示すように局部水浸ノズル50にて保持される構造となっている。この局部水浸ノズル50は、リニアアレイ探触子5に対して給水口52を設けて水柱を形成するようにされている。しかしながら、このような局部水浸ノズルの構造であっても、なんらかの操業異常によって、水流の乱れや気泡の発生などの可能性があるので、検査中、定期的にカップリングが正常か否かを確認する必要がある。一般的には、管体外面あるいは内面からの反射波を受波して、その信号強度が所定の強度になっているか否かによって、カップリングが正常となっているか判断すればよい。   The linear array probe 5 has a structure that is held by a local water immersion nozzle 50 as shown in FIG. The local water immersion nozzle 50 is provided with a water supply port 52 for the linear array probe 5 to form a water column. However, even with such a local submerged nozzle structure, there is a possibility that water flow may be disturbed or bubbles may be generated due to some abnormal operation. It is necessary to confirm. In general, it is only necessary to receive a reflected wave from the outer surface or the inner surface of the tubular body and determine whether the coupling is normal depending on whether the signal intensity is a predetermined intensity.

まず、図1(a)のような、通常のタンデム探傷と同じように送波ビームと受波ビームを形成してカップリングチェックができるか検討する。この場合、斜角探傷であり、そのビーム設定は、ビームを集束させるため、振動子を多く用い、開口幅を広くしている。例えば、開口幅20.8mm、同時励振素子数26CH(ピッチ0.8mm)等である。そして、超音波の入射角は例えば18.9°に設定されるので、このような入射角では表面エコーをほとんど検出できずカップリングをチェックできない。そこで、表面エコーを検出するために、およそ−15°〜−23°(振動子の場所によって異なる)の偏向角を付けて、超音波の入射角を0°にすれば良いと考えられるが、実際には、管軸方向を集束させるための音響レンズまたは曲面振動子の影響で、このような偏向角を付けることは困難である。なぜならば、音響レンズまたは曲面振動子の焦点距離は、アレイの位置によって異なるため、開口が大きいと位相が乱れてしまい、遅延時間制御で偏向角を設定することが困難となるからである。   First, it is examined whether a coupling check can be performed by forming a transmission beam and a reception beam in the same manner as in a normal tandem flaw detection as shown in FIG. In this case, oblique flaw detection is performed, and the beam setting uses many vibrators and widens the aperture width in order to focus the beam. For example, the opening width is 20.8 mm, the number of simultaneous excitation elements is 26 CH (pitch 0.8 mm), and the like. And since the incident angle of an ultrasonic wave is set, for example to 18.9 degrees, a surface echo can hardly be detected at such an incident angle, and a coupling cannot be checked. Therefore, in order to detect the surface echo, it is considered that a deflection angle of approximately −15 ° to −23 ° (depending on the location of the transducer) is added and the incident angle of the ultrasonic wave is set to 0 °. In practice, it is difficult to provide such a deflection angle due to the influence of an acoustic lens or a curved vibrator for converging the tube axis direction. This is because the focal length of the acoustic lens or the curved vibrator differs depending on the position of the array, so that if the aperture is large, the phase is disturbed, and it becomes difficult to set the deflection angle by delay time control.

そこで、本発明では、探傷時の設定とは異なる、図1(b)に示すような、開口幅を振動子1〜4CH程度を用いて、狭くし、指向角が広い超音波ビームを鋼管1の表面に照射する。このとき、遅延時間制御は基本的に行わないようにする。このようにすると、開口幅は0.8〜3.2mmとなり、指向角が広くなり、約垂直に表面に入射した表面エコーを検出できるようになる。   Therefore, in the present invention, an ultrasonic beam having a wide directivity angle is narrowed by using the transducers 1 to 4CH, as shown in FIG. Irradiate the surface. At this time, the delay time control is basically not performed. In this way, the opening width is 0.8 to 3.2 mm, the directivity angle is widened, and surface echoes incident on the surface approximately vertically can be detected.

