JPH04301762A - Piezoelectric-crystal element and its measuring device - Google Patents

Piezoelectric-crystal element and its measuring device

Info

Publication number
JPH04301762A
JPH04301762A JP3067140A JP6714091A JPH04301762A JP H04301762 A JPH04301762 A JP H04301762A JP 3067140 A JP3067140 A JP 3067140A JP 6714091 A JP6714091 A JP 6714091A JP H04301762 A JPH04301762 A JP H04301762A
Authority
JP
Japan
Prior art keywords
flaw detection
inspected
transducer
piezoelectric
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3067140A
Other languages
Japanese (ja)
Inventor
Ichiro Furumura
古村 一朗
Satoshi Nagai
敏 長井
Taiji Hirasawa
泰治 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3067140A priority Critical patent/JPH04301762A/en
Publication of JPH04301762A publication Critical patent/JPH04301762A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To carry out the flaw detection of a substance to be inspected and the monitoring of contact condition of a sensing element and the surface to be inspected by dividing a piezoelectric-crystal element into plural oscillators. CONSTITUTION:In a flaw detection, a high voltage pulse for exciting is applied simultaneously to all the short-size piezoelectric-crystal elements 13 (13-1 to 13-n) divided into plural (n) members, an ultrasonic signal is delivered into a substance 1 to be inspected through a matching plate 12 and a contact catalyst, the reflection signal from a defect is received by all the oscillators 13, and they are composed into a receiving wave form and displayed on a CRT as a flaw detecting wave form. When a contact condition is checked, an ultrasonic signal is transmitted by several (m) oscillators 13-1 to 13-m near one side end, for example, it is transmitted through the surface 1s to be inspected, and an ultrasonic signal detected by n to m oscillators 13 on the other side end is measured, so as to monitor the contact condition of the sensing element 11 and the surface 1s to be inspected. And in the flaw detection, the flaw detecting mode and the contact condition checking mode are repeated continuously alternatively in a time-sharing system.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、金属材料、複合材料、
あるいはセラミックス等からなる構造物や、その部品の
健全性を評価するために行う非破壊検査の一種である超
音波探傷やアコースティックエミッション計測を行う際
に用いる圧電変換子と、この変換子を用いて計測を行う
ための計測装置に関する。
[Industrial Application Field] The present invention relates to metal materials, composite materials,
Alternatively, piezoelectric transducers and piezoelectric transducers used in ultrasonic flaw detection and acoustic emission measurement, which are a type of non-destructive testing to evaluate the health of structures made of ceramics and their parts, can also be used. The present invention relates to a measuring device for performing measurements.

【0003】0003

【従来の技術】金属材料、複合材料、あるいはセラミッ
クス等からなる構造物や機器およびそれらの部品は長期
の運転期間中における構造物や機器の健全性を確保する
ために、素材の段階や製造時、および一定期間ごとに実
施される定期検査において、材料内部に欠陥が存在する
か否かを調べるため超音波探傷試験を行なわれる。また
、構造物や機器が運転されている状態で常時監視し、異
常が発生した場合、これを早期に検出するためにアコー
スティックエミッション計測が行われることもある。
[Prior Art] Structures and equipment made of metal materials, composite materials, ceramics, etc., and their parts, are manufactured at the material stage and manufacturing stage in order to ensure the integrity of the structures and equipment during long-term operation. , and during periodic inspections carried out at regular intervals, ultrasonic flaw detection tests are conducted to check whether there are defects inside the material. In addition, acoustic emission measurements are sometimes performed to constantly monitor structures and equipment while they are in operation, and to detect abnormalities at an early stage if they occur.

