WO2015001625A1 - Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure - Google Patents

Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure Download PDF

Info

Publication number
WO2015001625A1
WO2015001625A1 PCT/JP2013/068198 JP2013068198W WO2015001625A1 WO 2015001625 A1 WO2015001625 A1 WO 2015001625A1 JP 2013068198 W JP2013068198 W JP 2013068198W WO 2015001625 A1 WO2015001625 A1 WO 2015001625A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasonic array
array sensor
welded portion
defect
Prior art date
Application number
PCT/JP2013/068198
Other languages
French (fr)
Japanese (ja)
Inventor
将裕 三木
聡 北澤
雅己 小方
紀朗 後藤
小林 善宏
晋 安西
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/068198 priority Critical patent/WO2015001625A1/en
Publication of WO2015001625A1 publication Critical patent/WO2015001625A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Definitions

  • the present invention relates to an ultrasonic inspection method and inspection apparatus for flaws, cracks, and weld defects generated in a welded portion for joining plate materials.
  • Welding is indispensable for manufacturing large structures, but welding defects rarely occur at the weld due to welding. Therefore, the quality of a welded part is guaranteed by performing an appropriate nondestructive inspection on the welded part.
  • a general nondestructive inspection method for a welded portion an ultrasonic flaw detection method or a radiation inspection method can be cited.
  • the ultrasonic flaw detection method is widely used because of the simplicity of the apparatus and the absence of operations such as shielding necessary for radiation inspection.
  • Patent Document 1 discloses an ultrasonic flaw detection method for a welded portion in which plate materials are joined to each other.
  • two oblique probes are arranged on one surface of a welded portion so as not to be on the same straight line, and the ultrasonic probe is scanned back and forth in the direction orthogonal to the welded portion. Then, the defect generated in the thickness direction is detected by adjusting the incident angle of the ultrasonic wave to the weld line and the distance to the weld line.
  • Patent Document 2 discloses a method for inspecting a welded portion of a welded steel pipe formed by welding a steel pipe having a semicircular cross section. According to the invention disclosed in Patent Document 2, when a pair of ultrasonic probes is fixedly arranged along the weld line and a reflected signal is detected by both of the pair of ultrasonic probes, The reflected signal is determined as a defect.
  • Patent 3140157 Japanese Patent Laid-Open No. 2003-322643
  • the ultrasonic probe For inspection of welded parts of long members, conventionally, the ultrasonic probe was manually moved in a direction crossing the welding line and in the welding line direction to detect the welded part. Normally, convex weld surpluses are generated on the surface of the welded portion. Therefore, the surplus is ground with a grinder and the surface of the welded portion is smoothed, and then the flaw detection is performed. In this method, since it is necessary to delete surplus before inspection, a technique for performing welding inspection at high speed without pretreatment is desired.
  • a coordinate system is set for the object to be welded, and the longitudinal direction of the weld line, which is the center line of the weld, is orthogonal to the X direction and the longitudinal direction of the weld line.
  • the direction is the Y direction, and the plate thickness depth direction to be inspected is the Z direction.
  • Patent Document 2 is a method of arranging an ultrasonic probe in a fixed manner, and does not consider the movement of the ultrasonic probe in the first place.
  • the present invention is an ultrasonic that can inspect the presence or absence of a defect in a welded part only by parallel (X direction) movement along the weld line without performing forward / reverse (Y direction) scanning of the ultrasonic probe. It is an object of the present invention to provide a flaw detection apparatus, a flaw detection method, or a flaw detection method for a panel structure that is joined by welding various shapes.
  • an ultrasonic flaw detector used for ultrasonic inspection of a welded portion includes an ultrasonic array transducer that transmits and receives ultrasonic waves to the welded portion, and the welded portion
  • the first ultrasonic array sensor and the second ultrasonic array sensor disposed across the first and second ultrasonic array sensors, and the distance between the first and second ultrasonic array sensors is kept constant, the first and second An ultrasonic array sensor holder that moves the ultrasonic array sensor along the longitudinal direction of the weld, an ultrasonic controller that converts the ultrasonic wave received by the ultrasonic array transducer into an echo signal, and the echo
  • a flaw detection controller that detects a defect in the weld using a signal is provided.
  • FIG. 3 is a schematic diagram illustrating an arrangement of ultrasonic array sensors in the ultrasonic flaw detector according to the first embodiment.
  • FIG. 3 is a B-B ′ sectional view of the schematic diagram of FIG. 2 (YZ sectional view of the ultrasonic array sensor arrangement diagram of FIG. 2).
  • FIG. 3 is a C-C ′ sectional view of the schematic diagram of FIG. 2 (ZX sectional view of the ultrasonic array sensor arrangement diagram of FIG.
  • FIG. 3 is an enlarged view of a main part showing an ultrasonic propagation path in the ultrasonic flaw detector of Example 1. It is an example of the test result displayed on the display of the ultrasonic flaw detector of Example 1.
  • 3 is a flowchart for explaining processing in the ultrasonic flaw detector according to Embodiment 1; It is explanatory drawing of the to-be-inspected object of the ultrasonic flaw detector of Example 2.
  • FIG. 3 is a schematic diagram showing the positional relationship between the ultrasonic flaw detector of Example 2 and an inspection object (corresponding to the A-A ′ cross-sectional view of FIG. 1).
  • 6 is a layout diagram of ultrasonic array sensors in the ultrasonic flaw detector according to Embodiment 2.
  • FIG. 11 is a D-D ′ sectional view (ZX section) of the ultrasonic array sensor arrangement diagram shown in FIG. 10.
  • (A) It is a principal part enlarged view which shows the ultrasonic propagation path
  • FIG. (B) It is a principal part enlarged view which shows another ultrasonic propagation path in the ultrasonic flaw detector of Example 2.
  • FIG. It is an example of the test result displayed on the indicator of the ultrasonic flaw detector of Example 2.
  • FIG. 1C is a system configuration diagram of the ultrasonic flaw detector according to the present embodiment.
  • the ultrasonic flaw detection apparatus includes an ultrasonic array probe 101 that transmits and receives an ultrasonic wave in contact with an object to be inspected, and transmits the ultrasonic wave as an analog echo signal, and the ultrasonic array.
  • a phased array flaw detector 102 that controls the probe 101 and a display 14 that displays the inspection result are configured.
  • the phased array flaw detector 102 includes an analog / digital conversion board that digitizes an analog signal transmitted from the ultrasonic array probe 101, an amplifier that amplifies the AD-converted digital signal, and various types of digitalized echo signals.
  • a processor that executes processing, a memory that stores software executed by the processor, a secondary storage device, and the like are included.
  • FIG. 1A is a schematic diagram showing a state in which the ultrasonic array probe 101 is placed on a structure in which the plate materials 3a and 3b are joined by the welded portion 1.
  • FIG. 1A is a schematic diagram showing a state in which the ultrasonic array probe 101 is placed on a structure in which the plate materials 3a and 3b are joined by the welded portion 1.
  • the ultrasonic array probe 101 includes a pair of ultrasonic array sensors 4 and 5, an ultrasonic array sensor holder 6 that holds the ultrasonic array sensor, and the like.
  • the ultrasonic array sensor holder 6 includes a casing for holding the first and second ultrasonic array sensors 4 and 5 at a fixed distance from each other, and the first and second ultrasonic arrays.
  • the sensors 4 and 5 are fixed to the casing with an ultrasonic array sensor fixing screw 7.
  • the first and second ultrasonic array sensors 4 and 5 fixed to the casing are installed on the upper surface of the plate material 3a or 3b so as to straddle the welded portion 1, and ultrasonic waves are incident from the plate material and welded. Inspect part 1.
  • a contact medium such as water, oil, or glycerin paste may be applied to the array sensor installation surface.
  • an ultrasonic array sensor stored in the ultrasonic array sensor holder 6 either a single transducer type ultrasonic array sensor or a dual transducer type ultrasonic array sensor is used. Also good.
  • the ultrasonic array sensor holder 6 is self-propelled and is provided with a probe mover for moving along the longitudinal direction (so-called weld line) of the welded part of the inspection object.
  • a probe mover for moving along the longitudinal direction (so-called weld line) of the welded part of the inspection object.
  • four tires 8 and a motor 10 for driving the tires are installed, and the longitudinal direction of the welded portion 1 (X direction in FIG. 1A). Can translate. If the motor 10 is installed for at least one of the four tires 8, the ultrasonic array sensor holder 6 can be moved.
  • a movement amount measuring device 9 is connected to at least one of the four tires 8 and the distance traveled by the ultrasonic array sensor holder 6 is measured from the rotation amount of the tire.
  • the phased array flaw detector 102 includes an ultrasonic controller 11 that performs switching control of ultrasonic transmission and reception to the ultrasonic array sensor, and a probe movement controller that performs movement control and movement amount measurement of the ultrasonic array sensor holder. 12. It is comprised by the flaw detection controller 13 etc. which carry out overall control of the whole ultrasonic inspection.
  • the ultrasonic controller 11, the probe movement controller 12, and the flaw detection controller 13 described above are realized by the processor described in FIG. 1C executing various software.
  • the ultrasonic controller 11 is connected to the first and second ultrasonic array sensors 4 and 5 and controls transmission of ultrasonic waves and reflection from a defect or reception of diffraction echoes.
  • the received echo is converted into an electric signal (hereinafter referred to as an echo signal), digitized and recorded, and further converted into image information and sent to the flaw detection controller 12.
  • the probe movement controller 12 controls the movement of the ultrasonic array sensor holder 6 by calculating the movement distance of the movement amount measuring device 9 and driving control of the motor 10, and thereby controls the first and second ultrasonic array sensors. 4 and 5 are controlled.
  • the calculation result of the moving distance is transmitted to the flaw detection controller 13, and is used for the flaw detection result display and the defect occurrence range recording in the flaw detection controller 13.
  • the ultrasonic array sensor holder 6 can be self-propelled by a command from the probe movement controller 12.
  • the flaw detection controller 13 controls the ultrasonic controller 11 and the probe movement controller 12.
  • An ultrasonic wave transmission instruction is sent from the ultrasonic controller 11 to record and record information on the received wave.
  • the defect signal extraction unit extracts a defect signal based on the received wave information.
  • the defect determination unit performs defect determination on the detection signal from the defect signal extraction unit.
  • the movement control unit issues a movement instruction by the probe movement controller 12, receives movement distance information, and records position information of the first and second ultrasonic array sensors 4 and 5. Also, defect detection determination information based on the received wave information in the ultrasonic controller 11 and inspection based on the positional information of the first and second ultrasonic array sensors 4 and 5 in the probe movement controller 12. The result is sent to the display 14.
  • the display unit 14 displays the positions of the first and second ultrasonic array sensors 4 and 5, flaw detection results, and the like based on the inspection result output information from the flaw detection controller 13.
  • Example 1 The first embodiment will be described below. In the present embodiment, an example will be described in which a single-vibrator ultrasonic array sensor is used as the ultrasonic array sensor and applied to a welded portion inspection between plate members. As an inspection target, a structure in which plate members are joined together by welding is assumed, and defects are present inside the weld bead.
  • the ultrasonic array sensor used in the ultrasonic inspection a single transducer type ultrasonic array sensor is used, and is arranged on the surface of the plate material so as to face each other with the welded portion 1 interposed therebetween as shown in FIG.
  • FIG. 3 is a cross-sectional view (B-B ′ cross section in FIG. 2) of the ultrasonic array sensor holder 6 in the direction intersecting the weld line.
  • the plate members 3a and 3b are joined by a welded portion 1 which is a joining bead, and the cross section of the welded portion 1 has a shape similar to a sector shape with the surplus on the upper side (the mounting surface side of the ultrasonic array probe). ing.
  • the purpose is to detect the defect 2 described above, and for this purpose, the ultrasonic array sensor is arranged so that the ultrasonic wave is incident on the defect from an oblique direction.
  • ultrasonic array transducers 4a and 5a which are aggregates of elements that transmit and receive ultrasonic waves, are installed inside the first and second ultrasonic array sensors 4 and 5, ultrasonic array transducers 4a and 5a, which are aggregates of elements that transmit and receive ultrasonic waves, are installed.
  • the ultrasonic array transducers 4a and 5a are composed of a plurality of arranged transducers, and the ultrasonic wave transmission direction and the focal position can be adjusted by electronic scanning for adjusting the voltage time applied to the transducers.
  • a wedge-shaped member (wedge 16 shown in FIG. 3) is installed at the lower part of the vibrator to tilt the ultrasonic array vibrator. .
  • the wedge 16 is built in the ultrasonic array sensor to reduce the size.
  • Ultrasonic waves can be scanned by programming and changing the applied voltage time described above. Thereby, the inspection range can be shortened because a wide range can be inspected by minimizing the moving range of the ultrasonic array sensor.
  • the electronic scanning conditions of the ultrasonic array sensor can be optimized and the optimum scanning conditions that can inspect the defects assumed in the welded portion can be determined, so that the inspection time can be shortened.
  • points O 1 and O 2 are intersections between a perpendicular drawn from the transducer that transmits the ultrasonic wave to the surface of the inspection object and the surface of the inspection object, and are sector-shaped obtained by the sector scan method. This is the position corresponding to the key of the ultrasonic image.
  • FIG. 4 shows a C-C ′ cross section in FIG.
  • the X direction is the longitudinal direction of the weld line
  • the defect length L is the distance in the X direction
  • the defect height H is the distance in the Z direction.
  • the defect length L is obtained by measuring the moving distance of the ultrasonic array sensor in the X direction, while the defect height H is calculated from the ultrasonic reflection signal. The defect height measurement will be described later.
  • the ultrasonic flaw detection apparatus of the present embodiment has a function of executing the first flaw detection method and the second flaw detection method.
  • the first flaw detection method is flaw detection using only one of the pair of ultrasonic array sensors, that is, only the first ultrasonic array sensor 4 or the second ultrasonic array sensor 5.
  • an ultrasonic wave 15a is transmitted from the ultrasonic array transducer 4a, a reflected ultrasonic wave (reflected echo) at the defect 2 is received by the ultrasonic array transducer 4a, and the received ultrasonic wave.
  • the presence or absence of a defect is determined by analyzing the reflected echo signal obtained from the above.
  • the first flaw detection method is a defect detection method based on the ultrasonic reflection method, but the signal intensity of the reflected ultrasonic wave from the defect changes depending on the defect occurrence position and the defect direction with respect to the weld. Therefore, the reflected echo is detected by using both the first ultrasonic array sensor 4 and the second ultrasonic array sensor 5, and the accuracy of defect determination is enhanced by using both reflected echo signals for defect determination.
  • the second flaw detection method is flaw detection using both two single-element ultrasonic array sensors.
  • FIG. 5 schematically shows an ultrasonic propagation path in the second flaw detection method.
  • the ultrasonic wave transmitted from the ultrasonic array transducer 4a is diffracted by the defect 2, and reaches the ultrasonic array transducer 5a through the path indicated by 15c in FIG. 5 as an ultrasonic diffraction wave.
  • the first ultrasonic array sensor 4 may detect the ultrasonic diffraction echoes transmitted from the second ultrasonic array sensor 5 by reversing the transmission and reception. The echo received through the path 15d in FIG.
  • the height H of the defect 2 (the length of the defect with respect to the depth direction of the plate material) can be measured by measuring the distance difference in the Z direction between the two signals of the echo signal 15c and the ultrasonic diffracted wave 15d.
  • a reflection echo from the back surface of the plate material is referred to as a back surface echo.
  • the object of ultrasonic flaw detection has a relatively simple shape such as a plate or hollow shape, and the position information of the position where ultrasonic reflection due to physical dimensions such as thickness and groove or shape occurs is the start of flaw detection. I know before. Therefore, an appropriate reference position (for example, the surface of the face plate) is set on the target, and the physical position information of the position where the reflection due to the shape occurs and the reflected echo signal from the reflection position are used. The relative position information of the ultrasonic array sensor with respect to the position where the reflection occurs is acquired.
  • the relative position information of the defect with respect to the ultrasonic array sensor is acquired.
  • the distance between the position where the reflection due to the shape occurs and the defect can be found by taking the difference between the two. .
  • the position where reflection due to the shape occurs is the back surface of the plate material immediately below the defect (in the case of the double skin shape material of Example 2, the interface G between the back plate and the face plate directly below the defect). Therefore, the defect height H can be calculated by measuring the distance of the back surface echo and the distance of the diffraction echo at the upper end of the defect or the reflected echo signal from the defect.
  • FIG. 6 shows a display example of the inspection result displayed on the display 14.
  • the inspection result is displayed using four images S1 to S4.
  • the image of S1 is a sector scan image in the first flaw detection method.
  • Ultrasonic waves are transmitted from the ultrasonic array transducer 4a, and reflected ultrasonic waves from the defect 2 are received by the ultrasonic array transducer 4a.
  • the flaw detection result by the ultrasonic wave 15a is displayed.
  • flaw detection image indicated by fan-shaped it indicates the position of the ultrasonic array probe upper left vertex portion O 1 is reception
  • Y-direction represents the horizontal distance to the reflection source from the ultrasonic array sensor
  • -Z direction The vertical direction indicated by indicates the depth from the ultrasonic array sensor to the reflection source. Therefore, the sector scan image clearly shows the positional relationship between the ultrasonic array sensor and the reflection source.
  • E1 is an ultrasonic echo caused by a defect
  • E1 echo does not appear in a portion having no defect
  • E2 is an ultrasonic echo caused by the welding back wave.
  • the welding back wave is a well-shaped corrugated weld pool formed on the back side in welding performed from only one side, and becomes an ultrasonic wave reflection source.
  • the ultrasonic wave incident position should be the same in the YZ plane. E2 always appears at the same position, so the ultrasonic echo E2 is a reference for confirming whether the ultrasonic array sensor is operating normally when the ultrasonic array probe is moved along the weld line. Can be used as a signal.
  • S2 is another sector scan image obtained by the first flaw detection method, in which an ultrasonic wave is transmitted from the ultrasonic array transducer 5a and a reflected ultrasonic wave from the defect 2 is received by the ultrasonic array transducer 5a.
  • a flaw detection image by the waved ultrasonic wave 15b is displayed.