例えば、開口幅0.8mmであると、2MHzの成分は指向角±36°、開口幅1.6mmであると、2MHzの成分は指向角±18°である。探傷に使う周波数は、例えば5〜15MHzの範囲であるが、実際には2MHz程度の成分も含まれているため、表面エコーを検出できるようになる。あるいは、開口が4CH程度であれば、位相の乱れは少ないため、遅延時間制御で偏向角を設定することもでき、表面エコーを検出できるようになる。   For example, when the aperture width is 0.8 mm, the component of 2 MHz has a directivity angle of ± 36 °, and when the aperture width is 1.6 mm, the component of 2 MHz has a directivity angle of ± 18 °. The frequency used for flaw detection is, for example, in the range of 5 to 15 MHz. However, since a component of about 2 MHz is actually included, surface echoes can be detected. Alternatively, if the aperture is about 4CH, the phase disturbance is small, so the deflection angle can be set by delay time control, and the surface echo can be detected.

そして、得られた、表面エコーの信号強度に基づいて、カップリングが良好か否かを判断する。   Then, based on the obtained signal intensity of the surface echo, it is determined whether or not the coupling is good.

確認する方法としては、例えば、図2(a)〜(c)に示すように、横軸を受波振動子位置(管体の周方向に対応)、縦軸に伝播時間をとり、各伝播時間に対応する信号強度を明暗で示すような表示を行なわせて、その表示状態を確認すればよい。たとえば、アレイ探触子全面に水が満たされて、全ての振動子(つまり、局部水浸ノズルの管体周方向の全ての領域)において表面エコーを受波できる状態で、カップリングが良好であれば、図2(a)に示すように表面全体に渡る所定の信号強度の表面エコーが得られる(図では、大きい信号強度を黒い点で表示し、信号強度が低い場合は白表示としている)。これに対して、水の一部が足りず、一部の振動子が水でなく空気と接しているような状態では、水と接していない箇所は超音波が伝播しないため、カップリングが不良となり、図2(b)に示すように、一部の振動子では表面エコーが得られず、表示では、図2(a)に対して一部が消失することになる(図では、黒い点が表示されていない箇所)。さらに、図2(c)に示すように、水が不足する領域が広がると、表面エコーが得られる振動子数が少なくなるので、表示においては表面エコーの大部分が消失する(図では、黒い点が表示される領域が少なくなっている)。図2は開口2chでのデータである。   As a confirmation method, for example, as shown in FIGS. 2A to 2C, the horizontal axis indicates the position of the receiving transducer (corresponding to the circumferential direction of the tube), and the vertical axis indicates the propagation time. What is necessary is just to make the display which shows the signal intensity corresponding to time by light and dark, and to confirm the display state. For example, when the entire surface of the array probe is filled with water and surface echoes can be received by all transducers (that is, all regions in the circumferential direction of the local immersion nozzle), the coupling is good. If there is, a surface echo having a predetermined signal intensity over the entire surface can be obtained as shown in FIG. 2A (in the figure, a large signal intensity is displayed as a black dot, and a white display is displayed when the signal intensity is low. ). On the other hand, when there is not enough water and some vibrators are in contact with air instead of water, the ultrasonic wave does not propagate to the part that is not in contact with water, so the coupling is poor. As shown in FIG. 2 (b), the surface echo is not obtained with some transducers, and a part of the display disappears with respect to FIG. 2 (a) (black dots in the figure). Where is not displayed). Furthermore, as shown in FIG. 2 (c), when the region where water is insufficient widens, the number of transducers from which surface echo is obtained decreases, so that most of the surface echo disappears in the display (in the figure, black The area where dots are displayed has decreased.) FIG. 2 shows data at the opening 2ch.

なお、図2のような表示画面を用いなくとも、受波振動子を変更したときに、各々の受波振動子で受信した波形において、表面エコーが得られる伝播時間範囲(ゲート範囲)に所定の所定強度以上の信号があるか否かを判断するようにしてもよく、その判断手法は特に問わない。このようにして、表面エコーの強度が所定の閾値より低下したら、カップリング不良と判定することができる。   Even if the display screen as shown in FIG. 2 is not used, when the wave receiving transducer is changed, the waveform received by each wave receiving transducer has a predetermined propagation time range (gate range) in which surface echo is obtained. It may be determined whether there is a signal having a predetermined intensity or more, and the determination method is not particularly limited. Thus, if the intensity of the surface echo falls below a predetermined threshold, it can be determined that there is a coupling failure.