【0004】このような目的で使用される超音波探傷試
験のための超音波探触子や、機器の連続監視のためのア
コースティックエミッションセンサーは、それぞれ特性
は違うものの圧電素子を用いている。即ち、超音波探触
子の場合は、圧電素子を用いて高圧電気パルスを固体中
の超音波振動に変換したり、欠陥などから反射してくる
固体中超音波振動を電気信号に変換する。また、アコー
スティックエミッションセンサーの場合は、割れの発生
や伝播に伴って発生する、超音波よりはやや低周波の固
体中振動を、圧電素子を用いて電気信号に変換する。
Ultrasonic probes for ultrasonic flaw detection tests and acoustic emission sensors for continuous monitoring of equipment used for such purposes use piezoelectric elements, although they each have different characteristics. That is, in the case of an ultrasonic probe, a piezoelectric element is used to convert high-voltage electric pulses into ultrasonic vibrations in a solid, or convert ultrasonic vibrations in a solid that are reflected from defects or the like into electrical signals. In addition, in the case of an acoustic emission sensor, a piezoelectric element is used to convert the vibrations in a solid, which have a slightly lower frequency than ultrasonic waves, that occur as cracks occur and propagate into electrical signals.

【0005】ところで、固体中超音波やアコースティッ
クエミッションを圧電変換子で電気信号として計測する
ためには、固体振動が変換子に効率よく伝達されること
が必要である。そのため、例えば超音波探傷の場合には
、図7に示すように、非検査物1の被検査面1s と変
換子2との接触面に、油や水等の接触媒質3を塗布する
ことによって、固体振動を伝達し易くするのが一般的で
ある。
By the way, in order to measure ultrasonic waves or acoustic emissions in a solid as electrical signals using a piezoelectric transducer, it is necessary that solid vibrations be efficiently transmitted to the transducer. Therefore, in the case of ultrasonic flaw detection, for example, as shown in FIG. , it is common to make it easier to transmit solid vibrations.

【0006】しかしながら、被検査面1sは多くの場合
、図8(a)のように全く平坦ではなく、若干うねって
いたり、あるいは図8(b)のように腐蝕や表面酸化に
よる微小な凹凸が存在するのが通例であり、そのような
場合には接触媒質3が変換子2の表面全体に行きわたら
ず、超音波等の固体振動を伝え難くなり、接触状態の良
い場所あるいは場合での計測結果と、接触状態の悪い場
所あるいは場合での計測結果が異なってくる。その結果
、超音波探傷では欠陥検出感度が低下し、またアコース
ティックエミッション計測では計測不能の状態に陥って
しまう。また、変換子2が接触状態の不良で感度が低下
していても、それを認識できない事態が生じることもあ
る。
However, in many cases, the inspected surface 1s is not flat at all, as shown in FIG. 8(a), but is slightly undulating, or has minute irregularities due to corrosion or surface oxidation, as shown in FIG. 8(b). In such a case, the couplant 3 does not spread over the entire surface of the transducer 2, making it difficult to transmit solid vibrations such as ultrasonic waves, making it difficult to measure in places or cases with good contact conditions. The results may differ from those measured in places or cases where contact conditions are poor. As a result, the defect detection sensitivity of ultrasonic flaw detection decreases, and acoustic emission measurement becomes impossible to measure. Furthermore, even if the sensitivity of the transducer 2 is reduced due to poor contact, a situation may arise in which this cannot be recognized.

【0007】超音波探傷器、特に自動探傷機器において
は、探触子の接触状態の良・不良を調べるために、図9
に示すように、探触子ヘッド4の内部に、実際の探傷に
用いる探触子5とともに、その近傍にカップリングチェ
ック用変換子6を装着し、例えば被検査物1の底面1B
 から反射してくるエコーを連続的に監視する方法を採
用することがある。しかしながら、この方法でも探傷用
探触子5とカップリングチェック用探触子6の大きさ等
の関係で、カップリングチェック用探触子6の下に接触
媒質3が行きわたっていない状態が発生する場合があり
、この様な場合には探傷結果を誤って評価してしまう恐
れがあった。
In ultrasonic flaw detectors, especially automatic flaw detectors, in order to check whether the contact state of the probe is good or bad, the method shown in FIG.
As shown in FIG. 2, a coupling check transducer 6 is installed inside the probe head 4 together with the probe 5 used for actual flaw detection in the vicinity thereof.
Sometimes a method is adopted in which the echoes reflected from the ground are continuously monitored. However, even with this method, due to the size of the flaw detection probe 5 and the coupling check probe 6, a situation occurs where the couplant 3 is not spread under the coupling check probe 6. In such cases, there was a risk that the flaw detection results would be evaluated incorrectly.