  • two echoes received by the system shown in FIG. 4 are displayed.
  • E1 and E2 are close to each other, it is difficult to distinguish between a defect echo and a back echo.
  • E1 and E2 approach is an image based on reception by the ultrasonic array sensor 4 in the S1 image, an echo from the w1 surface at the welding back wave is displayed as E2.
  • the position where the defect occurs cannot be predicted, and it is not known whether the defect exists on the left or right of the center line of the weld 1.
  • S3 is a sector scan image obtained by the second flaw detection method.
  • Ultrasonic waves are transmitted from the ultrasonic array transducer 4a, and ultrasonic diffracted waves generated at the tip of the defect 2 shown in FIG. It is a flaw detection image at the time of receiving with the array transducer
  • E1 is an ultrasonic echo detected through the path 15c shown in FIG. 5
  • E3 is an ultrasonic echo detected through the path 15d.
  • E2 is also an ultrasonic echo due to the shape, so it always occurs regardless of the presence or absence of defects.
  • a defect echo attention area having a certain width set in the vicinity of the weld groove shape line is set, and the defect in the obtained image information Defect determination is performed using only image information within the echo area of interest.
  • A1 to A3 in S1 to S3 are defect echo attention areas, which correspond to regions indicated by dotted lines in FIG. In the above area, the E1 echo is detected, and when it is detected at S1 or S2 and detected at S3, it is determined as “defective”. The determination result is displayed on the screen S4.
  • defect determination information is displayed based on the screens from S1 to S3.
  • the horizontal axis is the flaw detection position (position in the X direction in FIG. 1), and the vertical axis is pass (no defect, OK) and fail (defective, NG). indicate.
  • the generated back wave shows the same behavior as the reflected wave from the defect, which may make it difficult to determine the defect.
  • the defect determination accuracy is improved. Since the inspection pattern switching between the first flaw detection method and the second flaw detection method is performed by electrical switching of the phased array method, the inspection time does not increase. Further, since the signal intensity of the diffracted wave is weak, the detection accuracy is improved by using it in combination with the first flaw detection method as compared with the defect identification based only on the echo signal caused by the diffracted wave.
  • FIG. 7 is a flowchart showing the contents of control processing in the ultrasonic flaw detector according to the present embodiment. This control process is performed based on a program stored in advance in the internal memory of the ultrasonic controller 11, the probe movement controller 12, and the flaw detection controller 13.
  • the ultrasonic controller 11 and the probe movement control are performed with appropriate inspection conditions taking into account the state of the inspection section (for example, plate material, plate thickness, weld groove shape, etc.).
  • the state of the inspection section for example, plate material, plate thickness, weld groove shape, etc.
  • the threshold value P 0 for determining the received signal strength in step S140 or the defect height threshold value H used for determining the defect height in step S180 is determined by the operation of the program stored in the memory of the flaw detection controller 13. Set 0 .
  • the threshold value P 0 of the received signal intensity level is determined in advance by ultrasonic inspection for the defect dimension H 0 that is harmful in terms of structural strength. Find and store it in memory.
  • the movement amount for each flaw detection step of the ultrasonic array sensor is set.
  • step S110 the ultrasonic array sensor holder 6 is moved to the inspection measurement position.
  • the ultrasonic array sensor holder 6 is set to the start position of the inspection object.
  • the 1st and 2nd ultrasonic array sensors 4 and 5 are arrange
  • step S120 the ultrasonic array sensor 4 is used to irradiate and receive an ultrasonic beam.
  • a process of receiving ultrasonic waves from the ultrasonic array sensor 4 and receiving reflected ultrasonic waves from the defect 2 by the ultrasonic array sensor 4, which is a first flaw detection method, is performed.
  • step S130 the ultrasonic array sensor 5 is used to irradiate and receive an ultrasonic beam.
  • a process of transmitting an ultrasonic wave from the ultrasonic array 5 sensor and receiving a reflected ultrasonic wave from the defect 2 by the ultrasonic array sensor 5 is performed.
  • step S140 the ultrasonic array sensor 4 and the ultrasonic array sensor 5 are used to irradiate and receive an ultrasonic beam.
  • an ultrasonic wave is transmitted from the ultrasonic array sensor 4 and a reflected ultrasonic wave at the defect 2 is received by the ultrasonic array sensor 5.
  • step S150 the signals received in step S120, step S130, and step S140 are calculated and displayed. That is, the received signal is calculated by the flaw detection controller 13, and the images of S1, S2, and S3 shown in FIG.
  • step S160 defect signal detection processing is performed.
  • the defect signal extraction unit of the flaw detection controller 13 performs the process of extracting the reflected wave signal intensity of the defect 2 from the result of step S150.
  • the defect echo E1 is generated in the vicinity of the echo E2 from the welding back wave D. Therefore, the maximum value P of the received wave signal intensity in the vicinity of the echo E2 is extracted.
  • step S170 the defect determination unit of the flaw detection controller 13 performs the reflected wave signal amplitude determination.
  • the maximum value P of the received wave signal intensity in the vicinity of the echo E2 extracted in step S160 is compared with the threshold value P 0 for determining the received signal intensity.
  • the threshold value P 0 it is determined that the defect is harmful in terms of structural strength, and it is necessary to perform defect height measurement as a second flaw detection method. Therefore, if the received wave amplitude is P ⁇ P 0 in this determination, it is determined that there is no defect, and the process of step S180 is performed. If the received wave amplitude is P ⁇ P 0 , it is determined that there is a suspicion of a defect, and the process proceeds to step S210.
  • step S180 the defect determination unit of the flaw detection controller 13 determines that there is no defect, and the result is displayed on the “OK” portion of the display unit 14 as shown in the S4 screen of FIG.
  • step S190 the ultrasonic array sensor position is determined. If the ultrasonic array sensor has reached the end of the member to be inspected by the processing of the flaw detection controller 13, the inspection is terminated and the processing of step S200 is performed. However, if the ultrasonic array sensor has not reached the end of the member to be inspected, the process proceeds to step S110, and after moving by a specified amount, flaw detection at a new point is repeated.
  • step S210 If it is determined in step S170 that there is a suspicion of a defect, a defect height calculation process in step S210 is performed.
  • the defect determination unit of the flaw detection controller 13 obtains the defect height calculation process based on the S3 image of FIG. 6 by the method described in the second flaw detection method. That is, as described in the explanation of FIG. 6, the defect height H is calculated by obtaining the difference in the Z direction between the two signals on the S3 screen.
  • step S220 the defect height is determined.
  • the defect determination unit of the flaw detection controller 13 compares the defect height H obtained in step S210 with the defect size H 0 harmful to the structural strength set in step S100 as a threshold value. If H ⁇ H 0 in this comparison determination, it is determined that the defect is small and there is no structurally harmful defect, and the process of step S180 is performed. Further, if H ⁇ H 0, is determined as a defect height is large structurally detrimental defects than a threshold routine to proceed to step S230.
  • step S230 the defect determination unit of the flaw detection controller 13 processes the portion determined to be defective based on the defect height determination result as a failure, and the “NG” portion of the display unit 14 as shown in the S4 screen of FIG. To display the results. Then, the process after step S180 is performed.
  • the ultrasonic flaw detection apparatus or the flaw detection method of the present embodiment realizes an apparatus / method that can quickly measure a weld defect even if there is a surplus weld. Further, by performing defect determination using both the reflection echo and the diffraction echo, it becomes possible to detect a defect with much higher accuracy than when performing defect determination using only the reflection echo.
  • Example 2 Next, a second embodiment will be described. In the present embodiment, an example will be described in which an ultrasonic flaw detector equipped with a two-element ultrasonic array sensor is applied to a weld inspection of a panel structure in which extruded hollow members are joined by welding.
  • the ultrasonic inspection of the welded portion of the panel structure by the extruded hollow shape material can be inspected by the ultrasonic inspection apparatus according to the first embodiment, but the inspection by the ultrasonic inspection apparatus according to the second embodiment described below is more effective. Is.
  • FIG. 8 shows a schematic diagram of a railway vehicle structure as an example of a structure constituted by a panel structure.
  • Rail vehicles such as a railway vehicle structure 901 are often manufactured by standing a side structure 901, a wife structure 902, and a roof structure 903 on a frame 904 and joining them together by welding. These weld lines are as shown by a one-dot chain line in FIG.
  • the side structure 901, the end structure 902, the roof structure 903, or the base frame 904 is usually formed by joining long plate materials or hollow shapes that are extruded in the width direction.
  • a method such as welding or friction stir welding (FSW) is used for joining the plate member or the hollow member.
  • FSW friction stir welding
  • FIG. 8 the joining lines of the constituent members of the side structure 901 are indicated by 905, the joining lines of the constituent members of the roof structure 903 are indicated by 906, and the joining lines of the constituent members of the end structure 902 are indicated by 907.
  • the side structure 903 of this embodiment is configured by joining extruded hollow shapes 908 and 909 by welding, and after joining, the surface of the welded portion 1 is ground and smoothed by a grinder.
  • the structure is a bone skin structure, and when it is composed of an extruded hollow shape material, it is referred to as a double skin structure. It is necessary to inspect each joint line of a structure or a weld line between structures.
  • FIG. 9 schematically shows a state in which the ultrasonic flaw detector according to the present embodiment is arranged when the panel structure shown in the lower part of FIG. 8 is inspected.
  • the double skin structure panel to be inspected in the present embodiment is formed by fitting extruded hollow shapes 908 and 909 and welding the upper and lower groove portions thereof.
  • the extruded hollow member 908 has a structure in which a pair of face plates (one face plate is referred to as a face plate 910) is connected by a rib 912.
  • the extruded hollow shape member 909 has a structure in which a pair of face plates (one face plate is referred to as a face plate 911) is connected by a rib 913, but a plate projecting further outward from the lower portion of the end portion of the face plate 911.
  • a portion 914 is provided.
  • the plate portion 914 is fitted into a concave portion formed by the face plate 910 and the rib 912 when the extruded hollow shape member 908 and 909 are abutted for bonding, and acts as a back plate of the face plate 910 during welding. . Therefore, the extruded hollow member 908 is a female side member, and the extruded hollow member 909 is a male member. Further, since the panel structure shown in FIG. 9 is in a state before finish grinding by the grinder, the welded portion 1 still has a surplus.
  • An ultrasonic array probe is disposed on the panel structure so as to straddle the weld 1.
  • the overall configuration of the ultrasonic flaw detector is the same as the configuration described with reference to FIG. 1, and therefore description of portions having the same function / structure will not be repeated.
  • FIG. 10 is an enlarged view of the ultrasonic array sensors 4 and 5 shown in FIG. 1 as a top view as viewed from the weld line.
  • the dual transducer type ultrasonic array sensor is a sensor that uses an ultrasonic array transducer that transmits ultrasonic waves and an ultrasonic array transducer that receives ultrasonic waves separately.
  • the first ultrasonic array sensor 4 shown in FIG. 10 is the first and second ultrasonic array transducers 4a and 4b, and the second ultrasonic array sensor 5 is the first and second ultrasonic array transducers.
  • the ultrasonic array transducers 5a and 5b held by the second ultrasonic array sensor 5 are respectively connected to the third ultrasonic array transducer and the fourth ultrasonic array transducer. You may call it.
  • the transmitting ultrasonic array transducer is 4a, for example, the ultrasonic array transducer 4b is used as the receiving ultrasonic array transducer. Switching between the transmitting ultrasonic array transducer and the receiving ultrasonic array transducer is performed by setting on the transmitting side / receiving side of the ultrasonic controller 11.
  • the ultrasonic wave propagating on the sensor surface layer or the ultrasonic echo that makes multiple reflections inside the wedge is applied to the plate material.
  • the defect may not be sufficiently identified by overlapping with the reflected wave signal from the defect that has propagated back.
  • the face plate thickness of the extruded hollow shape member generally used for the railway vehicle structure is about 3 mm, and the defect identification may be insufficient in the inspection using the single transducer ultrasonic array sensor as in the first embodiment.
  • FIG. 11 is a cross-sectional view taken along D-D ′ of the ultrasonic array sensor 4 shown in FIG. 10 (corresponding to the ZX plane).
  • the inclination of the roof angle is performed by inclining the ultrasonic array transducers 4a and 4b in the central direction in the ZX cross section shown in FIG.
  • the sound axis in the ultrasonic propagation direction is designed to intersect at the sensor central portion and the assumed defect position.
  • the first wedge-shaped member 16a is provided below the first ultrasonic array transducer, and the second wedge is provided below the second ultrasonic array transducer.
  • Each of the shaped members 16b is installed and needs to be designed so that the normal direction of the ultrasonic array transducer surface intersects at the target position of the weld. For this reason, a structure in which both the ultrasonic array transducer surfaces are inclined in the facing direction is adopted. Note that the first wedge-shaped member 16a and the second wedge-shaped member 16 both have a wedge shape in the YZ section as in FIG. 3 of the first embodiment, as shown in FIG. 12 described later.
  • the first flaw detection method is flaw detection using one of the two-element ultrasonic array sensors, that is, the ultrasonic array sensor 4 or 5.
  • the ultrasonic array sensor 4 When the ultrasonic array sensor 4 is used, ultrasonic waves are transmitted from the ultrasonic array transducer 4a, and reflected ultrasonic waves from the defect 2 are received by the ultrasonic array transducer 4b.
  • the two-element ultrasonic array sensor 5 is also used for the inspection. That is, ultrasonic waves are transmitted from the ultrasonic array transducer 5a, and reflected ultrasonic waves from the defect 2 are received by the ultrasonic array transducer 5b.
  • the ultrasonic propagation paths described above are shown as ultrasonic paths 15a and 15b in FIG.
  • the second flaw detection method is flaw detection using two two-element ultrasonic array sensors 4 and 5. For example, by transmitting ultrasonic waves from the ultrasonic array transducer 4a and receiving ultrasonic diffracted waves generated at the defect 2 by the ultrasonic array transducer 5b, echoes of diffracted ultrasonic waves can be detected. .
  • the ultrasonic propagation path described above is shown as an ultrasonic path 15c in FIG. In this method, the roles of transmission and reception can be reversed, and a combination of the ultrasonic array transducers 5a and 4b is also possible.
  • the inspection pattern switching between the first flaw detection method and the second flaw detection method is performed by electrical switching of the phased array method, the inspection time does not increase, and the diffracted wave has a weak signal intensity.
  • the defect determination accuracy is improved when the method and the second flaw detection method are used in combination.
  • the height of the defect can be measured simultaneously with the presence or absence of the defect.
  • the defect determination is performed using the three pieces of image information S1 to S3 obtained by the first flaw detection method and the second flaw detection method.
  • a sector scan of the welded portion 1 by the first ultrasonic array sensor 4 and the second ultrasonic array sensor 5 is independently performed at a predetermined position in the longitudinal direction (X direction) of the welded portion 1, and S1 and S2 are performed. Obtain image information sequentially. Thereafter, the ultrasonic controller 11 switches between the transmitting-side array transducer and the receiving-side array transducer of the first ultrasonic array sensor 4 and the second ultrasonic array sensor 5, and the first ultrasonic array A sector scan of the welded portion 1 is performed by the sensor 4 and the second ultrasonic array sensor 5, and the image information of S3 is acquired.
  • an echo of reflected ultrasonic waves caused by the joint portion shape indicated by F in FIG. 12A is detected in S1.
  • the propagation path of this reflected ultrasonic wave is 15e shown in FIG.
  • This is an echo that is always observed when an extruded hollow member having the shape of the present embodiment is used, and can be used as a position reference in the YZ section.
  • the defect occurrence position can be calculated from the coordinates of the E1 echo and can be fed back to the specification of the repair position and the improvement of the welding conditions.
  • FIG. 13 shows a display example of the inspection result displayed on the display 14 in this embodiment.
  • the image of S1 is a sector scan image by the first flaw detection method described above, and an ultrasonic wave is transmitted from the first ultrasonic array transducer 4a (on the first ultrasonic array sensor side) and reflected by the defect 2 It is a flaw detection result by an ultrasonic signal received by the second ultrasonic array transducer 4b.
  • a rectangle A4 in the image of S1 is a defect echo attention area. E1 is a reflected echo caused by the defect, and E4 is a reflected echo caused by the shape of the joint portion F described above. Since the E1 echo does not appear in the portion having no defect, only one ultrasonic echo E4 is observed.
  • S2 is a sector scan image obtained when the first flaw detection method is performed by the ultrasonic array transducer 5a, and the ultrasonic scan is performed from the first ultrasonic array transducer 5a (on the second ultrasonic array sensor side).
  • This is a flaw detection result by an ultrasonic signal in which a sound wave is transmitted and a reflected ultrasonic wave at the defect 2 is received by the second ultrasonic array transducer 5b.
  • S3 is a sector scan image in the second flaw detection method, and transmits a ultrasonic wave from the first ultrasonic array transducer 4a on the first ultrasonic array sensor side, and a diffracted wave generated in the defect 2 Is a flaw detection image obtained by receiving the signal by the second ultrasonic array transducer 5b on the second ultrasonic array sensor side.
  • E1 which is a diffraction echo caused by a defect
  • E3 which is a reflection echo at the interface G.
  • the defect height H can be calculated by measuring the difference between the two signals in the Z direction.
  • defect determination information is displayed based on the screens from S1 to S3.
  • the horizontal axis is the flaw detection position (X-direction position in FIG. 1), and the vertical axis is pass (no defect, OK) and fail (defective, NG). indicate.
  • the inspection result is displayed here, as shown in FIG. 1C, when the inspection result is superimposed on the three-dimensional shape diagram of the panel structure and displayed on S4 or another screen, the defect distribution is visually grasped. This improves the usability of the device.
  • the ultrasonic flaw detection apparatus or the welding inspection method of this embodiment since a pair of two-transducer ultrasonic array sensors are used, inspection can be performed even when the plate thickness is thin. And the second flaw detection method can be used together to improve the defect determination accuracy. Further, the defect position can be calculated by utilizing the echo caused by the fitting part shape F or the interface G, and the defect occurrence position can be measured with high accuracy.