又、斜角探傷(タンデム探傷)のスキャンと、カップリングチェックのスキャンを、送受信制御部を用いて、適宜切り替えることができるので、例えば、交互に行い、常に安定した状態で検査を行なうことが可能となる。カップリング不良は広い範囲で発生するため、カップリングチェックのスキャンでは、一素子ずつ移動させる必要はなく、アレイ探触子の長さの範囲を、例えば3〜5か所程度で分割して、それらを同時に行なうようにして、移動させてもよい。   In addition, the scan for oblique angle flaw detection (tandem flaw detection) and the scan for coupling check can be switched as appropriate using the transmission / reception control unit, so that, for example, the inspection can be performed alternately and always in a stable state. It becomes possible. Since coupling failures occur in a wide range, it is not necessary to move each element in the scanning of the coupling check, and the range of the length of the array probe is divided into, for example, about 3 to 5 locations. They may be moved in the same way.

本実施例においては、カップリングチェック時は、アレイ探触子上の振動子群の同時励振数を、探傷時より少なくして、超音波ビームの開口幅を狭めるようにしていたので、構成が簡略である。   In this embodiment, at the time of coupling check, the number of simultaneous excitations of the transducers on the array probe is made smaller than that at the time of flaw detection, so that the aperture width of the ultrasonic beam is narrowed. It is simple.

なお、給水口及び給水出射口の位置や形状は、実施例に限定されない。検査対象も鋼管に限定されない。   In addition, the position and shape of a water supply opening and a water supply exit are not limited to an Example. The inspection object is not limited to a steel pipe.

本発明の実施例を説明する図The figure explaining the Example of this invention 前記実施例のカップリングチェックの様子を示す図The figure which shows the mode of the coupling check of the said Example 同じく斜角探傷の様子を示す図The figure which shows the state of bevel flaw inspection similarly 同じく走査の手順例を示す図The figure which shows the example of the procedure of scanning similarly 本発明に係る超音波探傷装置の機能構成例を示す図The figure which shows the function structural example of the ultrasonic flaw detector which concerns on this invention 特許文献1に記載された従来技術を示す斜視図The perspective view which shows the prior art described in patent document 1

符号の説明Explanation of symbols

1…鋼管
2…溶接部
3…欠陥
4…水
5…アレイ探触子
6…送波用の振動子群
7…受波用の振動子群
8…送波ビーム
9…受波ビーム
30…被検体サイズ入力部
31…アレイ探触子記憶部
32…送受信制御部
33…ゲート位置記憶部
34…アレイ送信則記憶部
35…アレイ受信則記憶部
36…アレイ送信部
37…アレイ受信部
38…ゲート部
39…判定しきい値入力部
40…欠陥判定部
50…局部水浸ノズル
52…給水口
54…給水出射口
DESCRIPTION OF SYMBOLS 1 ... Steel pipe 2 ... Welded part 3 ... Defect 4 ... Water 5 ... Array probe 6 ... Transmitter transducer group 7 ... Receiver transducer group 8 ... Transmitted beam 9 ... Received beam 30 ... Covered Specimen size input unit 31 ... Array probe storage unit 32 ... Transmission / reception control unit 33 ... Gate position storage unit 34 ... Array transmission rule storage unit 35 ... Array reception rule storage unit 36 ... Array transmission unit 37 ... Array reception unit 38 ... Gate 39: Determination threshold value input unit 40 ... Defect determination unit 50 ... Local water immersion nozzle 52 ... Water supply port 54 ... Water supply outlet

Claims (3)