【0008】[0008]

【発明が解決しようとする課題】金属材料、複合材料、
あるいはセラミックス等からなる構造物や機器およびそ
れらの部品の健全性を確保する目的で、素材の段階や製
造時または定期検査時に、材料内部に欠陥が存在するか
否かを調べるために行われる超音波探傷試験や、機器が
運転されている状態で常時監視して異常を早期に検出す
るアコースティックエミッション計測に際し、超音波探
触子やアコースティックエミッションセンサーを使用す
る場合、接触媒質が十分に行きわたらないために生ずる
感度低下を正しく評価しつつ計測し、あるいは感度低下
を補正しつつ計測する手段は、これまで知られてなかっ
た。
[Problem to be solved by the invention] Metal materials, composite materials,
Or, for the purpose of ensuring the soundness of structures, equipment, and their parts made of ceramics, etc., ultraviolet rays are carried out to check whether there are defects inside the material at the material stage, during manufacturing, or during periodic inspections. When using ultrasonic probes or acoustic emission sensors during sonic flaw detection tests or acoustic emission measurements that constantly monitor equipment while it is in operation to detect abnormalities at an early stage, the couplant may not be sufficiently distributed. Until now, there has been no known means for measuring while accurately evaluating or correcting the decrease in sensitivity that occurs due to this.

【0009】[発明の構成][Configuration of the invention]

【0010】0010

【課題を解決するための手段】本発明の圧電変換子とそ
の計測装置は、超音波探傷やアコースティックエミッシ
ョン計測に用いる圧電変換子が他数個の振動子に分割さ
れ、超音波の送受信やアコースティックエミッション信
号の受信に用いる振動子と、これらの振動子が被検査面
に良好に接触していることを確認するための振動子とし
て機能することを特徴とするものである。
[Means for Solving the Problems] In the piezoelectric transducer and measurement device thereof of the present invention, the piezoelectric transducer used for ultrasonic flaw detection and acoustic emission measurement is divided into several other vibrators, and the piezoelectric transducer and measurement device thereof are capable of transmitting and receiving ultrasonic waves and It is characterized by functioning as a vibrator used to receive emission signals and a vibrator for confirming that these vibrators are in good contact with the surface to be inspected.

【0011】なお、上記構成のうち、好ましい態様は、
複数個に分割された振動子群の全てを同時に用いること
により超音波探触子としての送受信、あるいはアコース
ティックエミッションセンサーとしての受信を行い、一
方、これらの分割された振動子群の中の一部を被検体へ
固体振動を発生させるための送信子として用い、振動子
群の他の一部を前記送信用振動子により送信された固体
振動を再度受信するための受信子として用いることによ
り、変換子全体の被検査面への接触状態をモニタリング
する圧電変換子とその計測装置である。
[0011] Among the above configurations, a preferred embodiment is as follows:
By using all of the transducer groups divided into multiple pieces at the same time, it is possible to transmit and receive as an ultrasonic probe or receive as an acoustic emission sensor.On the other hand, some of these divided transducer groups is used as a transmitter to generate solid-state vibrations to the subject, and the other part of the transducer group is used as a receiver to re-receive the solid-state vibrations transmitted by the transmitting transducer. This is a piezoelectric transducer and its measuring device that monitors the state of contact of the entire sensor to the surface to be inspected.