Abstract

This invention provides a technique that allows high-speed ultrasonic inspection while minimizing the amount of mechanical scanning performed by an ultrasonic probe, even when inspecting a long weld line. This ultrasonic flaw-detection device comprises the following: first and second ultrasonic sensor arrays on opposite sides of a weld zone, each of said ultrasonic sensor arrays being provided with an ultrasonic transducer array that sends and receives ultrasound to and from the weld zone; an ultrasound-sensor-array holder that keeps the distance between the first and second ultrasonic sensor arrays constant and moves the first and second ultrasonic sensor arrays in the lengthwise direction of the weld zone; an ultrasound controller that converts the ultrasound received by the ultrasonic transducer arrays to echo signals; and a flaw-detection controller that uses said echo signals to detect defects in the weld zone.

Description

超音波探傷装置、超音波探傷方法ならびにパネル構造体の溶接部検査方法Ultrasonic flaw detector, ultrasonic flaw detection method, and welded portion inspection method for panel structure
 本発明は、板材を接合する溶接部に発生するきず、割れ、溶接欠陥に対する超音波検査方法および検査装置に関する。 The present invention relates to an ultrasonic inspection method and inspection apparatus for flaws, cracks, and weld defects generated in a welded portion for joining plate materials.
 大型構造物を製作する上で溶接は不可欠であるが、溶接部では溶接施工に起因して溶接欠陥がまれに発生する。そのため、溶接部に対して、適切な非破壊検査を行うことで、溶接部の品質を保証している。溶接部に対する一般的な非破壊検査方法としては、超音波探傷法あるいは放射線検査法が挙げられる。超音波探傷法は、装置の簡便さと放射線検査で必要な遮蔽などの作業がないため、広く使われている。 Welding is indispensable for manufacturing large structures, but welding defects rarely occur at the weld due to welding. Therefore, the quality of a welded part is guaranteed by performing an appropriate nondestructive inspection on the welded part. As a general nondestructive inspection method for a welded portion, an ultrasonic flaw detection method or a radiation inspection method can be cited. The ultrasonic flaw detection method is widely used because of the simplicity of the apparatus and the absence of operations such as shielding necessary for radiation inspection.
 たとえば、特許文献1には、板材同士を接合した溶接部の超音波探傷法が開示されている。特許文献1に開示された発明によれば、溶接部の片側表面に2個の斜角探触子を同一直線とならないように配置し、超音波探触子を溶接部直交方向に前後走査して、溶接線に対する超音波の入射角度と溶接線までの距離を調整し肉厚方向に発生した欠陥を検出する。 For example, Patent Document 1 discloses an ultrasonic flaw detection method for a welded portion in which plate materials are joined to each other. According to the invention disclosed in Patent Document 1, two oblique probes are arranged on one surface of a welded portion so as not to be on the same straight line, and the ultrasonic probe is scanned back and forth in the direction orthogonal to the welded portion. Then, the defect generated in the thickness direction is detected by adjusting the incident angle of the ultrasonic wave to the weld line and the distance to the weld line.
 また、特許文献2には、断面が半円状の鋼管を溶接して形成された溶接鋼管の溶接部検査方法が開示されている。特許文献2に開示された発明によれば、溶接線に沿って一対の超音波探触子を固定的に配置し、一対の超音波探触子の両方で反射信号が検出された場合に、当該反射信号を欠陥と判定する。 Patent Document 2 discloses a method for inspecting a welded portion of a welded steel pipe formed by welding a steel pipe having a semicircular cross section. According to the invention disclosed in Patent Document 2, when a pair of ultrasonic probes is fixedly arranged along the weld line and a reflected signal is detected by both of the pair of ultrasonic probes, The reflected signal is determined as a defect.
特許3140157号Patent 3140157 特開2003-322643号Japanese Patent Laid-Open No. 2003-322643
 長尺部材の溶接部の検査に対しては、従来、超音波探触子を人手で溶接線と交差する方向および溶接線方向にジグザグに動かして、溶接部の探傷を行っていた。溶接部の表面には、通常、凸型の溶接余盛が発生するため、グラインダーなどで余盛りを研削し、溶接部表面を平滑に仕上げてから探傷を行っている。この手法では、検査前に余盛りの削除加工が必要であるため、前処理無しで溶接検査を高速に行う技術が望まれている。 For inspection of welded parts of long members, conventionally, the ultrasonic probe was manually moved in a direction crossing the welding line and in the welding line direction to detect the welded part. Normally, convex weld surpluses are generated on the surface of the welded portion. Therefore, the surplus is ground with a grinder and the surface of the welded portion is smoothed, and then the flaw detection is performed. In this method, since it is necessary to delete surplus before inspection, a technique for performing welding inspection at high speed without pretreatment is desired.
 ここで、課題についてより詳細に説明するため、溶接検査の対象物に対して座標系を設定し、溶接部の中心線である溶接線の長手方向をX方向、溶接線の長手方向に直交した方向をY方向、検査対象の板厚深さ方向をZ方向とする。 Here, in order to explain the problem in more detail, a coordinate system is set for the object to be welded, and the longitudinal direction of the weld line, which is the center line of the weld, is orthogonal to the X direction and the longitudinal direction of the weld line. The direction is the Y direction, and the plate thickness depth direction to be inspected is the Z direction.
 特許文献1に開示された発明の場合、溶接線に対する溶接部直交方向(Y方向)への超音波探触子の前進・後進走査が必要であるため、長尺の溶接線に対する検査を行う場合には、上記Y方向への前進・後進走査に加え、溶接部方向(X方向)への平行移動を行う必要がある。従って、特許文献1に記載の探傷方法は板材の特定箇所、すなわち狭い範囲に対しては有効であるが、長尺の溶接部材の探傷方法として有効であるとは言えない。また、探触子の移動にはやはり余盛りの削除が必要となるため、多大な検査時間を要する。 In the case of the invention disclosed in Patent Document 1, since it is necessary to perform forward / reverse scanning of the ultrasonic probe in the direction perpendicular to the welded portion (Y direction) with respect to the weld line, inspection of a long weld line is performed. In addition to the forward / reverse scanning in the Y direction, it is necessary to perform a parallel movement in the welded portion direction (X direction). Therefore, although the flaw detection method described in Patent Document 1 is effective for a specific portion of the plate material, that is, a narrow range, it cannot be said that it is effective as a flaw detection method for a long welded member. Moreover, since it is necessary to delete the surplus for the movement of the probe, a great amount of inspection time is required.
 また、特許文献2に開示された発明は超音波探触子を固定に配置する手法であって、そもそも超音波探触子の移動を考慮していない。 Further, the invention disclosed in Patent Document 2 is a method of arranging an ultrasonic probe in a fixed manner, and does not consider the movement of the ultrasonic probe in the first place.
 よって、本発明は、超音波探触子の前進・後進(Y方向)走査をすることなく溶接線に沿った平行(X方向)移動のみで溶接部に発生した欠陥の有無を検査できる超音波探傷装置または探傷方法あるいは各種の形材を溶接して接合されるパネル構造体の探傷方法を実現することを目的とする。 Therefore, the present invention is an ultrasonic that can inspect the presence or absence of a defect in a welded part only by parallel (X direction) movement along the weld line without performing forward / reverse (Y direction) scanning of the ultrasonic probe. It is an object of the present invention to provide a flaw detection apparatus, a flaw detection method, or a flaw detection method for a panel structure that is joined by welding various shapes.
 上記目的を達成するため、本発明では、溶接部の超音波検査に使用する超音波探傷装置に、溶接部に超音波を送波しかつ受波する超音波アレイ振動子を備え、前記溶接部を跨いで配置される第1の超音波アレイセンサおよび第2の超音波アレイセンサと、上記第1および第2の超音波アレイセンサ間の距離を一定に保持し、当該第1および第2の超音波アレイセンサを前記溶接部の長手方向に沿って移動させる超音波アレイセンサ保持器と、前記超音波アレイ振動子で受波した超音波をエコー信号に変換する超音波制御器と、当該エコー信号を用いて前記溶接部の欠陥を検出する探傷制御器を備える。 In order to achieve the above object, in the present invention, an ultrasonic flaw detector used for ultrasonic inspection of a welded portion includes an ultrasonic array transducer that transmits and receives ultrasonic waves to the welded portion, and the welded portion The first ultrasonic array sensor and the second ultrasonic array sensor disposed across the first and second ultrasonic array sensors, and the distance between the first and second ultrasonic array sensors is kept constant, the first and second An ultrasonic array sensor holder that moves the ultrasonic array sensor along the longitudinal direction of the weld, an ultrasonic controller that converts the ultrasonic wave received by the ultrasonic array transducer into an echo signal, and the echo A flaw detection controller that detects a defect in the weld using a signal is provided.
 溶接部の余盛り削除という前処理が不要なため、長尺部材の溶接検査に要する工数を大幅に低減することが可能となる。また、装置の機械的な移動が溶接線方向のみとなるため、溶接検査が高速化される。 ¡Because no pre-processing is necessary to remove the extra weld at the welded part, the man-hours required for welding inspection of long members can be greatly reduced. Moreover, since the mechanical movement of the apparatus is only in the weld line direction, the welding inspection is speeded up.
(A)実施例1および2の超音波探傷装置の構成を示す模式図、(B)図1(A)に示す超音波探傷装置構成図のA-A’断面図、(C)実施例1および2の超音波探傷装置のシステム構成図である。(A) Schematic diagram showing the configuration of the ultrasonic flaw detector of Examples 1 and 2, (B) AA ′ cross-sectional view of the ultrasonic flaw detector configuration diagram shown in FIG. 1 (A), (C) Example 1 2 is a system configuration diagram of the ultrasonic flaw detectors 2 and 2. FIG. 実施例1の超音波探傷装置における超音波アレイセンサの配置を示す模式図である。FIG. 3 is a schematic diagram illustrating an arrangement of ultrasonic array sensors in the ultrasonic flaw detector according to the first embodiment. 図2の模式図のB-B’断面図(図2の超音波アレイセンサ配置図のYZ断面図)である。FIG. 3 is a B-B ′ sectional view of the schematic diagram of FIG. 2 (YZ sectional view of the ultrasonic array sensor arrangement diagram of FIG. 2). 図2の模式図のC-C’断面図(図2の超音波アレイセンサ配置図のZX断面図)である。FIG. 3 is a C-C ′ sectional view of the schematic diagram of FIG. 2 (ZX sectional view of the ultrasonic array sensor arrangement diagram of FIG. 2). 実施例1の超音波探傷装置における超音波伝播経路を示す要部拡大図である。FIG. 3 is an enlarged view of a main part showing an ultrasonic propagation path in the ultrasonic flaw detector of Example 1. 実施例1の超音波探傷装置の表示器に表示される検査結果の例である。It is an example of the test result displayed on the display of the ultrasonic flaw detector of Example 1. 実施例1の超音波探傷装置での処理を説明するフローチャートである。3 is a flowchart for explaining processing in the ultrasonic flaw detector according to Embodiment 1; 実施例2の超音波探傷装置の被検査物の説明図である。It is explanatory drawing of the to-be-inspected object of the ultrasonic flaw detector of Example 2. 実施例2の超音波探傷装置と被検査物との配置関係を示す模式図である(図1のA-A‘断面図に相当)。FIG. 3 is a schematic diagram showing the positional relationship between the ultrasonic flaw detector of Example 2 and an inspection object (corresponding to the A-A ′ cross-sectional view of FIG. 1). 実施例2の超音波探傷装置における超音波アレイセンサの配置図である。6 is a layout diagram of ultrasonic array sensors in the ultrasonic flaw detector according to Embodiment 2. FIG. 図10に示す超音波アレイセンサ配置図のD-D’断面図(ZX断面)である。FIG. 11 is a D-D ′ sectional view (ZX section) of the ultrasonic array sensor arrangement diagram shown in FIG. 10. (A)実施例2の超音波探傷装置における超音波伝播経路を示す要部拡大図である。(B)実施例2の超音波探傷装置における別の超音波伝播経路を示す要部拡大図である。(A) It is a principal part enlarged view which shows the ultrasonic propagation path | route in the ultrasonic flaw detector of Example 2. FIG. (B) It is a principal part enlarged view which shows another ultrasonic propagation path in the ultrasonic flaw detector of Example 2. FIG. 実施例2の超音波探傷装置の表示器に表示される検査結果の例である。It is an example of the test result displayed on the indicator of the ultrasonic flaw detector of Example 2.
 本発明の実施形態について、図面を参照しつつ説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1を用いて、本実施例の超音波探傷装置のハード構成について説明する。図1(C)は本実施例の超音波探傷装置のシステム構成図である。本実施例の超音波探傷装置は、大まかには、被検査物に接触させて超音波を送波しかつ受波し、アナログのエコー信号として送信する超音波アレイプローブ101と、当該超音波アレイプローブ101を制御するフェーズドアレイ探傷器102と、検査結果が表示される表示器14により構成される。フェーズドアレイ探傷器102は、超音波アレイプローブ101から送信されるアナログ信号をデジタル化するアナログ/デジタル変換ボード、AD変換されたデジタル信号を増幅するアンプ、デジタル化されたエコー信号に対して各種の処理を実行するプロセッサ、当該プロセッサで実行されるソフトウェアが格納されるメモリ、二次記憶装置などにより構成される。 The hardware configuration of the ultrasonic flaw detector according to the present embodiment will be described with reference to FIG. FIG. 1C is a system configuration diagram of the ultrasonic flaw detector according to the present embodiment. In general, the ultrasonic flaw detection apparatus according to the present embodiment includes an ultrasonic array probe 101 that transmits and receives an ultrasonic wave in contact with an object to be inspected, and transmits the ultrasonic wave as an analog echo signal, and the ultrasonic array. A phased array flaw detector 102 that controls the probe 101 and a display 14 that displays the inspection result are configured. The phased array flaw detector 102 includes an analog / digital conversion board that digitizes an analog signal transmitted from the ultrasonic array probe 101, an amplifier that amplifies the AD-converted digital signal, and various types of digitalized echo signals. A processor that executes processing, a memory that stores software executed by the processor, a secondary storage device, and the like are included.
 図1(A)には、板材3aおよび3bが溶接部1により接合された構造物上に、超音波アレイプローブ101が載置された様子を示す模式図を示す。 FIG. 1A is a schematic diagram showing a state in which the ultrasonic array probe 101 is placed on a structure in which the plate materials 3a and 3b are joined by the welded portion 1. FIG.
 超音波アレイプローブ101は、一対の超音波アレイセンサ4および5、超音波アレイセンサを保持する超音波アレイセンサ保持器6などによって構成される。 The ultrasonic array probe 101 includes a pair of ultrasonic array sensors 4 and 5, an ultrasonic array sensor holder 6 that holds the ultrasonic array sensor, and the like.
 超音波アレイセンサ保持器6は、上記第1、第2の超音波アレイセンサ4、5を互いに一定の距離を保って保持するためのケーシングを備えており、第1、第2の超音波アレイセンサ4、5は、上記のケーシングに対して超音波アレイセンサ固定ネジ7で固定される。ケーシングに対して固定された上記第1、第2の超音波アレイセンサ4、5は、板材3aあるいは3bの上面に、溶接部1を跨ぐように設置され、超音波を板材から入射して溶接部1を検査する。第1、第2の超音波アレイセンサ4、5を板材3a、3bに設置する際には、水、油、グリセリンペーストなどの接触媒質をアレイセンサ設置面に塗布してもよい。なお、超音波アレイセンサ保持器6に格納する超音波アレイセンサとしては、一振動子型の超音波アレイセンサであっても二振動子型の超音波アレイセンサであってもどちらを使用してもよい。 The ultrasonic array sensor holder 6 includes a casing for holding the first and second ultrasonic array sensors 4 and 5 at a fixed distance from each other, and the first and second ultrasonic arrays. The sensors 4 and 5 are fixed to the casing with an ultrasonic array sensor fixing screw 7. The first and second ultrasonic array sensors 4 and 5 fixed to the casing are installed on the upper surface of the plate material 3a or 3b so as to straddle the welded portion 1, and ultrasonic waves are incident from the plate material and welded. Inspect part 1. When the first and second ultrasonic array sensors 4 and 5 are installed on the plate members 3a and 3b, a contact medium such as water, oil, or glycerin paste may be applied to the array sensor installation surface. In addition, as an ultrasonic array sensor stored in the ultrasonic array sensor holder 6, either a single transducer type ultrasonic array sensor or a dual transducer type ultrasonic array sensor is used. Also good.
 また、超音波アレイセンサ保持器6は自走可能であり、被検査物の溶接部長手方向(いわゆる溶接線)に沿って移動するための探触子移動器が備えられている。本実施例の超音波アレイセンサ保持器6においては、4つのタイヤ8とタイヤを駆動させるモータ10とが設置され、溶接部1の長手方向(図1(A)中のX方向)に対して平行移動できる。モータ10は、4つのタイヤ8のうち少なくとも1つのタイヤについて設置すれば、超音波アレイセンサ保持器6を移動できる。4つのタイヤ8のうち少なくとも1つのタイヤには移動量計測器9を接続し、タイヤの回転量から超音波アレイセンサ保持器6が移動した距離を計測する。 Also, the ultrasonic array sensor holder 6 is self-propelled and is provided with a probe mover for moving along the longitudinal direction (so-called weld line) of the welded part of the inspection object. In the ultrasonic array sensor holder 6 of the present embodiment, four tires 8 and a motor 10 for driving the tires are installed, and the longitudinal direction of the welded portion 1 (X direction in FIG. 1A). Can translate. If the motor 10 is installed for at least one of the four tires 8, the ultrasonic array sensor holder 6 can be moved. A movement amount measuring device 9 is connected to at least one of the four tires 8 and the distance traveled by the ultrasonic array sensor holder 6 is measured from the rotation amount of the tire.
 フェーズドアレイ探傷器102は、超音波アレイセンサへの超音波送信および受信の切り替え制御を行う超音波制御器11、超音波アレイセンサ保持器の移動制御と移動量計測を行う探触子移動制御器12、超音波検査全体を統括制御する探傷制御器13などによって構成される。以上の超音波制御器11や探触子移動制御器12、探傷制御器13は、図1(C)で説明したプロセッサが各種のソフトウェアを実行することにより実現される。 The phased array flaw detector 102 includes an ultrasonic controller 11 that performs switching control of ultrasonic transmission and reception to the ultrasonic array sensor, and a probe movement controller that performs movement control and movement amount measurement of the ultrasonic array sensor holder. 12. It is comprised by the flaw detection controller 13 etc. which carry out overall control of the whole ultrasonic inspection. The ultrasonic controller 11, the probe movement controller 12, and the flaw detection controller 13 described above are realized by the processor described in FIG. 1C executing various software.
 超音波制御器11は上記第1および第2の超音波アレイセンサ4、5に接続され、超音波の送波および欠陥などからの反射あるいは回折エコーの受波を制御する。また、受波したエコーを電気信号(以下、エコー信号と称する)に変換し、デジタル化して記録し、さらにエコー信号を画像情報に変換して探傷制御器12に送る。 The ultrasonic controller 11 is connected to the first and second ultrasonic array sensors 4 and 5 and controls transmission of ultrasonic waves and reflection from a defect or reception of diffraction echoes. The received echo is converted into an electric signal (hereinafter referred to as an echo signal), digitized and recorded, and further converted into image information and sent to the flaw detection controller 12.
 探触子移動制御器12は、移動量計測器9の移動距離計算とモータ10の駆動制御により、超音波アレイセンサ保持器6の移動を制御して、第1および第2の超音波アレイセンサ4、5の位置を制御する。移動距離の計算結果は探傷制御器13に伝達し、探傷制御器13における探傷結果表示や欠陥発生範囲の記録に用いられる。探触子移動制御器12からの指令によって超音波アレイセンサ保持器6は自走可能となる。 The probe movement controller 12 controls the movement of the ultrasonic array sensor holder 6 by calculating the movement distance of the movement amount measuring device 9 and driving control of the motor 10, and thereby controls the first and second ultrasonic array sensors. 4 and 5 are controlled. The calculation result of the moving distance is transmitted to the flaw detection controller 13, and is used for the flaw detection result display and the defect occurrence range recording in the flaw detection controller 13. The ultrasonic array sensor holder 6 can be self-propelled by a command from the probe movement controller 12.
 探傷制御器13は、超音波制御器11および探触子移動制御器12を制御する。超音波制御器11での超音波の送波指示を送り、受信波の情報と記録を行う。欠陥信号抽出部では受信波情報に基づき欠陥信号を抽出する。欠陥判定部は、欠陥信号抽出部での検出信号に対して、欠陥判定を行う。また、移動制御部では探触子移動制御器12での移動指示を行い、移動距離情報を受信し、第1、第2の超音波アレイセンサ4、5の位置情報の記録を行う。また、超音波制御器11での受信波情報に基づいた欠陥検出判定情報と、探触子移動制御器12での第1、第2の超音波アレイセンサ4、5の位置情報に基づいた検査結果を表示器14に送る。 The flaw detection controller 13 controls the ultrasonic controller 11 and the probe movement controller 12. An ultrasonic wave transmission instruction is sent from the ultrasonic controller 11 to record and record information on the received wave. The defect signal extraction unit extracts a defect signal based on the received wave information. The defect determination unit performs defect determination on the detection signal from the defect signal extraction unit. Further, the movement control unit issues a movement instruction by the probe movement controller 12, receives movement distance information, and records position information of the first and second ultrasonic array sensors 4 and 5. Also, defect detection determination information based on the received wave information in the ultrasonic controller 11 and inspection based on the positional information of the first and second ultrasonic array sensors 4 and 5 in the probe movement controller 12. The result is sent to the display 14.