検査対象に対し超音波を送波する送波部と、
検査対象からの反射波の一部又は全部を受波する受波部とを有し、
前記送波部及び前記受波部が、一又は二以上のアレイ探触子上の異なる振動子群からなり、かつ、局部水浸ノズル内に保持される送受信部を備え、
検査対象に対して開口幅が広い超音波ビームを集束して送波するようにされた超音波斜角探傷装置のカップリングチェックに際し、
超音波ビームの開口幅を探傷時より狭めて、前記送受信部から指向性が低い超音波ビームを送信し、水を介して検査対象表面に略垂直に当て、前記送受信部にて表面エコーを検出することを特徴とする超音波斜角探傷装置のカップリングチェック方法。
A transmission section for transmitting ultrasonic waves to the inspection object;
A receiving section that receives a part or all of the reflected wave from the inspection object;
The transmission unit and the reception unit are composed of different transducer groups on one or more array probes, and include a transmission / reception unit held in a local water immersion nozzle,
During the coupling check of an ultrasonic oblique flaw detector designed to focus and transmit an ultrasonic beam with a wide aperture width to the inspection object,
The opening width of the ultrasonic beam is narrowed from the time of flaw detection, it transmits a low directivity ultrasonic beams from the transceiver unit, against substantially perpendicular to the inspection target surface via the water, detecting the surface echo in the transceiver unit A coupling check method for an ultrasonic oblique flaw detector.
カップリングチェック時は、アレイ探触子上の振動子群の同時励振数を、探傷時より少なくして、超音波ビームの開口幅を狭めることを特徴とする請求項1に記載のカップリングチェック方法。   2. The coupling check according to claim 1, wherein at the time of the coupling check, the number of simultaneous excitations of the transducer group on the array probe is made smaller than that at the time of the flaw detection to narrow the aperture width of the ultrasonic beam. Method. 前記カップリングチェックと探傷を交互に行うことを特徴とする請求項1または2に記載の超音波斜角探傷装置のカップリングチェック方法。   The coupling check method for an ultrasonic oblique angle flaw detector according to claim 1, wherein the coupling check and the flaw detection are performed alternately.
JP2007131980A 2007-05-17 2007-05-17 Coupling check method for ultrasonic oblique angle flaw detector Active JP5115024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131980A JP5115024B2 (en) 2007-05-17 2007-05-17 Coupling check method for ultrasonic oblique angle flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131980A JP5115024B2 (en) 2007-05-17 2007-05-17 Coupling check method for ultrasonic oblique angle flaw detector

Publications (2)

Publication Number Publication Date
JP2008286639A JP2008286639A (en) 2008-11-27
JP5115024B2 true JP5115024B2 (en) 2013-01-09

Family

ID=40146498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131980A Active JP5115024B2 (en) 2007-05-17 2007-05-17 Coupling check method for ultrasonic oblique angle flaw detector

Country Status (1)

Country Link
JP (1) JP5115024B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699695B2 (en) * 2010-03-29 2015-04-15 Jfeスチール株式会社 Electric seam pipe seam detection method and apparatus
CN104350381B (en) * 2012-07-04 2017-06-23 新日铁住金株式会社 Defect detecting device, defect inspection method
FR3033896A3 (en) * 2015-03-20 2016-09-23 Renault Sa METHOD FOR INSPECTING AN OBJECT, IN PARTICULAR A SOLDERED OR GLUE LINK BETWEEN TWO MATERIALS
EP4300096A1 (en) * 2022-06-30 2024-01-03 GILARDONI S.p.A. Ultrasonic probe for non-destructive testing of materials by means of ultrasonic pulses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208557A (en) * 1989-02-09 1990-08-20 Mitsubishi Electric Corp Array type skew probe
JPH04301762A (en) * 1991-03-29 1992-10-26 Toshiba Corp Piezoelectric-crystal element and its measuring device
JPH0862188A (en) * 1994-08-19 1996-03-08 Tokyo Gas Co Ltd Ultrasonic array flaw detection method for transverse-wave oblique angle and array-type flaw detection apparatus used for the method

Also Published As

Publication number Publication date
JP2008286639A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
US7093490B2 (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP4836019B2 (en) Ultrasonic probe, ultrasonic flaw detector, ultrasonic flaw detection method, and seamless tube manufacturing method
US4821575A (en) Ultrasonic flaw detecting method and apparatus
JP4910768B2 (en) Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method
JP5419592B2 (en) Ultrasonic inspection probe and ultrasonic inspection device
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
JP5115024B2 (en) Coupling check method for ultrasonic oblique angle flaw detector
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP6399275B1 (en) Defect detection apparatus, defect detection method and program
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP2011247676A (en) Ultrasonic flaw detection device
JP2552178B2 (en) Ultrasonic flaw detection method for steel pipe welds
JP5847010B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP2005257465A (en) Automatic ultrasonic flaw inspection method and device
JPH02259560A (en) Method and device for ultrasonic flaw detection of steel tube weld zone
KR20060129711A (en) An apparatus for detecting butt joint of pipe using parallel connected transducers and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Ref document number: 5115024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250