【0012】0012

【作用】この様な構成の圧電変換子とその計測装置によ
れば、超音波やアコースティックエミッション等の固体
振動が被検査面から圧電変換子に伝達しにくい状態にな
っているか否かを評価しつつ計測でき、また許容範囲内
での接触不良状態においては検出感度の低下を補正しつ
つ計測できるので、被検査面が若干うねっていたり、あ
るいは腐蝕や表面酸化による微小な凹凸が存在し、接触
媒質が変換子の表面全体に行きわたらず超音波等の固体
振動を伝え難くなっていても、これを早期に認識したり
補正して計測することにより、信頼性の高い計測が可能
となる。
[Operation] According to the piezoelectric transducer and its measuring device configured as described above, it is possible to evaluate whether or not solid vibrations such as ultrasonic waves and acoustic emissions are difficult to be transmitted from the surface to be inspected to the piezoelectric transducer. In addition, measurement can be performed while correcting the decrease in detection sensitivity in the case of poor contact within the allowable range. Even if the medium does not spread over the entire surface of the transducer, making it difficult to transmit solid vibrations such as ultrasonic waves, highly reliable measurements can be made by recognizing this early and correcting it.

【0013】[0013]

【実施例】次に、図面を参照しながら本発明の実施例を
説明する。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

【0014】図1は本発明における圧電変換子の使用状
態を示す断面図である。被検査物1の被検査面1s に
置かれた変換子11は、被検査面1s と接触し、振動
子を保護するとともに、その振動特性を被検査面の特性
に整合させるためのマッチング板12と、圧電振動子1
3と、この圧電振動子で発生した電気的出力を変換子1
1の外部に導くためのリード線14−1,14−2,…
…14−nと、圧電振動子13の振動特性を所定の特性
にするためのダンピング材15とからなる。なお、圧電
振動子13は複数個の矩型振動子13−1,13−2,
……13−nに分割されており、電気的出力を取出すリ
ード線14−1,14−2,……14−nも前記振動子
13−1〜13−nの数に対応して存在している。
FIG. 1 is a sectional view showing how the piezoelectric transducer of the present invention is used. The transducer 11 placed on the surface 1s to be inspected of the object 1 to be inspected is in contact with the surface 1s to be inspected, and a matching plate 12 is provided to protect the vibrator and match its vibration characteristics to the characteristics of the surface to be inspected. and piezoelectric vibrator 1
3, and the electrical output generated by this piezoelectric vibrator is transmitted to transducer 1.
Lead wires 14-1, 14-2,... for leading to the outside of 1.
...14-n, and a damping material 15 for adjusting the vibration characteristics of the piezoelectric vibrator 13 to predetermined characteristics. Note that the piezoelectric vibrator 13 includes a plurality of rectangular vibrators 13-1, 13-2,
. . . 13-n, and lead wires 14-1, 14-2, . ing.

【0015】図2は本発明による圧電変換子と、これを
用いて超音波探傷を行う場合の計測装置の回路構成例を
示すブロック図である。
FIG. 2 is a block diagram showing an example of the circuit configuration of a piezoelectric transducer according to the present invention and a measuring device for performing ultrasonic flaw detection using the piezoelectric transducer.

【0016】圧電振動子13の各矩型振動子13−1,
13−2,……13−nに接続されている振動子選択・
切換え回路20は、タイミング制御回路21からの制御
信号により、超音波を発生させるための励振用高圧パル
ス22をどの振動子に印加し、どの振動子を受信に用い
るかを決定する。超音波励振用高圧パルス22は高圧パ
ルス発生回路23に印加された高圧電源24の電圧をス
イッチングまたは充放電させることにより発生する。ま
た、高圧電源24の電圧はタイミング制御回路21の制
御により電圧を変えること、即ち高圧パルス22のピー
ク振幅値を制御することにより、探傷モードと接触状況
チェックモードの両方に時分割で用いることができる。
Each rectangular vibrator 13-1 of the piezoelectric vibrator 13,
Select the transducer connected to 13-2,...13-n.
The switching circuit 20 determines which transducer to apply the excitation high voltage pulse 22 for generating ultrasonic waves and which transducer to use for reception, based on a control signal from the timing control circuit 21. The high-voltage pulse 22 for ultrasonic excitation is generated by switching or charging/discharging the voltage of the high-voltage power supply 24 applied to the high-voltage pulse generation circuit 23 . Furthermore, by changing the voltage of the high-voltage power supply 24 under the control of the timing control circuit 21, that is, by controlling the peak amplitude value of the high-voltage pulse 22, it can be used in both the flaw detection mode and the contact status check mode in a time-sharing manner. can.