 表示器14は、探傷制御器13からの検査結果出力情報に基づき、第1および第2の超音波アレイセンサ4、5の位置や探傷結果等を表示する。
(実施例1)
 以下、第1の実施形態について説明する。本実施例では、超音波アレイセンサとして一振動子型の超音波アレイセンサを用い、板部材同士の溶接部検査に対して適用した例について説明する。検査対象としては、板材同士が溶接により接合された構造物を想定し、溶接ビードの内部に欠陥が存在しているものとする。
The display unit 14 displays the positions of the first and second ultrasonic array sensors 4 and 5, flaw detection results, and the like based on the inspection result output information from the flaw detection controller 13.
Example 1
The first embodiment will be described below. In the present embodiment, an example will be described in which a single-vibrator ultrasonic array sensor is used as the ultrasonic array sensor and applied to a welded portion inspection between plate members. As an inspection target, a structure in which plate members are joined together by welding is assumed, and defects are present inside the weld bead.
 図2から図4に、本実施例の超音波アレイセンサの構成を示す。超音波検査で用いる超音波アレイセンサには、一振動子型の超音波アレイセンサを用い、図2に示すように溶接部1を挟んで対向するように板材表面に配置する。 2 to 4 show the configuration of the ultrasonic array sensor of this embodiment. As the ultrasonic array sensor used in the ultrasonic inspection, a single transducer type ultrasonic array sensor is used, and is arranged on the surface of the plate material so as to face each other with the welded portion 1 interposed therebetween as shown in FIG.
 図3には、溶接線と交差する方向に対する超音波アレイセンサ保持器6の断面図(図2におけるB-B’断面)を示す。板材3a、3bが接合ビードである溶接部1によって接合されており、溶接部1の断面は、余盛りを上側(超音波アレイプローブの載置面側)にした扇形に類似する形状を有している。溶接部1の下側(開先と逆側)先端部の紙面左側には、溶接の未着部である欠陥2が存在している。本実施例の超音波検査では上記の欠陥2を検出することが目的であり、そのために欠陥に対して超音波が斜め方向から入射するように超音波アレイセンサを配置する。第1および第2の超音波アレイセンサ4、5の内部には超音波の送波および受波を行う素子の集合体である超音波アレイ振動子4a、5aが設置されている。超音波アレイ振動子4a、5aは、配列された複数の振動子から成り、振動子への印加電圧時間を調整する電子的走査により、超音波の送波方向や焦点位置を調整できる。従って、超音波アレイ振動子4a、5aを板材3aおよび3bの表面に対して平行に設置しても、溶接部1に対して斜めに超音波を入射することはできる。本実施例では、板材および溶接部への超音波15の入射強度を高めるために、振動子下部にくさび状部材(図3に示すくさび16)を設置して超音波アレイ振動子を傾けている。本実施例では、くさび16を超音波アレイセンサに内蔵して小型化を図っている。 FIG. 3 is a cross-sectional view (B-B ′ cross section in FIG. 2) of the ultrasonic array sensor holder 6 in the direction intersecting the weld line. The plate members 3a and 3b are joined by a welded portion 1 which is a joining bead, and the cross section of the welded portion 1 has a shape similar to a sector shape with the surplus on the upper side (the mounting surface side of the ultrasonic array probe). ing. On the left side of the lower end of the welded portion 1 (on the opposite side to the groove) on the paper surface, there is a defect 2 that is an unattached portion of the weld. In the ultrasonic inspection of this embodiment, the purpose is to detect the defect 2 described above, and for this purpose, the ultrasonic array sensor is arranged so that the ultrasonic wave is incident on the defect from an oblique direction. Inside the first and second ultrasonic array sensors 4 and 5, ultrasonic array transducers 4a and 5a, which are aggregates of elements that transmit and receive ultrasonic waves, are installed. The ultrasonic array transducers 4a and 5a are composed of a plurality of arranged transducers, and the ultrasonic wave transmission direction and the focal position can be adjusted by electronic scanning for adjusting the voltage time applied to the transducers. Therefore, even if the ultrasonic array transducers 4a and 5a are installed parallel to the surfaces of the plate members 3a and 3b, ultrasonic waves can be incident on the welded portion 1 at an angle. In this embodiment, in order to increase the incident intensity of the ultrasonic wave 15 to the plate material and the welded portion, a wedge-shaped member (wedge 16 shown in FIG. 3) is installed at the lower part of the vibrator to tilt the ultrasonic array vibrator. . In the present embodiment, the wedge 16 is built in the ultrasonic array sensor to reduce the size.
 本実施例によれば、これにより、探触子の走査範囲の一方向のみとして検査時間の短縮、機構構成と制御の簡素化が図れる。 According to the present embodiment, this shortens the inspection time and simplifies the mechanism configuration and control in only one direction of the scanning range of the probe.
 一方、上記の欠陥あるいは被検査対象の形状角部などの特徴点で反射あるいは回折された送波超音波を超音波アレイ振動子で受波すると、振動子毎の受信時間差と被検材内の音速から反射源の位置を特定することができる。このような超音波の送波および受波手法をフェーズドアレイ法という。 On the other hand, when a transmitted ultrasonic wave reflected or diffracted by a feature point such as a defect or a shape corner of an object to be inspected is received by an ultrasonic array transducer, the difference in reception time between the transducers and the in-test material The position of the reflection source can be specified from the speed of sound. Such an ultrasonic transmission and reception method is called a phased array method.
 前述の印加電圧時間をプログラム化して順次変えることで、超音波を走査することができる。これにより、超音波アレイセンサの移動範囲を最小限にして、広範囲を検査できるため、検査時間の短縮が可能である。本実施例の場合、超音波アレイセンサの電子的な走査条件を適正化して、溶接部で想定している欠陥を検査できる最適な走査条件を決定できるため、検査時間の短縮を図ることができる。また、超音波アレイセンサの前進・後進(Y方向)走査をせずに広範囲を検査するため、超音波アレイセンサ位置を中心として超音波ビームを扇状に走査するセクタスキャン法による評価が望ましい。 ∙ Ultrasonic waves can be scanned by programming and changing the applied voltage time described above. Thereby, the inspection range can be shortened because a wide range can be inspected by minimizing the moving range of the ultrasonic array sensor. In the case of this embodiment, the electronic scanning conditions of the ultrasonic array sensor can be optimized and the optimum scanning conditions that can inspect the defects assumed in the welded portion can be determined, so that the inspection time can be shortened. . In addition, in order to inspect a wide range without performing forward / reverse (Y direction) scanning of the ultrasonic array sensor, it is desirable to perform an evaluation by a sector scan method in which an ultrasonic beam is scanned in a fan shape around the position of the ultrasonic array sensor.
 なお、図3において、点O1、O2は、超音波を送波した振動子から被検査物表面に下ろした垂線と被検査物表面との交点であり、セクタスキャン法により得られる扇形の超音波画像の要に相当する位置である。 In FIG. 3, points O 1 and O 2 are intersections between a perpendicular drawn from the transducer that transmits the ultrasonic wave to the surface of the inspection object and the surface of the inspection object, and are sector-shaped obtained by the sector scan method. This is the position corresponding to the key of the ultrasonic image.
 図4には図2におけるC-C’断面を示す。X方向が溶接線長手方向になるが、欠陥長さLはX方向の距離、欠陥高さHはZ方向の距離である。欠陥長さLはX方向への超音波アレイセンサの移動距離を測定することで得られるが、欠陥高さHは超音波の反射信号から計算する。欠陥高さ測定については、後述する。 FIG. 4 shows a C-C ′ cross section in FIG. Although the X direction is the longitudinal direction of the weld line, the defect length L is the distance in the X direction, and the defect height H is the distance in the Z direction. The defect length L is obtained by measuring the moving distance of the ultrasonic array sensor in the X direction, while the defect height H is calculated from the ultrasonic reflection signal. The defect height measurement will be described later.
 次に、超音波の送波および受波方式について説明する。本実施例の超音波探傷装置は、第1の探傷方法および第2の探傷方法を実行する機能を有する。第1の探傷方法は、一対の超音波アレイセンサのうち一方のみ、つまり第1の超音波アレイセンサ4あるいは第2の超音波アレイセンサ5のみを用いた探傷である。図3に示すように、超音波アレイ振動子4aから超音波15aを送波し、欠陥2での反射超音波(反射エコー)を超音波アレイ振動子4aで受波し、受波した超音波から得られる反射エコー信号を解析することにより欠陥の有無を判断する。超音波アレイセンサ5のみを用いる場合には、超音波アレイ振動子5aから超音波15bを送波し、欠陥2での反射超音波を超音波アレイ振動子5aで受波し、得られる反射エコー信号に基づき欠陥の有無を判断する。第1の探傷方法は超音波反射法による欠陥検出法であるが、溶接部に対する欠陥発生位置や欠陥の向きによって、欠陥からの反射超音波の信号強度が変化する。そのため、第1の超音波アレイセンサ4および第2の超音波アレイセンサ5の両方を用いて反射エコーを検出し、欠陥判定に両方の反射エコー信号を用いることで欠陥の判別精度を高める。 Next, the ultrasonic transmission and reception methods will be described. The ultrasonic flaw detection apparatus of the present embodiment has a function of executing the first flaw detection method and the second flaw detection method. The first flaw detection method is flaw detection using only one of the pair of ultrasonic array sensors, that is, only the first ultrasonic array sensor 4 or the second ultrasonic array sensor 5. As shown in FIG. 3, an ultrasonic wave 15a is transmitted from the ultrasonic array transducer 4a, a reflected ultrasonic wave (reflected echo) at the defect 2 is received by the ultrasonic array transducer 4a, and the received ultrasonic wave. The presence or absence of a defect is determined by analyzing the reflected echo signal obtained from the above. When only the ultrasonic array sensor 5 is used, an ultrasonic wave 15b is transmitted from the ultrasonic array transducer 5a, a reflected ultrasonic wave at the defect 2 is received by the ultrasonic array transducer 5a, and a reflected echo obtained. The presence or absence of a defect is determined based on the signal. The first flaw detection method is a defect detection method based on the ultrasonic reflection method, but the signal intensity of the reflected ultrasonic wave from the defect changes depending on the defect occurrence position and the defect direction with respect to the weld. Therefore, the reflected echo is detected by using both the first ultrasonic array sensor 4 and the second ultrasonic array sensor 5, and the accuracy of defect determination is enhanced by using both reflected echo signals for defect determination.
 第2の探傷方法は、2つの一振動子型超音波アレイセンサ両方を用いた探傷である。図5に、第2の探傷方法における超音波の伝搬経路を模式的に示す。超音波アレイ振動子4aから送波された超音波は欠陥2で回折され、超音波回折波として図5の15cに示される経路を通って超音波アレイ振動子5aに到達する。送波と受波を逆にして、第2の超音波アレイセンサ5から送波された超音波の回折エコーを第1の超音波アレイセンサ4で検出してもよい。図5の15dの経路を通過して受波されるエコー、つまり、欠陥2の上側端部の板材3aへの投影した位置(つまり板材の裏面)からの反射波を検出し、超音波回折波15cと超音波回折波15dのエコー信号の二つの信号のZ方向の距離差を測定することで、欠陥2の高さH(板材の深さ方向に対する欠陥の長さ)を測定できる。上記板材の裏面からの反射エコーを裏面エコーと呼ぶ。 The second flaw detection method is flaw detection using both two single-element ultrasonic array sensors. FIG. 5 schematically shows an ultrasonic propagation path in the second flaw detection method. The ultrasonic wave transmitted from the ultrasonic array transducer 4a is diffracted by the defect 2, and reaches the ultrasonic array transducer 5a through the path indicated by 15c in FIG. 5 as an ultrasonic diffraction wave. The first ultrasonic array sensor 4 may detect the ultrasonic diffraction echoes transmitted from the second ultrasonic array sensor 5 by reversing the transmission and reception. The echo received through the path 15d in FIG. 5, that is, the reflected wave from the position projected on the plate 3a at the upper end of the defect 2 (that is, the back surface of the plate) is detected, and the ultrasonic diffraction wave The height H of the defect 2 (the length of the defect with respect to the depth direction of the plate material) can be measured by measuring the distance difference in the Z direction between the two signals of the echo signal 15c and the ultrasonic diffracted wave 15d. A reflection echo from the back surface of the plate material is referred to as a back surface echo.
 ここで、欠陥高さHの算出方法について詳述する。 Here, the calculation method of the defect height H will be described in detail.
 超音波探傷の対象物は、板材や中空形材など形状が比較的単純であり、厚みや開先などの物理的な寸法あるいは形状起因の超音波反射が発生する位置の位置情報は、探傷開始前に分かっている。そこで、適当な基準位置(例えば面板表面など)を対象物に設定し、これに対する形状起因の反射が起きる位置の物理的な位置情報と当該反射位置からの反射エコー信号を用いて、上記形状起因の反射が発生する位置に対する超音波アレイセンサの相対位置情報を取得する。 The object of ultrasonic flaw detection has a relatively simple shape such as a plate or hollow shape, and the position information of the position where ultrasonic reflection due to physical dimensions such as thickness and groove or shape occurs is the start of flaw detection. I know before. Therefore, an appropriate reference position (for example, the surface of the face plate) is set on the target, and the physical position information of the position where the reflection due to the shape occurs and the reflected echo signal from the reflection position are used. The relative position information of the ultrasonic array sensor with respect to the position where the reflection occurs is acquired.
 次に、欠陥からの反射エコー信号または回折エコー信号と超音波アレイセンサの相対位置情報を用いて、超音波アレイセンサに対する欠陥の相対位置情報を取得する。基準位置に対する超音波アレイセンサの相対位置情報と、欠陥の相対位置情報が分かってしまえば、両者の差分を取ることにより上記形状起因の反射が発生する位置と欠陥との距離が分かることになる。板材の場合には、形状起因の反射が起きる位置が欠陥の直下の板材裏面(実施例2のダブルスキン形材であれば、欠陥直下の裏板と面板の界面G)になる。従って、裏面エコーの距離と欠陥上端部の回折エコーあるいは欠陥からの反射エコー信号の距離を測定することで欠陥高さHを算出できることになる。 Next, using the reflected echo signal or diffraction echo signal from the defect and the relative position information of the ultrasonic array sensor, the relative position information of the defect with respect to the ultrasonic array sensor is acquired. Once the relative position information of the ultrasonic array sensor with respect to the reference position and the relative position information of the defect are known, the distance between the position where the reflection due to the shape occurs and the defect can be found by taking the difference between the two. . In the case of a plate material, the position where reflection due to the shape occurs is the back surface of the plate material immediately below the defect (in the case of the double skin shape material of Example 2, the interface G between the back plate and the face plate directly below the defect). Therefore, the defect height H can be calculated by measuring the distance of the back surface echo and the distance of the diffraction echo at the upper end of the defect or the reflected echo signal from the defect.
 続いて、欠陥判定方法について説明する。 Next, the defect determination method will be described.
 図6に表示器14に表示される検査結果の表示例を示す。本実施例ではS1からS4の4つの画像を用いて検査結果を表示する。 FIG. 6 shows a display example of the inspection result displayed on the display 14. In this embodiment, the inspection result is displayed using four images S1 to S4.
 S1の画像は上記第1の探傷方法でのセクタスキャン画像であり、超音波アレイ振動子4aから超音波を送波し、欠陥2での反射超音波を超音波アレイ振動子4aで受波した超音波15aによる探傷結果を表示する。ここで、セクタスキャン画像の見方を説明する。扇型で示す探傷画像において、左上の頂点部O1が受波する超音波アレイ探触子の位置を示し、Y方向は超音波アレイセンサからの反射源までの水平距離を表し、-Z方向で示す鉛直方向は超音波アレイセンサからの反射源までの深さを示す。そのため、セクタスキャン画像では、超音波アレイセンサと反射源の位置関係が明確に分かる。S1の画像には図4に示す体系で受波される2つのエコーを表示したが、E1は欠陥に起因した超音波エコーであり、欠陥がない部分ではE1のエコーは出現しない。E2は溶接裏波に起因した超音波エコーである。ここで、溶接裏波とは片側だけから行う溶接において、裏側に形成される整った波形の溶接溜であり、超音波の反射源になる。 The image of S1 is a sector scan image in the first flaw detection method. Ultrasonic waves are transmitted from the ultrasonic array transducer 4a, and reflected ultrasonic waves from the defect 2 are received by the ultrasonic array transducer 4a. The flaw detection result by the ultrasonic wave 15a is displayed. Here, how to read the sector scan image will be described. In flaw detection image indicated by fan-shaped, it indicates the position of the ultrasonic array probe upper left vertex portion O 1 is reception, Y-direction represents the horizontal distance to the reflection source from the ultrasonic array sensor, -Z direction The vertical direction indicated by indicates the depth from the ultrasonic array sensor to the reflection source. Therefore, the sector scan image clearly shows the positional relationship between the ultrasonic array sensor and the reflection source. In the image of S1, two echoes received by the system shown in FIG. 4 are displayed, but E1 is an ultrasonic echo caused by a defect, and the E1 echo does not appear in a portion having no defect. E2 is an ultrasonic echo caused by the welding back wave. Here, the welding back wave is a well-shaped corrugated weld pool formed on the back side in welding performed from only one side, and becomes an ultrasonic wave reflection source.
 本実施例の検査対象の断面形状は溶接部の長手方向にほぼ一定であり、裏波は被検査部材の形状に起因して発生するので、YZ平面内で超音波の入射位置が同じであれば、E2は常に同じ位置に現れる、従って超音波エコーE2は、超音波アレイプローブを溶接線に沿って移動させた際に超音波アレイセンサが正常に動作しているかどうかを確認するための参照信号として使用することができる。 Since the cross-sectional shape of the inspection target of the present embodiment is substantially constant in the longitudinal direction of the welded portion and the back wave is generated due to the shape of the member to be inspected, the ultrasonic wave incident position should be the same in the YZ plane. E2 always appears at the same position, so the ultrasonic echo E2 is a reference for confirming whether the ultrasonic array sensor is operating normally when the ultrasonic array probe is moved along the weld line. Can be used as a signal.
 S2は、上記第1の探傷方法でのもう1つのセクタスキャン画像であり、超音波アレイ振動子5aから超音波を送波し、欠陥2での反射超音波を超音波アレイ振動子5aで受波した超音波15bによる探傷画像を表示する。S2の画像には図4に示す体系で受波される2つのエコーを表示したが、E1とE2が接近するため欠陥エコーと裏波エコーの識別が難しくなる。ここで、E1とE2が接近する理由は、S1画像では超音波アレイセンサ4で受波に基づいた画像であるため、溶接裏波でのw1面からのエコーをE2として表示する。これに対して、S2画像では超音波アレイセンサ5で受波に基づいた画像であるため、欠陥2に近い溶接裏波でのw2面からのエコーをE2として表示する。このため、E2は溶接裏波からの反射エコーであっても反射面が異なるため、S2画面の方がE1とE2が接近する。 S2 is another sector scan image obtained by the first flaw detection method, in which an ultrasonic wave is transmitted from the ultrasonic array transducer 5a and a reflected ultrasonic wave from the defect 2 is received by the ultrasonic array transducer 5a. A flaw detection image by the waved ultrasonic wave 15b is displayed. In the image of S2, two echoes received by the system shown in FIG. 4 are displayed. However, since E1 and E2 are close to each other, it is difficult to distinguish between a defect echo and a back echo. Here, since the reason why E1 and E2 approach is an image based on reception by the ultrasonic array sensor 4 in the S1 image, an echo from the w1 surface at the welding back wave is displayed as E2. On the other hand, since the S2 image is an image based on reception by the ultrasonic array sensor 5, an echo from the w2 surface at the welding back wave close to the defect 2 is displayed as E2. For this reason, since E2 is a reflection echo from the welding back wave, the reflection surface is different, so that E1 and E2 are closer to each other on the S2 screen.
 実際の溶接部では欠陥発生位置は予測できず、欠陥が溶接部1の中心線の左右いずれに存在しているか分からない。また、欠陥が中心線の左右両側あるいは複数存在する場合もあり、S1とS2だけでは欠陥かどうかを判定できない可能性がある。 ¡In the actual weld, the position where the defect occurs cannot be predicted, and it is not known whether the defect exists on the left or right of the center line of the weld 1. In addition, there may be a defect on both the left and right sides of the center line or a plurality of defects, and it may not be possible to determine whether the defect is a defect only by S1 and S2.
 そこで、上記第2の探傷方法により得られたS3の画像を用いた判定を行う。S3は、上記第2の探傷方法でのセクタスキャン画像であり、超音波アレイ振動子4aから超音波を送波し、図5に示す欠陥2の先端部で発生する超音波回折波を超音波アレイ振動子5aで受波した場合の探傷画像である。この場合、出現するエコーは2つあり、E1は、図5に示す経路15cを通って検出される超音波エコーであり、E3は、経路15dを通って検出される超音波エコーである。E2と同様、E3も形状起因の超音波エコーであるので、欠陥の有無に関わらず常に発生する。 Therefore, the determination using the image of S3 obtained by the second flaw detection method is performed. S3 is a sector scan image obtained by the second flaw detection method. Ultrasonic waves are transmitted from the ultrasonic array transducer 4a, and ultrasonic diffracted waves generated at the tip of the defect 2 shown in FIG. It is a flaw detection image at the time of receiving with the array transducer | vibrator 5a. In this case, two echoes appear, E1 is an ultrasonic echo detected through the path 15c shown in FIG. 5, and E3 is an ultrasonic echo detected through the path 15d. Like E2, E3 is also an ultrasonic echo due to the shape, so it always occurs regardless of the presence or absence of defects.