【0017】振動子選択・切換え回路20により受信用
振動子と定められた振動子からの超音波信号25は、ア
ナログ加算回路26で加算された後、超音波信号受信用
増幅器27で増幅され、タイミング制御回路21からの
制御信号により探傷モードに同期をとって、探傷波形表
示用CRT28に探傷波形として表示される。一方、接
触状況チェックモードで受信した振動子からの信号の振
幅値は接触状況モニター計器29に連続表示される。ま
た、この値に基づいて振幅値補正回路30により増幅・
減衰されて補正された後の探傷波形は補正表示用CRT
31に表示される。
Ultrasonic signals 25 from the transducers determined as reception transducers by the transducer selection/switching circuit 20 are added together in an analog adder circuit 26, and then amplified in an ultrasonic signal receiving amplifier 27. It is synchronized with the flaw detection mode by a control signal from the timing control circuit 21 and displayed as a flaw detection waveform on the CRT 28 for flaw detection waveform display. On the other hand, the amplitude value of the signal from the vibrator received in the contact status check mode is continuously displayed on the contact status monitor instrument 29. Also, based on this value, the amplitude value correction circuit 30 amplifies and
The flaw detection waveform after being attenuated and corrected is displayed on a CRT for correction display.
31.

【0018】本発明をアコースティックエミッション計
測に適用する場合においても、計測装置の構成は図2の
構成と同様である。
Even when the present invention is applied to acoustic emission measurement, the configuration of the measuring device is the same as that shown in FIG. 2.

【0019】次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

【0020】本発明装置を超音波探傷器として用いる場
合には、図3に示すように探傷モード(ステップA1)
と、接触状況チェックモード(ステップA2)が時分割
で交互に連続して繰返される。実際に探傷を行う探傷モ
ードでは、図4に示すように複数個に分割された矩型振
動子13−1,13−2,……13−nの全てに同時に
励振用高圧パルス22−1,22−2,……22−nを
印加することにより、マッチング板12と接触媒質3を
通して被検査物1内に超音波信号40を送信する。また
、図5に示すように、欠陥等より反射してきた超音波信
号40は矩型振動子13−1,13−2,……13−n
の全てにより受信され、受信波形25−1,25−2,
…25−nはアナログ加算回路26により一つの受信波
形25に合成された後、超音波信号受信用増幅器27で
増幅され、探傷波形表示用CRT28に探傷波形として
表示される。
When the device of the present invention is used as an ultrasonic flaw detector, the flaw detection mode (step A1) is set as shown in FIG.
The contact status check mode (step A2) is alternately and continuously repeated in a time-sharing manner. In the flaw detection mode in which flaw detection is actually performed, as shown in FIG. 4, the excitation high voltage pulse 22-1, By applying signals 22-2, . Further, as shown in FIG. 5, the ultrasonic signals 40 reflected from defects etc.
are received by all of the received waveforms 25-1, 25-2,
...25-n are combined into one received waveform 25 by the analog adder 26, amplified by the ultrasonic signal receiving amplifier 27, and displayed as a flaw detection waveform on the flaw detection waveform display CRT 28.

【0021】探傷モードが終了した次の時点では、接触
状況チェックモードの動作が行われる。このチェックモ
ードは、図6に示すように、複数個に分割された矩型振
動子13−1,13−2,……13−nのうち、例えば
一方の端に近い13−1,13−2,……13−mのm
個の振動子を超音波送信に用い、被検査面1s を伝播
して他端側のn−m個の振動子13n−m ,13n−
m+1 ,……13−nで検出された超音波信号を計測
することにより、変換子11と被検査面1s の接触状
態を監視するものである。この時、送信用振動子13−
1,13−2,……13−mに印加される励振用パルス
22−1’ ,22−2’ ,……22−m’ は探傷
モードにおける励振パルス電圧よりも十分に低く、送信
用振動子に極く近い受信用振動子においてもその出力が
飽和しないよう、高圧電源24の電圧を低くして印加す
るようにタイミング制御回路21の制御信号により制御
される。
[0021] At the next point after the flaw detection mode ends, a contact status check mode is operated. As shown in FIG. 6, in this check mode, for example, among the rectangular vibrators 13-1, 13-2, . 2,...m of 13-m
transducers are used for ultrasonic transmission, and propagates through the surface to be inspected 1s to nm transducers 13n-m, 13n- on the other end side.
By measuring the ultrasonic signals detected at m+1, . . . 13-n, the contact state between the transducer 11 and the surface to be inspected 1s is monitored. At this time, the transmitting vibrator 13-
The excitation pulses 22-1', 22-2', . . . 22-m' applied to 1, 13-2, . . . 13-m are sufficiently lower than the excitation pulse voltage in the flaw detection mode, and are The control signal of the timing control circuit 21 is used to apply a low voltage to the high-voltage power supply 24 so that the output of the receiving vibrator, which is very close to the receiving transducer, is not saturated.

【0022】さらに、接触状況チェックモードでの計測
値が予め定めた範囲のなかであれば、振幅値補正回路3
0により、この計測値の大小に応じて探傷モードで計測
された探傷波形を増幅・減衰させる補正をすることによ
り、常に一定の探傷感度で探傷を行うことができる。
Furthermore, if the measured value in the contact status check mode is within a predetermined range, the amplitude value correction circuit 3
0, the flaw detection waveform measured in the flaw detection mode is corrected to amplify or attenuate depending on the magnitude of the measured value, thereby allowing flaw detection to always be performed with a constant flaw detection sensitivity.

【0023】なお、本発明をアコースティックエミッシ
ョン計測を行うために用いる場合は、図4および図5に
示した探傷モードの代わりに、全振動子を受信のみに用
いてアコースティックエミッションの発生を待っている
期間とし、また図6に示したチェックモードでは、超音
波探傷の場合と同様に、振動子の一部を送信に、他の一
部を受信に用いることにより、変換子と被検査面の接触
状態の監視を行うことになる。
Note that when the present invention is used to measure acoustic emissions, instead of the flaw detection mode shown in FIGS. 4 and 5, all transducers are used only for reception and wait for the occurrence of acoustic emissions. In the check mode shown in Fig. 6, one part of the transducer is used for transmitting and the other part is used for receiving, as in the case of ultrasonic flaw detection, to prevent contact between the transducer and the surface to be inspected. The status will be monitored.

【0024】上述のように本発明の装置において、超音
波探傷の場合には、変換子のなかの分割された振動子全
体を用いて行う探傷モードと、振動子の一部を送信に、
他の一部を受信に用いて変換子と被検査面の接触状態を
チェックするチェックモードの動作とを、時分割に交互
に繰返して行うことにより、接触媒質が行きわたってい
るか否かによる被検査面と変換子の間の接触状態の変化
に起因する超音波感度の変化を常に、しかも探傷を行う
振動子そのもので監視することが可能となり、さらには
接触状況のチェックモードでの計測値が予め定めた範囲
内であれば振幅値補正回路30により補正することがで
きるため、常に一定の探傷感度で探傷を行うことが可能
となり、特に自動探傷のように連続して探傷する場合に
は、結果の信頼性を著しく改善することができる。これ
はアコースティックエミッション計測を行う場合におい
ても同様である。
As described above, in the case of ultrasonic flaw detection in the apparatus of the present invention, there is a flaw detection mode in which the entire divided vibrator in the transducer is used, and a flaw detection mode in which a part of the vibrator is used for transmission.
By alternately repeating the check mode operation in which the other part is used for reception to check the contact state between the transducer and the surface to be inspected in a time-sharing manner, the It is now possible to constantly monitor changes in ultrasonic sensitivity caused by changes in the contact state between the inspection surface and the transducer, using the transducer itself for flaw detection, and furthermore, it is possible to monitor changes in the ultrasonic sensitivity caused by changes in the contact state between the inspection surface and the transducer. If it is within a predetermined range, it can be corrected by the amplitude value correction circuit 30, so it is possible to always perform flaw detection with a constant flaw detection sensitivity, especially when flaw detection is performed continuously such as automatic flaw detection. The reliability of the results can be significantly improved. This also applies when performing acoustic emission measurement.