 S1からS3の画像に常に表示されるE2またはE3のエコーに対して、溶接部開先形状線の近傍に設定した一定幅を持った欠陥エコー注目エリアを設定し、得られる画像情報のうち欠陥エコー注目エリア内の画像情報のみを使用して欠陥判定を行う。S1~S3中のA1からA3が欠陥エコー注目エリアであり、図5に点線で示した領域に該当する。上記エリアにおいて、E1エコーの検出を行い、S1またはS2で検出かつS3で検出した場合に“欠陥あり”と判定する。判定結果は画面S4に表示される。 For the E2 or E3 echo that is always displayed in the images from S1 to S3, a defect echo attention area having a certain width set in the vicinity of the weld groove shape line is set, and the defect in the obtained image information Defect determination is performed using only image information within the echo area of interest. A1 to A3 in S1 to S3 are defect echo attention areas, which correspond to regions indicated by dotted lines in FIG. In the above area, the E1 echo is detected, and when it is detected at S1 or S2 and detected at S3, it is determined as “defective”. The determination result is displayed on the screen S4.
 S4では、S1からS3の画面に基づいて欠陥判定情報を表示する。本実施例では、横軸は探傷位置(図1中のX方向位置)とし、縦軸は合格(欠陥なし、OK)と不合格(欠陥あり、NG)として、探傷位置に応じた判定情報を表示する。 In S4, defect determination information is displayed based on the screens from S1 to S3. In this embodiment, the horizontal axis is the flaw detection position (position in the X direction in FIG. 1), and the vertical axis is pass (no defect, OK) and fail (defective, NG). indicate.
 以上の通り、溶接部の超音波探傷において、発生した裏波が欠陥からの反射波と同じ挙動を示し、欠陥判定を難しくすることがある。本実施例の超音波探傷装置ないし超音波探傷方法では、欠陥特有の信号である回折波を使用するため欠陥判定精度が向上する。第1の探傷方法および第2の探傷方法の検査パターンの切り替えは、フェーズドアレイ法の電気的な切り替えで行うため検査時間の増加にはならない。また、回折波は信号強度が弱いため、第1の探傷方法と組み合わせて用いることで、回折波起因のエコー信号のみによる欠陥識別より検出精度が向上する。 As described above, in ultrasonic flaw detection of welds, the generated back wave shows the same behavior as the reflected wave from the defect, which may make it difficult to determine the defect. In the ultrasonic flaw detection apparatus or the ultrasonic flaw detection method of this embodiment, since the diffracted wave that is a signal peculiar to the defect is used, the defect determination accuracy is improved. Since the inspection pattern switching between the first flaw detection method and the second flaw detection method is performed by electrical switching of the phased array method, the inspection time does not increase. Further, since the signal intensity of the diffracted wave is weak, the detection accuracy is improved by using it in combination with the first flaw detection method as compared with the defect identification based only on the echo signal caused by the diffracted wave.
 次に、超音波探傷装置の駆動系と制御系の連携動作について説明する。上述した超音波探傷装置の動作と制御手順について図7を用いて説明する。図7は、本実施例における超音波探傷装置での制御処理内容を表すフローチャートである。なお、この制御処理は、超音波制御器11、探触子移動制御器12および探傷制御器13の内部メモリに予め記憶されたプログラムに基づいて実施されるものである。 Next, the cooperative operation of the drive system and control system of the ultrasonic flaw detector will be described. The operation and control procedure of the ultrasonic flaw detector described above will be described with reference to FIG. FIG. 7 is a flowchart showing the contents of control processing in the ultrasonic flaw detector according to the present embodiment. This control process is performed based on a program stored in advance in the internal memory of the ultrasonic controller 11, the probe movement controller 12, and the flaw detection controller 13.
 まず、ステップS100の検査開始に当たっては、当該検査部の状況(例えば、板材材質、板厚、溶接開先形状など)を考慮した適切な検査条件を、超音波制御器11、探触子移動制御器12および探傷制御器13に設定する。また、探傷制御器13のメモリ内に格納されたプログラムの動作により、ステップS140での受信信号強度判定のしきい値P0あるいはステップS180での欠陥高さ判定に用いる欠陥高さしきい値H0を設定する。ここで、欠陥が大きくなるに従って超音波反射波の信号強度は大きくなるため、構造強度上で有害な欠陥寸法H0に対して事前の超音波検査によって受信信号強度レベルのしきい値P0は求めてメモリ内に記憶しておく。また、超音波アレイセンサの探傷ステップ毎の移動量を設定する。 First, at the start of the inspection in step S100, the ultrasonic controller 11 and the probe movement control are performed with appropriate inspection conditions taking into account the state of the inspection section (for example, plate material, plate thickness, weld groove shape, etc.). Is set in the instrument 12 and the flaw detection controller 13. Further, the threshold value P 0 for determining the received signal strength in step S140 or the defect height threshold value H used for determining the defect height in step S180 is determined by the operation of the program stored in the memory of the flaw detection controller 13. Set 0 . Here, since the signal intensity of the ultrasonic reflected wave increases as the defect becomes larger, the threshold value P 0 of the received signal intensity level is determined in advance by ultrasonic inspection for the defect dimension H 0 that is harmful in terms of structural strength. Find and store it in memory. Moreover, the movement amount for each flaw detection step of the ultrasonic array sensor is set.
 ステップS110では、超音波アレイセンサ保持器6を検査測定位置に移動する。この際、検査開始時は超音波アレイセンサ保持器6を検査対象の開始位置に合わせる。第1および第2の超音波アレイセンサ4、5は溶接部を挟むように対向して配置する。また、検査進行時は探触子移動制御器12の指示に対して、ステップS100で設定した探傷ステップ毎の移動量だけ溶接線長軸方向に平行移動させる。 In step S110, the ultrasonic array sensor holder 6 is moved to the inspection measurement position. At this time, at the start of inspection, the ultrasonic array sensor holder 6 is set to the start position of the inspection object. The 1st and 2nd ultrasonic array sensors 4 and 5 are arrange | positioned facing each other so that a welding part may be pinched | interposed. Further, when the inspection is in progress, in response to the instruction from the probe movement controller 12, the movement is performed in the long axis direction of the weld line by the movement amount for each flaw detection step set in step S100.
 ステップS120では、超音波アレイセンサ4を用いて超音波ビームの照射および受信を行う。ここでは第1の探傷方法である、超音波アレイセンサ4から超音波を送波し、欠陥2での反射超音波を超音波アレイセンサ4で受波する処理を行う。 In step S120, the ultrasonic array sensor 4 is used to irradiate and receive an ultrasonic beam. Here, a process of receiving ultrasonic waves from the ultrasonic array sensor 4 and receiving reflected ultrasonic waves from the defect 2 by the ultrasonic array sensor 4, which is a first flaw detection method, is performed.
 ステップS130では、超音波アレイセンサ5を用いて超音波ビームの照射および受信を行う。ここでは第1の探傷方法である、超音波アレイ5センサから超音波を送波し、欠陥2での反射超音波を超音波アレイセンサ5で受波する処理を行う。 In step S130, the ultrasonic array sensor 5 is used to irradiate and receive an ultrasonic beam. Here, as a first flaw detection method, a process of transmitting an ultrasonic wave from the ultrasonic array 5 sensor and receiving a reflected ultrasonic wave from the defect 2 by the ultrasonic array sensor 5 is performed.
 ステップS140では、超音波アレイセンサ4および超音波アレイセンサ5を用いて超音波ビームの照射および受信を行う。ここでは第2の探傷方法である、超音波アレイセンサ4から超音波を送波し、欠陥2での反射超音波を超音波アレイセンサ5で受波する処理を行う。 In step S140, the ultrasonic array sensor 4 and the ultrasonic array sensor 5 are used to irradiate and receive an ultrasonic beam. Here, as the second flaw detection method, an ultrasonic wave is transmitted from the ultrasonic array sensor 4 and a reflected ultrasonic wave at the defect 2 is received by the ultrasonic array sensor 5.
 ステップS150では、上記ステップS120、ステップS130、ステップS140で受信した信号を演算および表示する。つまり、探傷制御器13で受信信号を計算し、表示器14に図6に示すS1、S2およびS3の画像を表示する。 In step S150, the signals received in step S120, step S130, and step S140 are calculated and displayed. That is, the received signal is calculated by the flaw detection controller 13, and the images of S1, S2, and S3 shown in FIG.
 ステップS160では、欠陥信号検出処理を行う。ステップS150の結果から欠陥2の反射波信号強度を抽出する処理を探傷制御器13の欠陥信号抽出部が行う。図6を用いた欠陥判定方法に関する説明で述べたように、この超音波探傷では、溶接裏波DからのエコーE2の近傍に欠陥エコーE1が発生する。そのため、エコーE2の近傍での受信波信号強度の最大値Pを抽出する。 In step S160, defect signal detection processing is performed. The defect signal extraction unit of the flaw detection controller 13 performs the process of extracting the reflected wave signal intensity of the defect 2 from the result of step S150. As described in the description of the defect determination method using FIG. 6, in this ultrasonic flaw detection, the defect echo E1 is generated in the vicinity of the echo E2 from the welding back wave D. Therefore, the maximum value P of the received wave signal intensity in the vicinity of the echo E2 is extracted.
 ステップS170では、反射波信号振幅判定を探傷制御器13の欠陥判定部が行う。ここでは、ステップS160で抽出したエコーE2の近傍での受信波信号強度の最大値Pと、受信信号強度判定のしきい値P0を比較する。エコーの信号強度がしきい値P0を超えた場合には、構造強度上で有害な欠陥であると判断して、第2の探傷方法である欠陥高さ測定を行う必要がある。従って、この判定で受信波振幅がP<P0ならば、欠陥なしと判断し、ステップS180の処理を行う。また、受信波振幅がP≧P0ならば、欠陥の疑いがありと判断しステップS210の処理に移る。 In step S170, the defect determination unit of the flaw detection controller 13 performs the reflected wave signal amplitude determination. Here, the maximum value P of the received wave signal intensity in the vicinity of the echo E2 extracted in step S160 is compared with the threshold value P 0 for determining the received signal intensity. When the echo signal intensity exceeds the threshold value P 0 , it is determined that the defect is harmful in terms of structural strength, and it is necessary to perform defect height measurement as a second flaw detection method. Therefore, if the received wave amplitude is P <P 0 in this determination, it is determined that there is no defect, and the process of step S180 is performed. If the received wave amplitude is P ≧ P 0 , it is determined that there is a suspicion of a defect, and the process proceeds to step S210.
 ステップS180では、欠陥なしと判断した箇所は探傷制御器13の欠陥判定部が合格と処理し、図6のS4画面のように表示器14の”OK”部に結果を表示する。 In step S180, the defect determination unit of the flaw detection controller 13 determines that there is no defect, and the result is displayed on the “OK” portion of the display unit 14 as shown in the S4 screen of FIG.
 ステップS190では、超音波アレイセンサ位置の判定を行う。探傷制御器13の処理により、超音波アレイセンサが検査対象の部材端に到達していれば、検査は終了とし、ステップS200の処理になる。しかし、超音波アレイセンサが検査対象の部材端に到達していなければ、ステップS110の処理に移り規定量だけ移動した後、新規地点での探傷を繰り返す。 In step S190, the ultrasonic array sensor position is determined. If the ultrasonic array sensor has reached the end of the member to be inspected by the processing of the flaw detection controller 13, the inspection is terminated and the processing of step S200 is performed. However, if the ultrasonic array sensor has not reached the end of the member to be inspected, the process proceeds to step S110, and after moving by a specified amount, flaw detection at a new point is repeated.
 ステップS170の判定において、欠陥の疑いがありと判断した場合、ステップS210での欠陥高さ計算処理を行う。ここでは、探傷制御器13の欠陥判定部において、第2の探傷方法に記した方法により、図6のS3画像に基づいて欠陥高さ計算処理をして求める。つまり、図6の説明で述べたようにS3画面での2つの信号のZ方向の差を求めることで欠陥高さHとして算出される。 If it is determined in step S170 that there is a suspicion of a defect, a defect height calculation process in step S210 is performed. Here, the defect determination unit of the flaw detection controller 13 obtains the defect height calculation process based on the S3 image of FIG. 6 by the method described in the second flaw detection method. That is, as described in the explanation of FIG. 6, the defect height H is calculated by obtaining the difference in the Z direction between the two signals on the S3 screen.
 ステップS220では、欠陥高さ判定を行う。探傷制御器13の欠陥判定部で、ステップS100で設定した構造強度上で有害な欠陥寸法H0をしきい値として、ステップS210で求めた欠陥高さHを比較する。この比較判定でH<H0ならば欠陥が小さく構造上有害な欠陥はないと判断し、ステップS180の処理を行う。また、H≧H0ならば、欠陥高さはしきい値より大きく構造上有害な欠陥があると判断しステップS230の処理に移る。 In step S220, the defect height is determined. The defect determination unit of the flaw detection controller 13 compares the defect height H obtained in step S210 with the defect size H 0 harmful to the structural strength set in step S100 as a threshold value. If H <H 0 in this comparison determination, it is determined that the defect is small and there is no structurally harmful defect, and the process of step S180 is performed. Further, if H ≧ H 0, is determined as a defect height is large structurally detrimental defects than a threshold routine to proceed to step S230.
 ステップS230では、欠陥高さ判定結果に基づいて欠陥ありと判断した箇所は探傷制御器13の欠陥判定部が不合格として処理し、図6のS4画面のように表示器14の”NG”部に結果を表示する。その後、ステップS180以降の処理を行う。 In step S230, the defect determination unit of the flaw detection controller 13 processes the portion determined to be defective based on the defect height determination result as a failure, and the “NG” portion of the display unit 14 as shown in the S4 screen of FIG. To display the results. Then, the process after step S180 is performed.
 以上、本実施例の超音波探傷装置あるいは探傷方法により、溶接余盛りがあっても迅速に溶接欠陥を測定可能な装置・方法が実現される。また、反射エコーと回折エコーの両方を使用して欠陥判定を行うことにより、反射エコーのみを使用して欠陥判定を行う場合よりも、格段に精度よく欠陥を検出することが可能となる。
(実施例2)
 次に、第2の実施形態について説明する。本実施例では、押出中空形材を溶接で接合したパネル構造体の溶接検査に、二振動子型の超音波アレイセンサを備えた超音波探傷装置を適用した例について説明する。押出中空形材によるパネル構造体の溶接部の超音波検査は、第1の実施形態による超音波検査装置でも検査できるが、以下に記す第2の実施形態による超音波検査装置による検査がより効果的である。
As described above, the ultrasonic flaw detection apparatus or the flaw detection method of the present embodiment realizes an apparatus / method that can quickly measure a weld defect even if there is a surplus weld. Further, by performing defect determination using both the reflection echo and the diffraction echo, it becomes possible to detect a defect with much higher accuracy than when performing defect determination using only the reflection echo.
(Example 2)
Next, a second embodiment will be described. In the present embodiment, an example will be described in which an ultrasonic flaw detector equipped with a two-element ultrasonic array sensor is applied to a weld inspection of a panel structure in which extruded hollow members are joined by welding. The ultrasonic inspection of the welded portion of the panel structure by the extruded hollow shape material can be inspected by the ultrasonic inspection apparatus according to the first embodiment, but the inspection by the ultrasonic inspection apparatus according to the second embodiment described below is more effective. Is.
 図8に、パネル構造体により構成される構造物の一例として、鉄道車両構体の模式図を示す。鉄道車両構体901等の軌条車両は、側構体901、妻構体902、屋根構体903を台枠904上に立設し、各々を溶接で接合して製作される場合が多い。これらの溶接線は図8中に一点鎖線で示す通りである。 FIG. 8 shows a schematic diagram of a railway vehicle structure as an example of a structure constituted by a panel structure. Rail vehicles such as a railway vehicle structure 901 are often manufactured by standing a side structure 901, a wife structure 902, and a roof structure 903 on a frame 904 and joining them together by welding. These weld lines are as shown by a one-dot chain line in FIG.
 側構体901、妻構体902、屋根構体903あるいは台枠904は、通常、押出成形された長尺の板材あるいは中空形材を幅方向に接合して形成される。上記板材あるいは中空形材の接合には、溶接あるいは摩擦攪拌接合(FSW)などの方法が用いられる。図8には、側構体901の構成部材の接合線を905で、屋根構体903の構成部材の接合線を906で、妻構体902の構成部材の接合線を907でそれぞれ示した。 The side structure 901, the end structure 902, the roof structure 903, or the base frame 904 is usually formed by joining long plate materials or hollow shapes that are extruded in the width direction. A method such as welding or friction stir welding (FSW) is used for joining the plate member or the hollow member. In FIG. 8, the joining lines of the constituent members of the side structure 901 are indicated by 905, the joining lines of the constituent members of the roof structure 903 are indicated by 906, and the joining lines of the constituent members of the end structure 902 are indicated by 907.
 上記各構体の構成部材を説明するため、図8の右下に、側構体を構成するパネルの断面を示す。本実施例の側構体903は、押出中空形材908と909が溶接で接合して構成されており、接合後、溶接部1の表面はグラインダーで研削され平滑仕上げされる。上記各構体を板材で構成した場合(付随する梁・柱等も含めて)、その構造を骨皮構造、押出中空形材で構成した場合はダブルスキン構造と称するが、いずれの構造においても、構体の各接合線あるいは構体同士の溶接線については検査を行う必要がある。 In order to explain the constituent members of each structure, a cross section of the panel constituting the side structure is shown in the lower right of FIG. The side structure 903 of this embodiment is configured by joining extruded hollow shapes 908 and 909 by welding, and after joining, the surface of the welded portion 1 is ground and smoothed by a grinder. When each of the above structures is composed of a plate material (including accompanying beams and columns), the structure is a bone skin structure, and when it is composed of an extruded hollow shape material, it is referred to as a double skin structure. It is necessary to inspect each joint line of a structure or a weld line between structures.
 図9に、図8の下部に示したパネル構造体の検査の際に、本実施例の超音波探傷装置を配置した様子を模式的に示す。本実施例の検査対象であるダブルスキン構造のパネルは、押出中空形材908と909を嵌合し、その上下の開先部に溶接を施工して形成されている。押出中空形材908は一対の面板(一方の面板を面板910とする)がリブ912によって接続された構造を有する。一方、押出中空形材909は、一対の面板(一方の面板を面板911とする)がリブ913によって接続された構造を有するが、面板911の端部の下部に、更にその外側に突出した板部914が備わっている。板部914は、押出中空形材は908と909を接合のために突き合わせた際に、面板910とリブ912によって構成される凹部に嵌合し、溶接の際の面板910の裏板として作用する。従って、押出中空形材908はメス側、押出中空形材909はオス側の部材である。また、図9に示すパネル構造体はグラインダーによる仕上げ研削前の状態であるので、溶接部1にはまだ余盛りが残っている。 FIG. 9 schematically shows a state in which the ultrasonic flaw detector according to the present embodiment is arranged when the panel structure shown in the lower part of FIG. 8 is inspected. The double skin structure panel to be inspected in the present embodiment is formed by fitting extruded hollow shapes 908 and 909 and welding the upper and lower groove portions thereof. The extruded hollow member 908 has a structure in which a pair of face plates (one face plate is referred to as a face plate 910) is connected by a rib 912. On the other hand, the extruded hollow shape member 909 has a structure in which a pair of face plates (one face plate is referred to as a face plate 911) is connected by a rib 913, but a plate projecting further outward from the lower portion of the end portion of the face plate 911. A portion 914 is provided. The plate portion 914 is fitted into a concave portion formed by the face plate 910 and the rib 912 when the extruded hollow shape member 908 and 909 are abutted for bonding, and acts as a back plate of the face plate 910 during welding. . Therefore, the extruded hollow member 908 is a female side member, and the extruded hollow member 909 is a male member. Further, since the panel structure shown in FIG. 9 is in a state before finish grinding by the grinder, the welded portion 1 still has a surplus.
 上記パネル構造体上に、溶接部1を跨ぐように超音波アレイプローブを配置する。超音波探傷装置の全体構成は、図1で説明した構成と同様であるので、機能・構造が同じ箇所についての説明は繰り返さない。 An ultrasonic array probe is disposed on the panel structure so as to straddle the weld 1. The overall configuration of the ultrasonic flaw detector is the same as the configuration described with reference to FIG. 1, and therefore description of portions having the same function / structure will not be repeated.