【0025】[0025]

【発明の効果】上述のように本発明によれば、接触媒質
が行きわたっているか否かを常に、しかも探傷を行う振
動子そのもので監視することが可能となり、常時一定の
感度で探傷を行うことが可能となり、探傷結果の信頼性
を著しく向上させることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to constantly monitor whether the couplant is distributed or not using the vibrator itself that performs flaw detection, and flaw detection is always performed with a constant sensitivity. This makes it possible to significantly improve the reliability of flaw detection results.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明における圧電変換子の使用状態を示す断
面図である。
FIG. 1 is a sectional view showing how a piezoelectric transducer is used in the present invention.

【図2】本発明による圧電変換子と、これを用いて超音
波探傷を行う場合の計測装置の回路構成例を示すブロッ
ク図である。
FIG. 2 is a block diagram showing an example of a circuit configuration of a piezoelectric transducer according to the present invention and a measuring device when performing ultrasonic flaw detection using the piezoelectric transducer.

【図3】本発明における探傷モードと、接触状況チェッ
クモードの関係を示すフローチャートである。
FIG. 3 is a flowchart showing the relationship between a flaw detection mode and a contact status check mode in the present invention.

【図4】本発明における探傷モードでの超音波信号の送
信状態の説明図である。
FIG. 4 is an explanatory diagram of a transmission state of an ultrasonic signal in a flaw detection mode according to the present invention.

【図5】本発明における探傷モードでの超音波信号の受
信状態の説明図である。
FIG. 5 is an explanatory diagram of the reception state of ultrasonic signals in flaw detection mode according to the present invention.

【図6】本発明における接触状況チェックモードの説明
図である。
FIG. 6 is an explanatory diagram of a contact status check mode in the present invention.

【図7】従来の変換子の取付け状態の説明図である。FIG. 7 is an explanatory diagram of an attached state of a conventional converter.

【図8】(a),(b)は従来の変換子の取付け状態の
説明図である。
FIGS. 8(a) and 8(b) are explanatory diagrams of the attached state of a conventional converter.

【図9】従来装置の作動を示す説明図である。FIG. 9 is an explanatory diagram showing the operation of the conventional device.

【符号の説明】[Explanation of symbols]

1……被検査物 1s…被検査面 2……変換子 3……接触媒体 4……探触子ヘッド 5……探傷用探触子 6……カップリングチェック用探触子 11……変換子 12……マッチング板 13……圧電振動子 14−1〜14−n……リード線 15……ダンピング材 22,22−1〜22−n……高圧パルス22−1’ 
〜22−m’ ……励振用パルス25,25−1〜25
−n……超音波受信信号40……超音波信号
1...Object to be inspected 1s...Surface to be inspected 2...Transducer 3...Coupling medium 4...Probe head 5...Flaw detection probe 6...Coupling check probe 11...Conversion Child 12... Matching plate 13... Piezoelectric vibrator 14-1 to 14-n... Lead wire 15... Damping material 22, 22-1 to 22-n... High voltage pulse 22-1'
~22-m'...Excitation pulse 25, 25-1~25
-n...Ultrasonic reception signal 40...Ultrasonic signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  超音波探傷やアコースティックエミッ
ション計測に用いる圧電変換子が他数個の振動子に分割
され、超音波の送受信やアコースティックエミッション
信号の受信に用いる振動子と、これらの振動子が被検査
面に良好に接触していることを確認するための振動子と
して機能することを特徴とする圧電変換子とその計測装
置。
Claim 1: A piezoelectric transducer used for ultrasonic flaw detection and acoustic emission measurement is divided into several other transducers, and a transducer used for transmitting and receiving ultrasonic waves and receiving an acoustic emission signal, and a transducer to which these transducers are exposed. A piezoelectric transducer and its measuring device characterized by functioning as a vibrator for confirming good contact with a test surface.
JP3067140A 1991-03-29 1991-03-29 Piezoelectric-crystal element and its measuring device Withdrawn JPH04301762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3067140A JPH04301762A (en) 1991-03-29 1991-03-29 Piezoelectric-crystal element and its measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3067140A JPH04301762A (en) 1991-03-29 1991-03-29 Piezoelectric-crystal element and its measuring device

Publications (1)

Publication Number Publication Date
JPH04301762A true JPH04301762A (en) 1992-10-26

Family

ID=13336304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3067140A Withdrawn JPH04301762A (en) 1991-03-29 1991-03-29 Piezoelectric-crystal element and its measuring device

Country Status (1)

Country Link
JP (1) JPH04301762A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286639A (en) * 2007-05-17 2008-11-27 Jfe Steel Kk Coupling check method of ultrasonic oblique angle flaw detector
WO2013189885A1 (en) * 2012-06-19 2013-12-27 Airbus Operations (S.A.S.) Non-destructive ultrasound testing of structures made of composite material
JP2019532297A (en) * 2016-10-19 2019-11-07 プロセク ソシエテ アノニム Method and apparatus for compensating for combining non-uniformities in ultrasonic inspection
US10641738B2 (en) 2017-07-20 2020-05-05 Airbus (S.A.S.) Device and method for non-destructive ultrasound inspection of structures made of composite material
US10712318B2 (en) 2017-03-17 2020-07-14 Kabushiki Kaisha Toshiba Sensor adhesion state determination system, sensor adhesion state determination device, and sensor adhesion state determination method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286639A (en) * 2007-05-17 2008-11-27 Jfe Steel Kk Coupling check method of ultrasonic oblique angle flaw detector
WO2013189885A1 (en) * 2012-06-19 2013-12-27 Airbus Operations (S.A.S.) Non-destructive ultrasound testing of structures made of composite material
US9632063B2 (en) 2012-06-19 2017-04-25 Airbus Operations (Sas) Non-destructive ultrasound testing of structures made of composite material
JP2019532297A (en) * 2016-10-19 2019-11-07 プロセク ソシエテ アノニム Method and apparatus for compensating for combining non-uniformities in ultrasonic inspection
US10712318B2 (en) 2017-03-17 2020-07-14 Kabushiki Kaisha Toshiba Sensor adhesion state determination system, sensor adhesion state determination device, and sensor adhesion state determination method
US10641738B2 (en) 2017-07-20 2020-05-05 Airbus (S.A.S.) Device and method for non-destructive ultrasound inspection of structures made of composite material

Similar Documents

Publication Publication Date Title
EP0787980B1 (en) Measuring a load on a part and monitoring the integrity of the part
EP0655623B1 (en) Relative resonant frequency shifts to detect cracks
CN103913714A (en) Calibration system of partial discharge supersonic detector
US5665913A (en) Method and apparatus for evaluation and inspection of composite-repaired structures
US8371151B2 (en) Detection of channel saturation in phase-array ultrasonic non-destructive testing
US5408880A (en) Ultrasonic differential measurement
CA1049132A (en) Excitation and spectral calibration of acoustic emission systems
US5948984A (en) Structural integrity recovery system
JPH0511895B2 (en)
JPH04301762A (en) Piezoelectric-crystal element and its measuring device
US6079273A (en) EMAT inspection of header tube stubs
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
JPS6321135B2 (en)
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
US4823609A (en) Ultrasonic method and apparatus for determining crack opening load
JP2611084B2 (en) How to select an ultrasonic probe
JP4646012B2 (en) Nondestructive inspection equipment for concrete structures
JP2005083752A (en) Breaking sound sensor
JPS62194456A (en) Method for checking array type probe
RU2272282C1 (en) Method for ultrasound control of state of wooden products
JPS5940268B2 (en) Acoustic emission signal detection sensitivity testing method and device
SU1758541A1 (en) Method of ultrasonic testing of articles
JP2739972B2 (en) Ultrasonic flaw detector
JPH06242086A (en) Ultrasonic inspection system
JPS61217757A (en) Ultrasonic flaw detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514