 次に、本実施例の特徴である二振動子型超音波アレイセンサについて説明する。図10に、図1に示した超音波アレイセンサ4,5の拡大図を溶接線上から見た上面図で示す。二振動子型超音波アレイセンサとは、超音波を送信する超音波アレイ振動子と超音波を受信する超音波アレイ振動子を分けて使用するセンサのことである。図10に示される第1の超音波アレイセンサ4は第1および第2の超音波アレイ振動子4a、4bを、第2の超音波アレイセンサ5は第1および第2の超音波アレイ振動子5a、5bをそれぞれ備えている(第2の超音波アレイセンサ5に保持される超音波アレイ振動子5a、5bを、各々第3の超音波アレイ振動子、第4の超音波アレイ振動子と呼んでもよい。)。送信用超音波アレイ振動子を例えば4aとした場合、超音波アレイ振動子4bを受信用超音波アレイ振動子として使用する。以上の送信用超音波アレイ振動子と受信用超音波アレイ振動子の切り替えは、超音波制御器11の送波側/受波側の設定により行われる。 Next, the two-element ultrasonic array sensor that is a feature of this embodiment will be described. FIG. 10 is an enlarged view of the ultrasonic array sensors 4 and 5 shown in FIG. 1 as a top view as viewed from the weld line. The dual transducer type ultrasonic array sensor is a sensor that uses an ultrasonic array transducer that transmits ultrasonic waves and an ultrasonic array transducer that receives ultrasonic waves separately. The first ultrasonic array sensor 4 shown in FIG. 10 is the first and second ultrasonic array transducers 4a and 4b, and the second ultrasonic array sensor 5 is the first and second ultrasonic array transducers. 5a and 5b (the ultrasonic array transducers 5a and 5b held by the second ultrasonic array sensor 5 are respectively connected to the third ultrasonic array transducer and the fourth ultrasonic array transducer. You may call it.) When the transmitting ultrasonic array transducer is 4a, for example, the ultrasonic array transducer 4b is used as the receiving ultrasonic array transducer. Switching between the transmitting ultrasonic array transducer and the receiving ultrasonic array transducer is performed by setting on the transmitting side / receiving side of the ultrasonic controller 11.
 一振動子型超音波アレイセンサを用いた一般的な検査では、板材の板厚が薄い場合には、センサ表層部を伝播する超音波やくさび内での多重反射をする超音波エコーが板材を伝播して戻ってきた欠陥からの反射波信号と重なり、欠陥の識別が十分にできない場合がある。鉄道車両構体について一般に使用される押出中空形材の面板厚みは3mm程度であり、実施例1のような一振動子型超音波アレイセンサを用いた検査では欠陥識別が不十分な場合がある。二振動子型超音波アレイセンサを用いた場合、送波と受波の役割が分離され、かつ2つの超音波アレイ振動子の間に音響遮蔽板17を設置することにより、超音波アレイ振動子間の超音波の漏れがなくなり、欠陥からの反射波信号をより明瞭に受信できるようになる。これにより、センサ表層部を伝播する超音波やくさび内で多重反射する超音波のエコーを受信することもなく、欠陥からの反射波信号を明瞭に受信でき、板材の板厚が薄い場合でも欠陥の識別が可能になる。 In a general inspection using a single-element ultrasonic array sensor, when the plate thickness is thin, the ultrasonic wave propagating on the sensor surface layer or the ultrasonic echo that makes multiple reflections inside the wedge is applied to the plate material. In some cases, the defect may not be sufficiently identified by overlapping with the reflected wave signal from the defect that has propagated back. The face plate thickness of the extruded hollow shape member generally used for the railway vehicle structure is about 3 mm, and the defect identification may be insufficient in the inspection using the single transducer ultrasonic array sensor as in the first embodiment. In the case of using a two-element ultrasonic array sensor, the roles of transmission and reception are separated, and an acoustic shielding plate 17 is installed between the two ultrasonic array transducers, thereby providing an ultrasonic array transducer. There is no leakage of ultrasonic waves, and the reflected wave signal from the defect can be received more clearly. As a result, it is possible to clearly receive the reflected wave signal from the defect without receiving the ultrasonic wave propagating through the sensor surface layer or the multiple echo reflected in the wedge, and even if the plate thickness is thin Can be identified.
 二振動子型超音波アレイセンサを用いる場合、超音波の受信強度を高めるために、想定した反射源位置において超音波伝播方向の主軸である音軸が交差するように、屋根角を有して設置する。図11に、図10に示した超音波アレイセンサ4をD-D’で切った断面図を示す(ZX面に相当)。屋根角の傾斜は、図11に示すZX断面において超音波アレイ振動子4aと4bを中心方向に傾斜させて実施する。この際、超音波伝播方向の音軸がセンサ中央部および想定する欠陥位置で交差するように設計する。このため、本実施例の超音波アレイセンサ内には、第1の超音波アレイ振動子の下部に第1のくさび状部材16aが、第2の超音波アレイ振動子の下部に第2のくさび状部材16bが、それぞれ設置されており、超音波アレイ振動子面の法線方向が溶接部の目標位置で交差するように設計する必要がある。そのため、双方の超音波アレイ振動子面が対向する方向に傾斜をつけた構造とする。なお、第1のくさび状部材16aおよび第2のくさび状部材16とも、YZ断面についても実施例1の図3と同様なくさび型を有する点については、後述の図12に示す通りである。 When using a two-element ultrasonic array sensor, in order to increase the reception intensity of the ultrasonic wave, it has a roof angle so that the sound axis that is the main axis of the ultrasonic wave propagation direction intersects at the assumed reflection source position. Install. FIG. 11 is a cross-sectional view taken along D-D ′ of the ultrasonic array sensor 4 shown in FIG. 10 (corresponding to the ZX plane). The inclination of the roof angle is performed by inclining the ultrasonic array transducers 4a and 4b in the central direction in the ZX cross section shown in FIG. At this time, the sound axis in the ultrasonic propagation direction is designed to intersect at the sensor central portion and the assumed defect position. For this reason, in the ultrasonic array sensor of the present embodiment, the first wedge-shaped member 16a is provided below the first ultrasonic array transducer, and the second wedge is provided below the second ultrasonic array transducer. Each of the shaped members 16b is installed and needs to be designed so that the normal direction of the ultrasonic array transducer surface intersects at the target position of the weld. For this reason, a structure in which both the ultrasonic array transducer surfaces are inclined in the facing direction is adopted. Note that the first wedge-shaped member 16a and the second wedge-shaped member 16 both have a wedge shape in the YZ section as in FIG. 3 of the first embodiment, as shown in FIG. 12 described later.
 次に超音波の送波および受波方式について図12(A)(B)を用いて説明する。実施例1と同様、二振動子型超音波アレイセンサを使用した場合であっても、第1の探傷方法および第2の探傷方法の2パターンの探傷方法を実行することができる。 Next, ultrasonic transmission and reception systems will be described with reference to FIGS. Similar to the first embodiment, even when a two-element ultrasonic array sensor is used, two patterns of flaw detection methods can be executed: a first flaw detection method and a second flaw detection method.
 第1の探傷方法は、二振動子型超音波アレイセンサの一方、つまり超音波アレイセンサ4もしくは5を用いた探傷である。超音波アレイセンサ4を使用した場合、超音波アレイ振動子4aから超音波を送波し欠陥2での反射超音波を超音波アレイ振動子4bで受波する。また本実施例では、二振動子型超音波アレイセンサ5も検査に使用する。つまり、超音波アレイ振動子5aから超音波を送波し、欠陥2での反射超音波を超音波アレイ振動子5bで受波する。以上の超音波の伝搬経路は、図12(A)に超音波経路15a、15bとして示されている。 The first flaw detection method is flaw detection using one of the two-element ultrasonic array sensors, that is, the ultrasonic array sensor 4 or 5. When the ultrasonic array sensor 4 is used, ultrasonic waves are transmitted from the ultrasonic array transducer 4a, and reflected ultrasonic waves from the defect 2 are received by the ultrasonic array transducer 4b. In the present embodiment, the two-element ultrasonic array sensor 5 is also used for the inspection. That is, ultrasonic waves are transmitted from the ultrasonic array transducer 5a, and reflected ultrasonic waves from the defect 2 are received by the ultrasonic array transducer 5b. The ultrasonic propagation paths described above are shown as ultrasonic paths 15a and 15b in FIG.
 第2の探傷方法は、2つの二振動子型超音波アレイセンサ4と5を用いた探傷である。例えば、超音波アレイ振動子4aから超音波を送波し、欠陥2で発生する超音波回折波を超音波アレイ振動子5bで受波することにより、回折超音波のエコーを検出することができる。以上の超音波の伝搬経路は、図12(B)に超音波経路15cとして示されている。この方法は、送波と受波の役割を逆にしても可能であり、超音波アレイ振動子5aと4bの組合せでも可能である。第1の探傷方法と第2の探傷方法の検査パターンの切り替えはフェーズドアレイ法の電気的な切り替えで行うため検査時間の増加にはならないこと、回折波は信号強度が弱いため、第1の探傷方法と第2の探傷方法を併用した方が欠陥判定精度が向上することは、実施例1で説明した通りである。また、欠陥の有無と同時に欠陥高さを測定できる。 The second flaw detection method is flaw detection using two two-element ultrasonic array sensors 4 and 5. For example, by transmitting ultrasonic waves from the ultrasonic array transducer 4a and receiving ultrasonic diffracted waves generated at the defect 2 by the ultrasonic array transducer 5b, echoes of diffracted ultrasonic waves can be detected. . The ultrasonic propagation path described above is shown as an ultrasonic path 15c in FIG. In this method, the roles of transmission and reception can be reversed, and a combination of the ultrasonic array transducers 5a and 4b is also possible. Since the inspection pattern switching between the first flaw detection method and the second flaw detection method is performed by electrical switching of the phased array method, the inspection time does not increase, and the diffracted wave has a weak signal intensity. As described in the first embodiment, the defect determination accuracy is improved when the method and the second flaw detection method are used in combination. Moreover, the height of the defect can be measured simultaneously with the presence or absence of the defect.
 次に、ダブルスキン構造の構造物を探傷した場合の欠陥判定方法について説明する。本実施例では、第1の探傷方法および第2の探傷方法によって得られるS1からS3の3つの画像情報を用いて欠陥判定を行う。 Next, a method for determining a defect when a structure having a double skin structure is detected will be described. In this embodiment, the defect determination is performed using the three pieces of image information S1 to S3 obtained by the first flaw detection method and the second flaw detection method.
 まず、溶接部1の長手方向(X方向)の所定位置で、第1の超音波アレイセンサ4と第2の超音波アレイセンサ5による溶接部1のセクタスキャンを独立に行い、S1、S2の画像情報を順次取得する。その後、超音波制御器11により第1の超音波アレイセンサ4および第2の超音波アレイセンサ5の送波側アレイ振動子、受波側アレイ振動子の切り替えを行い、第1の超音波アレイセンサ4および第2の超音波アレイセンサ5による溶接部1のセクタスキャンを行い、S3の画像情報を取得する。 First, a sector scan of the welded portion 1 by the first ultrasonic array sensor 4 and the second ultrasonic array sensor 5 is independently performed at a predetermined position in the longitudinal direction (X direction) of the welded portion 1, and S1 and S2 are performed. Obtain image information sequentially. Thereafter, the ultrasonic controller 11 switches between the transmitting-side array transducer and the receiving-side array transducer of the first ultrasonic array sensor 4 and the second ultrasonic array sensor 5, and the first ultrasonic array A sector scan of the welded portion 1 is performed by the sensor 4 and the second ultrasonic array sensor 5, and the image information of S3 is acquired.
 ここで、第1の探傷方法を実行すると、S1には図12(A)にFで示す篏合部形状に起因する反射超音波のエコーが検出される。この反射超音波の伝搬経路は、図12(A)に示す15eである。これは、本実施例の形状の押出中空形材を使用した場合に必ず観測されるエコーであり、YZ断面における位置基準として使用することができる。例えば、E1エコーの座標から欠陥発生位置を算出することができ、補修位置の特定や溶接施工条件の改善にフィードバックすることができる。 Here, when the first flaw detection method is executed, an echo of reflected ultrasonic waves caused by the joint portion shape indicated by F in FIG. 12A is detected in S1. The propagation path of this reflected ultrasonic wave is 15e shown in FIG. This is an echo that is always observed when an extruded hollow member having the shape of the present embodiment is used, and can be used as a position reference in the YZ section. For example, the defect occurrence position can be calculated from the coordinates of the E1 echo and can be fed back to the specification of the repair position and the improvement of the welding conditions.
 同様に、第2の探傷方法を実行すると、S3には、図12(B)にGで示す面板910と裏板914の界面に起因する反射超音波のエコーが必ず観測される。面板910と裏板914の接触面は溶接が行われない箇所であり未溶着部である。従って、界面が形成されるため超音波の反射が発生する。この反射超音波の伝搬経路は、図12(B)に15dとして示されている。このエコーも形状起因のエコーであるため、YZ断面における位置基準として使用することができる。 Similarly, when the second flaw detection method is executed, an echo of reflected ultrasonic waves caused by the interface between the face plate 910 and the back plate 914 indicated by G in FIG. 12B is always observed in S3. The contact surface between the face plate 910 and the back plate 914 is a portion where welding is not performed and is an unwelded portion. Therefore, since an interface is formed, ultrasonic waves are reflected. The propagation path of this reflected ultrasonic wave is shown as 15d in FIG. Since this echo is also an echo due to the shape, it can be used as a position reference in the YZ cross section.
 欠陥判定に際しては、S1からS3の画像情報全部を使用すると探傷制御器13の演算処理の負荷が大きくなるので、適切な欠陥エコー注目エリアを設定し、このエリアに含まれる情報のみを使用して欠陥判定を行う。本実施例では、図12に点線で示された矩形A4からA6が物理的な欠陥エコー注目エリアに相当する。上記エリアにおいて、欠陥に起因したエコーの検出を行い、S1またはS2で検出かつS3で検出した場合に“欠陥あり”と判定する。 At the time of defect determination, if all the image information from S1 to S3 is used, the calculation processing load of the flaw detection controller 13 increases. Therefore, an appropriate defect echo attention area is set, and only information included in this area is used. Defect determination is performed. In this embodiment, rectangles A4 to A6 indicated by dotted lines in FIG. 12 correspond to physical defect echo attention areas. In the above-described area, an echo caused by a defect is detected, and when it is detected at S1 or S2 and detected at S3, it is determined that there is a defect.
 図13に、本実施例で表示器14に表示される検査結果の表示例を示す。 FIG. 13 shows a display example of the inspection result displayed on the display 14 in this embodiment.
 S1の画像は上記第1の探傷方法によるセクタスキャン画像であり、(第1の超音波アレイセンサ側の)第1の超音波アレイ振動子4aから超音波を送波し、欠陥2での反射超音波を第2の超音波アレイ振動子4bで受波した超音波信号による探傷結果である。S1の画像の矩形A4は欠陥エコー注目エリアである。E1は欠陥に起因した反射エコーで、E4は前述の篏合部Fの形状に起因した反射エコーである。欠陥がない部分ではE1のエコーが出現しないため、観測される超音波エコーはE4の1つだけである。 The image of S1 is a sector scan image by the first flaw detection method described above, and an ultrasonic wave is transmitted from the first ultrasonic array transducer 4a (on the first ultrasonic array sensor side) and reflected by the defect 2 It is a flaw detection result by an ultrasonic signal received by the second ultrasonic array transducer 4b. A rectangle A4 in the image of S1 is a defect echo attention area. E1 is a reflected echo caused by the defect, and E4 is a reflected echo caused by the shape of the joint portion F described above. Since the E1 echo does not appear in the portion having no defect, only one ultrasonic echo E4 is observed.
 S2は、超音波アレイ振動子5aで第1の探傷方法を行った場合に得られるセクタスキャン画像であり、(第2の超音波アレイセンサ側の)第1の超音波アレイ振動子5aから超音波を送波し、欠陥2での反射超音波を第2の超音波アレイ振動子5bで受波した超音波信号による探傷結果である。 S2 is a sector scan image obtained when the first flaw detection method is performed by the ultrasonic array transducer 5a, and the ultrasonic scan is performed from the first ultrasonic array transducer 5a (on the second ultrasonic array sensor side). This is a flaw detection result by an ultrasonic signal in which a sound wave is transmitted and a reflected ultrasonic wave at the defect 2 is received by the second ultrasonic array transducer 5b.
 S2の画像には図13のFに示すような嵌合部の形状エコーが発生しないため、欠陥エコー注目エリアA5には欠陥がある場合のみエコーが発生する。 Since the shape echo of the fitting portion as shown in F of FIG. 13 is not generated in the image of S2, an echo is generated only when there is a defect in the defect echo attention area A5.
 実施例1と同様、実際の溶接部では欠陥発生位置は予測できないため、第2の探傷方法により得られたS3の画像を併用した判定を行う。S3は、上記第2の探傷方法でのセクタスキャン画像であり、第1の超音波アレイセンサ側の第1の超音波アレイ振動子4aから超音波を送波し、欠陥2で発生する回折波を第2の超音波アレイセンサ側の第2の超音波アレイ振動子5bで受波して得られる探傷画像である。この場合、出現するエコーは2つあり、欠陥に起因した回折エコーであるE1と、界面Gでの反射エコーのE3である。従ってS3においても、欠陥がない部分で観測される超音波エコーは1つだけである。また、二つの信号のZ方向の差を測定することで、欠陥高さHを算出できる
 S4では、S1からS3の画面に基づいて欠陥判定情報を表示する。本実施例では、横軸は探傷位置(図1中のX方向位置)とし、縦軸は合格(欠陥なし、OK)と不合格(欠陥有り、NG)として、探傷位置に応じた判定情報を表示する。ここで検査結果を表示する際、図1(C)に示されるようにパネル構造体の3次元形状図に検査結果を重畳させてS4あるいは別画面上に表示すると、欠陥分布が視覚的に把握できるため装置の使い勝手が向上する。
Similar to the first embodiment, since the defect occurrence position cannot be predicted in an actual welded portion, the determination using the image of S3 obtained by the second flaw detection method is performed. S3 is a sector scan image in the second flaw detection method, and transmits a ultrasonic wave from the first ultrasonic array transducer 4a on the first ultrasonic array sensor side, and a diffracted wave generated in the defect 2 Is a flaw detection image obtained by receiving the signal by the second ultrasonic array transducer 5b on the second ultrasonic array sensor side. In this case, there are two echoes, E1 which is a diffraction echo caused by a defect, and E3 which is a reflection echo at the interface G. Accordingly, even in S3, only one ultrasonic echo is observed in a portion having no defect. Further, the defect height H can be calculated by measuring the difference between the two signals in the Z direction. In S4, defect determination information is displayed based on the screens from S1 to S3. In this embodiment, the horizontal axis is the flaw detection position (X-direction position in FIG. 1), and the vertical axis is pass (no defect, OK) and fail (defective, NG). indicate. When the inspection result is displayed here, as shown in FIG. 1C, when the inspection result is superimposed on the three-dimensional shape diagram of the panel structure and displayed on S4 or another screen, the defect distribution is visually grasped. This improves the usability of the device.
 なお、超音波探傷装置の駆動系と制御系の連携動作については、第1の実施形態と概ね同様であるため、特に説明はしない。 Note that the cooperative operation of the drive system and the control system of the ultrasonic flaw detector is substantially the same as that of the first embodiment, and thus will not be described in particular.
 以上、本実施例の超音波探傷装置あるいは溶接検査方法によれば、1対の二振動子型超音波アレイセンサを用いるため板厚が薄い場合でも検査を行うことができ、第1の探傷方法と第2の探傷方法とを併用することで、欠陥判定精度を向上できる。また、嵌合部形状Fあるいは界面Gに起因したエコーを活用して欠陥位置を算出することができ、欠陥発生位置を精度よく測定できる。 As described above, according to the ultrasonic flaw detection apparatus or the welding inspection method of this embodiment, since a pair of two-transducer ultrasonic array sensors are used, inspection can be performed even when the plate thickness is thin. And the second flaw detection method can be used together to improve the defect determination accuracy. Further, the defect position can be calculated by utilizing the echo caused by the fitting part shape F or the interface G, and the defect occurrence position can be measured with high accuracy.
1      溶接部
2      溶接欠陥
3a、3b    板材
4、5      超音波アレイセンサ
4a、4b、5a、5b  超音波アレイ振動子
6      超音波アレイセンサ保持器
7      超音波アレイセンサ固定ネジ
8      タイヤ
9      移動量計測器
10      モータ
11      超音波制御器
12      探触子移動制御器
13      探傷制御器
14      表示器
15、15a、15b、15c、15d、15e     超音波
16      くさび
17      音響遮蔽版
100~230    作業ステップ
901 側構体
902 妻構体
903 屋根構体
904 台枠904
905、906、907 接合線
908、909 押出中空形材
910、911 面板
912、913 リブ
914 板部
A1~A6 欠陥エコー注目範囲
E1      欠陥に起因した超音波エコー
E2      溶接裏波に起因した超音波エコー
E3      板材底面に起因した超音波エコー
E4      嵌合部形状に起因した超音波エコー
F      嵌合部
G      面板と裏板の未溶着界面
S1~S4      検査結果画像
DESCRIPTION OF SYMBOLS 1 Welding part 2 Welding defect 3a, 3b Plate material 4, 5 Ultrasonic array sensor 4a, 4b, 5a, 5b Ultrasonic array vibrator 6 Ultrasonic array sensor holder 7 Ultrasonic array sensor fixing screw 8 Tire 9 Movement measuring instrument DESCRIPTION OF SYMBOLS 10 Motor 11 Ultrasonic controller 12 Probe movement controller 13 Flaw detection controller 14 Indicator 15, 15a, 15b, 15c, 15d, 15e Ultrasonic wave 16 Wedge 17 Acoustic shielding plate 100-230 Work step 901 Side structure 902 Wife Structure 903 Roof structure 904 Underframe 904
905, 906, 907 Joining line 908, 909 Extruded hollow shape member 910, 911 Face plate 912, 913 Rib 914 Plate part A1 to A6 Defect echo attention range E1 Ultrasonic echo E2 caused by defect Ultrasonic echo caused by welding back wave E3 Ultrasonic echo due to the bottom of the plate material E4 Ultrasonic echo due to the fitting part shape F Fitting part G Unwelded interface between the face plate and the back plate S1 to S4 Inspection result image

Claims (18)

  1.  部材同士の溶接部を検査する超音波探傷装置において、
     前記溶接部に超音波を送波しかつ受波する超音波アレイ振動子を各々備え、前記溶接部を跨いで配置される第1の超音波アレイセンサおよび第2の超音波アレイセンサと、
     前記第1および第2の超音波アレイセンサ間の距離を一定に保持し、当該第1および第2の超音波アレイセンサを前記溶接部の長手方向に沿って移動させる超音波アレイセンサ保持器と、
     前記超音波アレイ振動子で受波した超音波をエコー信号に変換する超音波制御器と
     当該エコー信号を用いて前記溶接部の欠陥を検出する探傷制御器とを備え、
     前記超音波アレイセンサ保持器を前記溶接部の長手方向に移動させて前記溶接部の検査を行うことを特徴とする超音波探傷装置。
    In the ultrasonic flaw detector for inspecting the welded part between members,
    A first ultrasonic array sensor and a second ultrasonic array sensor, each including an ultrasonic array transducer that transmits and receives ultrasonic waves to the weld, and is disposed across the weld;
    An ultrasonic array sensor holder that maintains a constant distance between the first and second ultrasonic array sensors and moves the first and second ultrasonic array sensors along the longitudinal direction of the weld; ,
    An ultrasonic controller that converts ultrasonic waves received by the ultrasonic array transducer into echo signals, and a flaw detection controller that detects defects in the weld using the echo signals,
    An ultrasonic flaw detection apparatus for inspecting the welded portion by moving the ultrasonic array sensor holder in a longitudinal direction of the welded portion.
  2.  請求項1に記載の超音波探傷装置において、
     前記第1の超音波アレイ振動子から前記溶接部に送波された超音波の反射波を当該第1の超音波アレイ振動子で受波して得られる反射エコー信号と、
     前記第1の超音波アレイ振動子から前記溶接部に送波された超音波の回折波を、前記第2の超音波アレイセンサで受波して得られる回折エコー信号とを用いて前記溶接部の検査を行うことを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 1,
    A reflected echo signal obtained by receiving the reflected wave of the ultrasonic wave transmitted from the first ultrasonic array transducer to the welded portion by the first ultrasonic array transducer;
    Using the diffraction echo signal obtained by receiving the diffracted wave of the ultrasonic wave transmitted from the first ultrasonic array transducer to the welded portion with the second ultrasonic array sensor, the welded portion Ultrasonic flaw detector characterized by performing inspection.
  3.  請求項1に記載の超音波探傷装置において、
     前記探傷制御器は、
     前記検査で検出された欠陥に対し、当該欠陥に起因して得られるエコー信号と、前記部材の形状に起因して得られる前記溶接部の底部近傍からのエコー信号とを用いて前記欠陥の高さ計測を実行することを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 1,
    The flaw detection controller
    For the defect detected by the inspection, the height of the defect is determined by using an echo signal obtained due to the defect and an echo signal from the vicinity of the bottom of the welded portion obtained due to the shape of the member. An ultrasonic flaw detector characterized in that the measurement is performed.
  4.  請求項1に記載の超音波探傷装置において、
     前記第1の超音波アレイセンサおよび第2の超音波アレイセンサは、前記溶接部の長手方向に対する前後方向に各々独立して設けられた第1の超音波アレイ振動子および第2の超音波アレイ振動子を備える二振動子型超音波アレイセンサであることを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 1,
    The first ultrasonic array sensor and the second ultrasonic array sensor are respectively provided with a first ultrasonic array transducer and a second ultrasonic array that are independently provided in the front-rear direction with respect to the longitudinal direction of the welded portion. An ultrasonic flaw detector characterized by being a two-vibrator ultrasonic array sensor including a vibrator.
  5.  請求項4に記載の超音波探傷装置において、
     前記第1の超音波アレイセンサおよび第2の超音波アレイセンサは、前記第1の超音波アレイ振動子および第2の超音波アレイ振動子の間に設けられた音響遮蔽板を備えることを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 4,
    The first ultrasonic array sensor and the second ultrasonic array sensor each include an acoustic shielding plate provided between the first ultrasonic array transducer and the second ultrasonic array transducer. Ultrasonic flaw detector.
  6.  請求項4に記載の超音波探傷装置において、
     前記第1の超音波アレイセンサを載置する第1のくさび状部材と、前記第2の超音波アレイセンサを載置する第2のくさび状部材とを備え、
     当該第1のくさび状部材および第2のくさび状部材は、超音波アレイ振動子面の法線方向が溶接部の目標位置で交差するように、双方の超音波アレイ振動子面が対向する方向に傾斜をつけた構造とし、前記溶接部の長手方向に対して前後に前記第1の超音波アレイセンサまたは第2の超音波アレイセンサ内に配置されることを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 4,
    A first wedge-shaped member for placing the first ultrasonic array sensor; and a second wedge-shaped member for placing the second ultrasonic array sensor;
    The first wedge-shaped member and the second wedge-shaped member are in a direction in which both ultrasonic array transducer surfaces face each other so that the normal direction of the ultrasonic array transducer surface intersects at the target position of the welded portion. An ultrasonic flaw detector characterized by having an inclined structure and being disposed in the first ultrasonic array sensor or the second ultrasonic array sensor forward and backward with respect to the longitudinal direction of the welded portion.
  7.  請求項4に記載の超音波探傷装置において、
     前記第1の超音波アレイセンサ側に配置された第1の超音波アレイ振動子から送波された超音波を前記第1の超音波アレイセンサ側に配置された第2の超音波アレイ振動子で受波して得られる反射エコー信号と、
     前記第1の超音波アレイセンサ側に配置された第1の超音波アレイ振動子から送波された超音波を前記第2の超音波アレイセンサ側に配置された第3の超音波アレイ振動子で受波して得られる回折エコー信号とを用いて前記溶接部の検査を行うことを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 4,
    The second ultrasonic array transducer disposed on the first ultrasonic array sensor side by transmitting ultrasonic waves transmitted from the first ultrasonic array transducer disposed on the first ultrasonic array sensor side Reflected echo signal obtained by receiving at
    A third ultrasonic array transducer disposed on the second ultrasonic array sensor side transmits ultrasonic waves transmitted from the first ultrasonic array transducer disposed on the first ultrasonic array sensor side. An ultrasonic flaw detector which inspects the welded portion using a diffraction echo signal obtained by receiving a wave at.
  8.  請求項1または3に記載の超音波探傷装置において、
     前記溶接部の検査結果が前記部材の3次元形状に重畳して表示される表示器を備えたことを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 1 or 3,
    An ultrasonic flaw detector comprising: a display for displaying an inspection result of the welded portion superimposed on a three-dimensional shape of the member.
  9.  部材同士の溶接部を検査する超音波探傷方法において、
     第1の超音波アレイセンサおよび第2の超音波アレイセンサを前記溶接部を跨ぐように配置し、
     前記第1の超音波アレイ振動子から前記溶接部に送波された超音波の反射波を当該第1の超音波アレイ振動子で受波して得られる反射エコー信号と、
     前記第1の超音波アレイ振動子から前記溶接部に送波された超音波の回折波を、前記第2の超音波アレイセンサで受波して得られる回折エコー信号とを用いて前記溶接部の検査を行うことを特徴とする超音波探傷方法。
    In the ultrasonic flaw detection method for inspecting the welded part between members,
    Arranging the first ultrasonic array sensor and the second ultrasonic array sensor so as to straddle the weld,
    A reflected echo signal obtained by receiving the reflected wave of the ultrasonic wave transmitted from the first ultrasonic array transducer to the welded portion by the first ultrasonic array transducer;
    Using the diffraction echo signal obtained by receiving the diffracted wave of the ultrasonic wave transmitted from the first ultrasonic array transducer to the welded portion with the second ultrasonic array sensor, the welded portion Ultrasonic flaw detection method characterized by performing inspection.
  10.  請求項9に記載の超音波探傷方法において、
     前記探傷制御器は、
     前記検査で検出された欠陥に対し、当該欠陥に起因して得られるエコー信号と、前記部材の形状に起因して得られる前記溶接部の底部近傍からのエコー信号とを用いて前記欠陥の高さ計測を実行することを特徴とする超音波探傷方法。
    The ultrasonic flaw detection method according to claim 9,
    The flaw detection controller
    For the defect detected by the inspection, the height of the defect is determined by using an echo signal obtained due to the defect and an echo signal from the vicinity of the bottom of the welded portion obtained due to the shape of the member. An ultrasonic flaw detection method characterized by performing measurement.
  11.  請求項9に記載の超音波探傷方法において、
     前記第1の超音波アレイセンサおよび第2の超音波アレイセンサとして、前記溶接部の長手方向に対する前後方向に各々独立して設けられた第1の超音波アレイ振動子および第2の超音波アレイ振動子を備える二振動子型超音波アレイセンサを用いることを特徴とする超音波探傷方法。
    The ultrasonic flaw detection method according to claim 9,
    As the first ultrasonic array sensor and the second ultrasonic array sensor, a first ultrasonic array transducer and a second ultrasonic array provided independently in the front-rear direction with respect to the longitudinal direction of the welded portion, respectively. An ultrasonic flaw detection method using a two-vibrator ultrasonic array sensor including a vibrator.
  12.  請求項11に記載の超音波探傷方法において、
     前記第1の超音波アレイセンサ側に配置された第1の超音波アレイ振動子から送波された超音波を前記第1の超音波アレイセンサ側に配置された第2の超音波アレイ振動子で受波して得られる反射エコー信号と、
     前記第1の超音波アレイセンサ側に配置された第1の超音波アレイ振動子から送波された超音波を前記第2の超音波アレイセンサ側に配置された第3の超音波アレイ振動子で受波して得られる回折エコー信号とを用いて前記溶接部の検査を行うことを特徴とする超音波探傷方法。
    The ultrasonic flaw detection method according to claim 11,
    The second ultrasonic array transducer disposed on the first ultrasonic array sensor side by transmitting ultrasonic waves transmitted from the first ultrasonic array transducer disposed on the first ultrasonic array sensor side Reflected echo signal obtained by receiving at
    A third ultrasonic array transducer disposed on the second ultrasonic array sensor side transmits ultrasonic waves transmitted from the first ultrasonic array transducer disposed on the first ultrasonic array sensor side. An ultrasonic flaw detection method, comprising: inspecting the welded portion using a diffraction echo signal obtained by receiving a wave at a point.
  13.  第1の面板と当該面板に設けられた第1のリブとを備える第1のパネルと、第2の面板と当該第2の面板に設けられた第2のリブと前記第2の面板の下部に設けられ当該第2の面板端部よりも外側に突き出した裏板とを備える第2のパネルとを用い、
     前記第1の面板と前記第2の面板の端部同士を当接させ、前記裏板を前記第1の面板と第1のリブに嵌合させ、更に前記第1の面板と前記第2の面板の当接部を溶接して得られるパネル構造体の溶接部検査方法であって、
     前記第1の面板と前記第2の面板の表面に前記溶接部を跨いで第1の超音波アレイセンサおよび第2の超音波アレイセンサを配置し、
     前記第1の超音波アレイセンサから前記溶接部に送波された超音波の反射波を当該第1の超音波アレイセンサで受波して反射エコー信号を取得し、
     前記第1の超音波アレイセンサから前記溶接部に送波された超音波の回折波を前記第2の超音波アレイセンサで受波して回折エコー信号を取得し、
     前記反射エコー信号と回折エコー信号を用いて前記溶接部の欠陥を検出することを特徴とするパネル構造体の溶接部検査方法。
    A first panel including a first face plate and a first rib provided on the face plate, a second face plate, a second rib provided on the second face plate, and a lower portion of the second face plate And a second panel provided with a back plate protruding outward from the end portion of the second face plate.
    The end portions of the first face plate and the second face plate are brought into contact with each other, the back plate is fitted to the first face plate and the first rib, and the first face plate and the second face plate are further fitted. A method for inspecting a welded portion of a panel structure obtained by welding a contact portion of a face plate,
    Arranging the first ultrasonic array sensor and the second ultrasonic array sensor across the weld on the surfaces of the first face plate and the second face plate;
    Receiving a reflected wave of the ultrasonic wave transmitted from the first ultrasonic array sensor to the weld by the first ultrasonic array sensor to obtain a reflected echo signal;
    Receiving the diffracted wave of the ultrasonic wave transmitted from the first ultrasonic array sensor to the weld by the second ultrasonic array sensor to obtain a diffraction echo signal;
    A method for inspecting a welded portion of a panel structure, comprising: detecting defects in the welded portion using the reflected echo signal and the diffraction echo signal.
  14.  請求項13に記載のパネル構造体の溶接部検査方法において、
     前記反射エコー信号と回折エコー信号に共通して検出されるエコーを欠陥として検出することを特徴とするパネル構造体の溶接部検査方法。
    The method for inspecting a welded portion of a panel structure according to claim 13,
    A method of inspecting a welded portion of a panel structure, wherein an echo detected in common with the reflected echo signal and the diffraction echo signal is detected as a defect.
  15.  請求項13に記載のパネル構造体の溶接部検査方法において、
     前記第1の面板と前記裏板の界面からの反射エコー信号を前記溶接部の長手方向の位置検出のための参照信号として使用することを特徴とするパネル構造体の溶接部検査方法。
    The method for inspecting a welded portion of a panel structure according to claim 13,
    A method for inspecting a welded portion of a panel structure, wherein a reflected echo signal from an interface between the first face plate and the back plate is used as a reference signal for detecting a position in the longitudinal direction of the welded portion.
  16.  請求項13に記載のパネル構造体の溶接部検査方法において、
     前記第1の面板と前記裏板の界面からの反射エコー信号と前記欠陥からの回折エコー信号とを用いて当該欠陥の高さ計測を行うことを特徴とするパネル構造体の溶接部検査方法。
    The method for inspecting a welded portion of a panel structure according to claim 13,
    A method for inspecting a welded portion of a panel structure, comprising: measuring a height of the defect using a reflected echo signal from an interface between the first face plate and the back plate and a diffraction echo signal from the defect.
  17.  請求項16に記載のパネル構造体の溶接部検査方法において、
     所定の基準位置(=例えば面板表面を想定)に対する前記界面の物理的な位置情報と前記界面からの反射エコー信号とを用いて、前記界面に対する前記第1の超音波アレイセンサまたは第2の超音波アレイセンサの相対位置情報を取得し、
     前記欠陥からの回折エコー信号または反射エコー信号と前記相対位置情報を用いて、前記第1の超音波アレイセンサまたは第2の超音波アレイセンサに対する前記欠陥の相対位置情報を取得し、
     前記第1の超音波アレイセンサまたは第2の超音波アレイセンサの相対位置情報と前記欠陥の相対位置情報から前記界面に対する前記欠陥の相対位置情報を求めることにより、前記欠陥の高さ計測を行うことを特徴とするパネル構造体の溶接部検査方法。
    The panel structure welded portion inspection method according to claim 16,
    Using the physical position information of the interface with respect to a predetermined reference position (= for example, assuming the face plate surface) and the reflected echo signal from the interface, the first ultrasonic array sensor or the second super array with respect to the interface Obtain the relative position information of the acoustic wave array sensor,
    Using the diffraction echo signal or reflected echo signal from the defect and the relative position information, obtaining the relative position information of the defect with respect to the first ultrasonic array sensor or the second ultrasonic array sensor,
    The height of the defect is measured by obtaining the relative position information of the defect with respect to the interface from the relative position information of the first ultrasonic array sensor or the second ultrasonic array sensor and the relative position information of the defect. A method for inspecting a welded portion of a panel structure characterized by the above.
  18.  請求項13から17のいずれか1項に記載のパネル構造体の溶接部検査方法において、
     前記溶接部の検査結果を前記パネル構造体の3次元形状に重畳して表示することを特徴とするパネル構造体の溶接部検査方法。
    In the panel structure body welded portion inspection method according to any one of claims 13 to 17,
    A method for inspecting a welded portion of a panel structure, wherein the inspection result of the welded portion is displayed superimposed on a three-dimensional shape of the panel structure.
PCT/JP2013/068198 2013-07-03 2013-07-03 Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure WO2015001625A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068198 WO2015001625A1 (en) 2013-07-03 2013-07-03 Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068198 WO2015001625A1 (en) 2013-07-03 2013-07-03 Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure

Publications (1)

Publication Number Publication Date
WO2015001625A1 true WO2015001625A1 (en) 2015-01-08

Family

ID=52143247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068198 WO2015001625A1 (en) 2013-07-03 2013-07-03 Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure

Country Status (1)

Country Link
WO (1) WO2015001625A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300999B1 (en) * 2017-10-30 2018-03-28 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection data processing program, ultrasonic flaw detection data processing apparatus, and object evaluation method
RU2653955C1 (en) * 2017-07-28 2018-05-15 Дмитрий Олегович Буклешев Method for determining voltage supply and coordinates in heat-affected zones of pipelines by the method for measuring velocity of passage of ultrasonic wave
CN108562645A (en) * 2018-03-09 2018-09-21 广东省特种设备检测研究院珠海检测院 A kind of detection method of weld seam detection using laser positioning automatic scanning device
CN114487102A (en) * 2021-12-31 2022-05-13 北京航天特种设备检测研究发展有限公司 Weld phased array ultrasonic detection method with extra height
EP4121796A4 (en) * 2020-03-30 2024-02-21 Evident Canada Inc Ultrasound probe with row-column addressed array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2011122827A (en) * 2009-12-08 2011-06-23 Ihi Inspection & Instrumentation Co Ltd Array probe measuring method and array probe measuring instrument
JP2011163814A (en) * 2010-02-05 2011-08-25 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection testing method
JP2013079938A (en) * 2011-09-20 2013-05-02 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection device
JP2013088240A (en) * 2011-10-17 2013-05-13 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
JP2013134118A (en) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection device for pipe weld zone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2011122827A (en) * 2009-12-08 2011-06-23 Ihi Inspection & Instrumentation Co Ltd Array probe measuring method and array probe measuring instrument
JP2011163814A (en) * 2010-02-05 2011-08-25 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection testing method
JP2013079938A (en) * 2011-09-20 2013-05-02 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection device
JP2013088240A (en) * 2011-10-17 2013-05-13 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
JP2013134118A (en) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection device for pipe weld zone

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653955C1 (en) * 2017-07-28 2018-05-15 Дмитрий Олегович Буклешев Method for determining voltage supply and coordinates in heat-affected zones of pipelines by the method for measuring velocity of passage of ultrasonic wave
JP6300999B1 (en) * 2017-10-30 2018-03-28 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection data processing program, ultrasonic flaw detection data processing apparatus, and object evaluation method
JP2019082397A (en) * 2017-10-30 2019-05-30 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection data processing program, ultrasonic flaw detection data processor and analyte evaluation method
CN108562645A (en) * 2018-03-09 2018-09-21 广东省特种设备检测研究院珠海检测院 A kind of detection method of weld seam detection using laser positioning automatic scanning device
EP4121796A4 (en) * 2020-03-30 2024-02-21 Evident Canada Inc Ultrasound probe with row-column addressed array
CN114487102A (en) * 2021-12-31 2022-05-13 北京航天特种设备检测研究发展有限公司 Weld phased array ultrasonic detection method with extra height

Similar Documents

Publication Publication Date Title
WO2015001625A1 (en) Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
US9816964B1 (en) Ultrasonic method and device for volumetric examination of aluminothermic rail welds
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP6069123B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
CN108445076A (en) One kind being based on T shape fillet weld transversal crack ultrasonic detection methods
JP2007285813A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection method
US6925882B1 (en) Methods for ultrasonic inspection of spot and seam resistance welds in metallic sheets
CA2849187A1 (en) Auto beam optimization for phased array weld inspection
JP5574731B2 (en) Ultrasonic flaw detection test method
KR100975330B1 (en) Multi Channel Ultrasonic Welding Inspection System and Control Method
WO2015111143A1 (en) Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same
WO2015001624A1 (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and weld inspection method for panel structure
JP4148959B2 (en) Ultrasonic flaw detection method and apparatus
JP2001021542A (en) Measuring of weld line transverse crack defect length
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JP4431926B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP2009014513A (en) Ultrasonic flaw detection method
JP2002243703A (en) Ultrasonic flaw detector
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JP2006138672A (en) Method of and device for ultrasonic inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP