JP5846367B2 - Flaw detection method and flaw detection apparatus for welds using TOFD method - Google Patents

Flaw detection method and flaw detection apparatus for welds using TOFD method Download PDF

Info

Publication number
JP5846367B2
JP5846367B2 JP2011235283A JP2011235283A JP5846367B2 JP 5846367 B2 JP5846367 B2 JP 5846367B2 JP 2011235283 A JP2011235283 A JP 2011235283A JP 2011235283 A JP2011235283 A JP 2011235283A JP 5846367 B2 JP5846367 B2 JP 5846367B2
Authority
JP
Japan
Prior art keywords
probe
flaw
welded portion
weld
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011235283A
Other languages
Japanese (ja)
Other versions
JP2013092468A (en
Inventor
吉晴 中山
吉晴 中山
直人 新村
直人 新村
修一 星子
修一 星子
俊哉 竹中
俊哉 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2011235283A priority Critical patent/JP5846367B2/en
Publication of JP2013092468A publication Critical patent/JP2013092468A/en
Application granted granted Critical
Publication of JP5846367B2 publication Critical patent/JP5846367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

この発明は溶接部の探傷方法および探傷装置に関し、特に、溶接で接続されたノズルを探傷するTOFD(Time Of Flight Diffraction)法を用いた探傷方法および探傷装置に関する。   The present invention relates to a flaw detection method and a flaw detection apparatus for a welded part, and more particularly to a flaw detection method and a flaw detection apparatus using a TOFD (Time Of Flight Diffraction) method for flaw detection of nozzles connected by welding.

TOFD法は、試験体表面に2個の縦波探触子(送信用探触子と受信用探触子)を一定の間隔で対向させ、試験体表面を伝わるラテラル波または試験体裏面からの反射波と欠陥先端からの回折波の伝播時間の差を利用して、欠陥検出または欠陥寸法測定を行なう方法である。TOFD法は、解析に際し、欠陥先端で生じるモード変換横波等の影響を受けないように最も早く受信する縦波だけに着目する。また、通常は、指向性の鈍い探触子を使用することで一度に広い範囲の試験を行なう。   In the TOFD method, two longitudinal wave probes (a transmitting probe and a receiving probe) face each other at a constant interval on the surface of the specimen, and lateral waves transmitted from the specimen surface or from the back of the specimen This is a method for detecting a defect or measuring a defect size by using a difference in propagation time between a reflected wave and a diffracted wave from a defect tip. In the TOFD method, attention is paid to only the longitudinal wave received earliest so as not to be affected by the mode conversion transverse wave generated at the tip of the defect in the analysis. In general, a wide range of tests are performed at once by using a probe with low directivity.

従来のTOFDを用いた探傷装置が、例えば特開2005−70017号公報(特許文献1)に開示されている。特許文献1によれば、対となる送波用探触子1と受波用探触子2を、対象物3の表面に一定距離を隔てて配置し、送波用探触子1から対象物中に超音波を放射し、該対象物中に存在欠陥の端部で生じる回折波を受波用探触子2で受波して、回折波の縦波成分と横波成分を各々検出し、検出された縦波成分と前記横波成分の到達時刻差に基づいて、該回折波を生じた欠陥端部から受波用探触子2に至る距離Lを推定するという点を開示する。また、特許文献は、送信用探触子から受信用探触子に至る伝播経路長を互いに等しくするきずの上端部の位置は、送信用探触子と受信用探触子との位置を焦点とする楕円軌跡の上に存在するという点を開示している。   A conventional flaw detection apparatus using TOFD is disclosed in, for example, Japanese Patent Laying-Open No. 2005-70017 (Patent Document 1). According to Patent Document 1, a pair of a transmitting probe 1 and a receiving probe 2 are arranged on the surface of an object 3 at a predetermined distance from the transmitting probe 1 and the target is detected. The ultrasonic wave is radiated into the object, and the diffracted wave generated at the end of the existing defect in the object is received by the receiving probe 2 to detect the longitudinal wave component and the transverse wave component of the diffracted wave, respectively. Then, based on the arrival time difference between the detected longitudinal wave component and the transverse wave component, the point that the distance L from the defect end portion where the diffracted wave is generated to the wave receiving probe 2 is estimated is disclosed. In addition, in the patent document, the position of the upper end of the flaw that makes the propagation path lengths from the transmission probe to the reception probe equal to each other focuses on the positions of the transmission probe and the reception probe. It is disclosed that it exists on an elliptical locus.

特開2005−70017号公報JP 2005-70017 A

従来のTOFD法を用いた探傷を行なう探傷装置の治具や小径管円周継手の溶接部の検査は上記のように構成されていた。それぞれ、送信側と受信側とを含む一組の探触子を溶接線を中央にして所定の間隔を保持して探傷する構成であった。このような構成であれば、溶接部が両探触子の中央部に位置するように配置される場合は探傷が可能であるが、ノズルの溶接部のような、溶接線が送信用および受信用探触子の中央部に位置しない場合には探傷ができないという問題があった。   The inspection of the jig of a flaw detection apparatus that performs flaw detection using the conventional TOFD method and the welded portion of a small-diameter pipe circumferential joint has been configured as described above. Each of them was configured to detect a set of probes including a transmitting side and a receiving side while maintaining a predetermined interval with the welding line at the center. With such a configuration, flaw detection is possible when the welded portion is arranged so as to be positioned at the center of both probes, but the weld line, such as a nozzle welded portion, is used for transmission and reception. There is a problem that flaws cannot be detected when the probe is not located at the center of the probe.

この発明は上記のような問題点を解消するためになされたもので、TOFD法によって溶接で接続されたノズルのきずの位置を容易に検出できるノズル用の探傷装置およびその方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a flaw detection apparatus for a nozzle and a method thereof that can easily detect the position of a nozzle flaw connected by welding by the TOFD method. Objective.

この発明に係るTOFD法を用いた溶接部の探傷方法は、送信側探触子と受信側探触子とを前記溶接部を挟んで配置し、送信側探触子から所定の角度で溶接部に超音波ビームを送信し、受信側探触子で溶接部のきずからの回折波を受信し、送信側探触子から受信側探触子への超音波の伝播経路長を等しくする楕円軌跡を算出し、受信探触子の受信角度を複数切替えて、算検出された楕円軌跡上で複数の回折波のエコー高さを算出し、算出された複数の回折波のエコー高さに基づいて溶接部のきずの位置を算出する。
好ましくは、溶接部のきずの位置は、受信角度を複数切替えた受信回折波の強度に応じてきずの位置を検出する。
According to the present invention, a flaw detection method for a welded portion using the TOFD method includes a transmitting side probe and a receiving side probe arranged with the welded portion interposed therebetween, and the welded portion at a predetermined angle from the transmitting side probe. An elliptical trajectory that equalizes the propagation path length of the ultrasonic wave from the transmitter probe to the receiver probe by transmitting the ultrasonic beam to the receiver, receiving the diffracted wave from the flaw of the welded portion by the receiver probe , Calculate the echo heights of the diffracted waves on the detected elliptical trajectory, switch the reception angle of the receiving probe, and based on the calculated echo heights of the diffracted waves Calculate the position of the flaw in the weld.
Preferably, the position of the flaw in the welded portion is detected according to the intensity of the received diffracted wave with a plurality of reception angles switched.

この発明の他の局面においては、TOFD法を用いた溶接部の探傷装置は、溶接部を挟んで配置される、送信側探触子および受信側探触子を含み、送信側探触子は所定の角度で前記溶接部に超音波ビームを送信し、受信側探触子で溶接部のきずからの回折波を受信し、送信側探触子から受信側探触子への超音波の伝播経路長を等しくする楕円軌跡を算出する楕円軌跡算出手段と、受信側探触子の受信角度を複数切替えて、算出された楕円軌跡上で複数の回折波のエコー高さを算出するエコー高さ算出手段と、楕円軌跡算出手段の算出した楕円軌跡とエコー高さ算出手段の算出したエコー高さに基づいて溶接部のきずの位置を検出するきず位置算出手段とを含む。   In another aspect of the present invention, a flaw detection apparatus for a welded portion using the TOFD method includes a transmitting side probe and a receiving side probe arranged with the welded portion interposed therebetween, and the transmitting side probe is An ultrasonic beam is transmitted to the welded portion at a predetermined angle, a diffracted wave from a flaw of the welded portion is received by a receiving side probe, and an ultrasonic wave propagates from the transmitting side probe to the receiving side probe. An ellipse trajectory calculating means for calculating an elliptical trajectory for equalizing the path length and an echo height for calculating an echo height of a plurality of diffracted waves on the calculated elliptical trajectory by switching a plurality of reception angles of the receiving probe. And a flaw position calculating means for detecting a flaw position of the weld based on the ellipse trajectory calculated by the ellipse trajectory calculating means and the echo height calculated by the echo height calculating means.

この発明によれば、所定の間隔で送信側探触子と受信側探触子とを配置し、送信側探触子から受信側探触子への超音波の伝播経路長を等しくする楕円軌跡を算出して、受信側探触子の受信角度を複数切替えて、楕円軌跡上で複数の回折波のエコー高さを算出して、楕円軌跡上で検出したエコー高さに基づいて溶接部のきずの位置を算出するため、送受信側探触子間の偏った位置に溶接部が位置する場合においてもきずの位置を容易に検出できる。   According to the present invention, the elliptical trajectory in which the transmission side probe and the reception side probe are arranged at predetermined intervals and the propagation path length of the ultrasonic wave from the transmission side probe to the reception side probe is made equal. Calculating the reception angle of the receiving probe, calculating the echo heights of the diffracted waves on the elliptical trajectory, and based on the echo height detected on the elliptical trajectory, Since the position of the flaw is calculated, it is possible to easily detect the position of the flaw even when the welded portion is located at a biased position between the transmitting and receiving side probes.

横穴試験体を示す図である。It is a figure which shows a horizontal hole test body. 横穴試験体を示す図である。It is a figure which shows a horizontal hole test body. 横穴試験体を示す図である。It is a figure which shows a horizontal hole test body. 溶接によってノズルを胴部に接続した場合の送受信探触子の配置位置を示す図である。It is a figure which shows the arrangement position of the transmission / reception probe at the time of connecting a nozzle to a trunk | drum by welding. 開先形状を示す断面図である。It is sectional drawing which shows a groove shape. 板厚が200mmの場合の探傷可能領域を示す図である。It is a figure which shows the flaw detection possible area | region in case plate | board thickness is 200 mm. 溶接部で接続されたノズルを有する胴部における探触子の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the probe in the trunk | drum which has the nozzle connected by the welding part. 溶接部で接続されたノズルを有する胴部における探触子の配置を示す平面図である。It is a top view which shows arrangement | positioning of the probe in the trunk | drum which has the nozzle connected by the welding part. 溶接部におけるきずへの送信側探触子からの超音波の送信と、きずから受信側探触子が受信する超音波の受信角度の考え方を示す図である。It is a figure which shows the view of the transmission angle of the ultrasonic wave from the transmission side probe to the flaw in a welding part, and the reception angle of the ultrasonic wave which a receiving side probe receives from a flaw. 送受信探触子を用いてきず位置を算出するための概念を示す図である。It is a figure which shows the concept for calculating a position, without using a transmission / reception probe. 送受信探触子を用いてきず位置を検出する方法を示す図である。It is a figure which shows the method of detecting a position, without using a transmission / reception probe. 探傷装置のブロック図である。It is a block diagram of a flaw detector. 特定のソフトウエアを用いたTOFD法での結果表示画面を示す図である。It is a figure which shows the result display screen by the TOFD method using specific software.

以下、この発明の一実施の形態を、図面を参照して説明する。まず、この発明の基本的な考え方について説明する。発明者らは、ノズルを溶接で接合した場合の溶接部の欠陥(きず)をどの範囲で検出可能かを知るために、きずを模した横穴を有する横穴試験体101〜103を制作し、それを探傷試験器で探傷して、きずの位置を求めるための送受信探触子の位置および送受信角度を見つけだした。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, the basic concept of the present invention will be described. In order to know in which range the defects (defects) of the welded portion when the nozzles are joined by welding can be detected, the inventors produced transverse hole specimens 101 to 103 having transverse holes simulating flaws. The position of the transmitter / receiver probe and the transmission / reception angle for finding the position of the flaw were found.

なお、「きず」とは非破壊試験の結果から判断される不完全部又は不連続部のことであり、このうち、不合格となるきずを「欠陥」という。   “Flaw” refers to an incomplete portion or a discontinuous portion determined from the result of a nondestructive test, and among these, a flaw that fails is referred to as a “defect”.

製作した横穴試験体101を図1に示す。図1(A)は平面図であり、図1(B)は正面図(図1(A)においてB−Bで示す矢視図)であり、図1(C)は側面図(図1(A)においてC−Cで示す矢視図)である。図1を参照して、横穴試験体101は、長さ800mm、高さ250mm、厚さ40mmの直方体の板であって、図に示すように、異なる位置に貫通孔102、103を有している。具体的には、横穴試験体101は、深さ20mmと50mmの位置に径5mmの貫通孔102,103を有している。   The manufactured horizontal hole specimen 101 is shown in FIG. 1A is a plan view, FIG. 1B is a front view (an arrow view indicated by BB in FIG. 1A), and FIG. 1C is a side view (FIG. (A) is a view taken along the line CC in FIG. Referring to FIG. 1, a lateral hole test body 101 is a rectangular parallelepiped plate having a length of 800 mm, a height of 250 mm, and a thickness of 40 mm, and has through holes 102 and 103 at different positions as shown in the figure. Yes. Specifically, the horizontal hole test body 101 has through holes 102 and 103 having a diameter of 5 mm at positions where the depth is 20 mm and 50 mm.

横穴試験体102を図2に示す。図2(A)は平面図であり、図2(B)は正面図(図2(A)においてB−Bで示す矢視図)であり、図2(C)は側面図(図2(A)においてC−Cで示す矢視図)である。図2を参照して、横穴試験体102は、長さ800mm、高さ250mm、厚さ40mmの直方体の板であって、図に示すように、深さ30mmと100mmの位置に径5mmの貫通孔112,113とを有している。   A horizontal hole specimen 102 is shown in FIG. 2A is a plan view, FIG. 2B is a front view (a view taken along the line BB in FIG. 2A), and FIG. 2C is a side view (FIG. (A) is a view taken along the line CC in FIG. Referring to FIG. 2, the horizontal hole test body 102 is a rectangular parallelepiped plate having a length of 800 mm, a height of 250 mm, and a thickness of 40 mm, and as shown in the drawing, a through hole having a diameter of 5 mm at positions of 30 mm and 100 mm deep. Holes 112 and 113.

同様に、図3を参照して、横穴試験体103は、深さ150mmと200mmの位置に径6mmの貫通孔122,123を有している。   Similarly, with reference to FIG. 3, the horizontal hole test body 103 has through holes 122 and 123 having a diameter of 6 mm at positions of 150 mm and 200 mm in depth.

図4は溶接によってノズル131を胴部133に接続した場合に、発明者らが考えた送受信探触子の配置位置を示す図である。図4を参照して、胴部133にノズル131を溶接した場合に、ノズルネック部132に受信側探触子11を配置し受信側探触子11に対して溶接部134を挟んで送信側探触子12を配置するようにした。   FIG. 4 is a diagram showing the arrangement position of the transmission / reception probe considered by the inventors when the nozzle 131 is connected to the body portion 133 by welding. Referring to FIG. 4, when the nozzle 131 is welded to the body portion 133, the receiving side probe 11 is disposed on the nozzle neck portion 132, and the welding side 134 is sandwiched with respect to the receiving side probe 11. The probe 12 is arranged.

ここで、送信側探触子12は周波数が5MHz、その送信角度が送信側探触子12の載置されている平面から反時計方向に60°で送信する。   Here, the transmission-side probe 12 transmits at a frequency of 5 MHz and a transmission angle of 60 ° counterclockwise from the plane on which the transmission-side probe 12 is placed.

探傷範囲の検討に先立ち、開先形状を仮定した。図5は、既存のノズル開先形状をベースとした、板厚200mmの胴部の開先形状(図中斜線部)を示す。図5を参照して、開先135は上部115と下部116とを有し、上部115の寸法は115mmで開先角度θは35°である。板厚が変わっても開先角度はそのままとしてビード幅が狭くなるような溶接部を仮定した。このとき、ノズル131側のビード止端部を基準位置(図中Y=0で示す)とした。   Prior to the examination of the flaw detection range, a groove shape was assumed. FIG. 5 shows a groove shape (shaded portion in the figure) of a body portion having a thickness of 200 mm based on an existing nozzle groove shape. Referring to FIG. 5, the groove 135 has an upper portion 115 and a lower portion 116, and the upper portion 115 has a dimension of 115 mm and a groove angle θ of 35 °. Even if the plate thickness changed, the weld angle was assumed such that the bead width was narrowed without changing the groove angle. At this time, the bead toe on the nozzle 131 side was set as a reference position (indicated by Y = 0 in the figure).

探傷範囲の確認に際しては、横穴試験体101,111,121を用いて送信受信探触子を所定の間隔に配置し、横穴に対して相対的に送信受信探触子を移動させて、最大エコーが得られた位置、エコー高さが最大エコーの1/2(−6dB)および1/4(−12dB)となる位置を調べ、探触子、位置ごとに結果をまとめて探傷範囲とした。   When checking the flaw detection range, the transmission / reception probe is arranged at a predetermined interval using the horizontal hole specimens 101, 111, 121, and the transmission / reception probe is moved relative to the horizontal hole to obtain the maximum echo. Were obtained, and positions where the echo height was ½ (−6 dB) and ¼ (−12 dB) of the maximum echo were examined, and the results were collected for each probe and position to obtain a flaw detection range.

上記の条件で板厚をいろいろ変化させて寸法に応じて探傷配置と探傷可能範囲について検討した。図6は板厚が200mmの場合の探傷可能領域を示す図である。斜線で示した範囲が探傷可能領域である。ここでは送信探触子が4個用いられる。受信側探触子41に近いほうから第1〜第4送信側探触子42〜45という。第1および第2送信側探触子42,43の送信条件は5MHz60°であり、第3および第4送信側探触子44,45の送信条件は2MHz60°である。   The flaw detection arrangement and the flaw detection possible range were examined according to the dimensions by varying the plate thickness under the above conditions. FIG. 6 is a diagram showing a flaw-detectable region when the plate thickness is 200 mm. A hatched area is a flaw-detectable area. Here, four transmission probes are used. The first to fourth transmission side probes 42 to 45 are referred to from the side closer to the reception side probe 41. The transmission condition of the first and second transmission side probes 42 and 43 is 5 MHz 60 °, and the transmission condition of the third and fourth transmission side probes 44 and 45 is 2 MHz 60 °.

なお、図6において、Y=0は基準位置を示し、受信側探触子41は基準位置から左側に距離a離れた位置に載置され、送信側探触子42〜45は基準位置から右側に、それぞれ、距離e、d、c、b離れた位置に載置される。また、送信側探触子42の下端の左側から斜め左下方向に延びる二点鎖線で示した線が溶接部の形状である。   In FIG. 6, Y = 0 indicates the reference position, the receiving probe 41 is placed at a position a distance a away from the reference position on the left side, and the transmitting probes 42 to 45 are on the right side from the reference position. Are placed at positions separated by distances e, d, c, and b, respectively. Further, a line indicated by a two-dot chain line extending obliquely from the left side of the lower end of the transmission side probe 42 to the lower left direction is the shape of the welded portion.

なお、受信側探触子41の受信条件は、送信条件が5MHz60°のものについては、5MHzで5°、25°、および、60°であり、送信条件が2Hz60°のものについては、2MHzで5°、25°、および、60°である。   The reception condition of the receiving probe 41 is 5 °, 25 °, and 60 ° at 5 MHz for a transmission condition of 5 MHz 60 °, and 2 MHz for a transmission condition of 2 Hz 60 °. 5 °, 25 °, and 60 °.

図6に示すように、200mmの板厚において、送信側探触子の送信条件を2MHz、5MHz、60°とし、受信側探触子の受信条件は、2MHzで5°、25°および60°ならびに5MHz、60°、5MHzで5°、25°および60°であれば、必要な領域を探傷できる。このように、板厚に応じて溶接部をカバーできるように送信側および受信側探触子を配置すればノズルの溶接部の探傷が可能であることがわかる。   As shown in FIG. 6, with a plate thickness of 200 mm, the transmission conditions of the transmitting probe are 2 MHz, 5 MHz, 60 °, and the receiving conditions of the receiving probe are 5 °, 25 °, and 60 ° at 2 MHz. If 5 °, 60 °, 5 MHz, 5 °, 25 °, and 60 °, a necessary region can be detected. Thus, it can be seen that flaw detection of the welded portion of the nozzle is possible if the transmitting side and receiving side probes are arranged so as to cover the welded portion according to the plate thickness.

次に、具体的なノズル溶接部の探傷方法および探触子の配置の決定方法について説明する。上記のことから、ノズル溶接部の探傷方法および探触子の配置を次のように決定した。   Next, a specific flaw detection method for the nozzle welded portion and a method for determining the arrangement of the probe will be described. From the above, the flaw detection method for the nozzle weld and the arrangement of the probe were determined as follows.

探傷は管胴部の内面からも可能であるが、外面側から行なう。また、送信および受信周波数は適用する板厚ごとに縦波5MHzまたは2MHzを使用する。具体的には板厚50mm以下のとき縦波5MHzを使用し、板厚50mm〜200mmのとき縦波2MHzと5MHzとを併用する。   Although flaw detection is possible from the inner surface of the tube body, it is performed from the outer surface side. The transmission and reception frequencies use a longitudinal wave of 5 MHz or 2 MHz for each applied plate thickness. Specifically, a longitudinal wave of 5 MHz is used when the plate thickness is 50 mm or less, and a longitudinal wave of 2 MHz and 5 MHz is used together when the plate thickness is 50 mm to 200 mm.

また、送信側探触子および受信側探触子の組合せは次のようにする。   The combination of the transmitter probe and the receiver probe is as follows.

溶接部全体をカバーするために3種類の受信角度で探傷する。   In order to cover the entire welded portion, flaw detection is performed at three kinds of reception angles.

送信側60°と受信側5°、送信側60°と受信側25°、送信側60°と受信側60°のそれぞれの探触子の組合せとする。   The probe is a combination of 60 ° on the transmission side and 5 ° on the reception side, 60 ° on the transmission side and 25 ° on the reception side, and 60 ° on the transmission side and 60 ° on the reception side.

次に探触子の配置について説明する。図7は溶接部60で接続されたノズル61を有する胴部62における探触子の配置を示す図である。図7を参照して、は溶接部60を挟んで受信側探触子51と送信側探触子52、53が配置される。また、図8(A)は図7に示したような探触子において、好ましい配置を示す平面図である。また、図8(B)は図8(A)と同様の図であるが、ノズル61の径が大きい場合を示す図である。具体的には、図8(A)はノズル溶接部半径が150mmの場合の図であり、図8(B)はノズル溶接部半径が300mmの場合を示す図である。   Next, the arrangement of the probes will be described. FIG. 7 is a view showing the arrangement of the probe in the body portion 62 having the nozzle 61 connected by the welding portion 60. Referring to FIG. 7, a reception side probe 51 and transmission side probes 52 and 53 are arranged with a welded portion 60 interposed therebetween. FIG. 8A is a plan view showing a preferred arrangement in the probe as shown in FIG. FIG. 8B is a view similar to FIG. 8A, but showing a case where the diameter of the nozzle 61 is large. Specifically, FIG. 8A is a view when the nozzle weld radius is 150 mm, and FIG. 8B is a view showing a case where the nozzle weld radius is 300 mm.

図7および図8を参照して、第1送信側探触子52と第2送信側探触子53とが溶接部60を挟んでノズル61の反対側に載置され、受信側探触子51がノズル61側に載置される。   Referring to FIGS. 7 and 8, the first transmitting probe 52 and the second transmitting probe 53 are placed on the opposite side of the nozzle 61 with the weld 60 interposed therebetween, and the receiving probe. 51 is placed on the nozzle 61 side.

また、図8(A)に示すように、60°の送信側探触子52cと5°の受信側探触子51cの組と、25°の送信側探触子52bと25°の受信側探触子51bの組と、60°の送信側探触子52aと60°の受信側探触子51aの組との3組の送信側および受信側探触子をノズル溶接部60の中心から扇状に並べて探傷すれば、一度にその部分の探傷が可能になる。   Also, as shown in FIG. 8A, a set of a 60 ° transmitting probe 52c and a 5 ° receiving probe 51c, a 25 ° transmitting probe 52b, and a 25 ° receiving side From the center of the nozzle welded portion 60, three sets of transmitting side and receiving side probes, that is, a set of probes 51 b and a set of 60 ° transmitting side probe 52 a and 60 ° receiving side probe 51 a are arranged. If the flaws are arranged in a fan shape, the flaws can be detected at once.

次に、この実施の形態におけるきずの高さおよびきずの深さの評価方法について説明する。図9は溶接部におけるきずへの送信側探触子12からの超音波の送信と、きずから受信側探触子11が受信する超音波の受信角度の考え方を示す図である。ここでは、ノズルの溶接部を探傷するために、受信側探触子11は溶接部60の近傍に配置され、送信側探触子12は溶接部60から離れた位置に配置される。   Next, the evaluation method of the flaw height and flaw depth in this embodiment will be described. FIG. 9 is a diagram showing the concept of the transmission angle of the ultrasonic wave from the transmitting probe 12 to the flaw and the reception angle of the ultrasonic wave received by the receiving probe 11 from the flaw. Here, in order to detect flaws in the welded portion of the nozzle, the receiving probe 11 is disposed in the vicinity of the welded portion 60, and the transmitting probe 12 is disposed in a position away from the welded portion 60.

送信側探触子12と受信側探触子11との超音波入射位置の間隔をfとする。送信側探触子12から受信側探触子11へ送信される超音波ビームのうち、きず70を反射する伝播経路長wを有する楕円軌跡を求め、これと、受信側探触子11におけるエコー高さの高い受信角度θとの交点がきず70で反射する位置を示す。   Let f be the interval between the ultrasonic incident positions of the transmitting probe 12 and the receiving probe 11. Among the ultrasonic beams transmitted from the transmission side probe 12 to the reception side probe 11, an elliptical trajectory having a propagation path length w that reflects the flaw 70 is obtained, and this and an echo in the reception side probe 11 are obtained. The position where the intersection with the high reception angle θ is reflected by the scratch 70 is shown.

きず70で反射する伝播経路長wは探傷図形から読取れるため、楕円軌跡が算出され、受信側探触子11による受信角度θが推定できれば、きずの位置を算出することが可能になる。   Since the propagation path length w reflected by the flaw 70 can be read from the flaw detection figure, if the elliptical locus is calculated and the reception angle θ by the receiving probe 11 can be estimated, the position of the flaw can be calculated.

受信側探触子11の受信角度θとしては最もエコー高さが高い角度を求める必要がある。これは、受信側探触子11において受信角度をスキャンすればよい。   As the reception angle θ of the reception side probe 11, it is necessary to obtain an angle having the highest echo height. This can be done by scanning the receiving angle in the receiving probe 11.

一方で、複数の角度、例えば、5°、25°、60°の各々の角度で受信側探触子で検出した同一のきずと推定されるエコーのエコー高さから求めてもよい。周波数、振動直径が同一の探触子は、超音波ビームの拡がりがほぼ同様と考え、各々の探触子のエコー高さの比から受信角度を求める。例えば、図9において、θが5°と25°とのエコー高さの比が1:2であれば、θが5°と25°との間を2:1に按分した位置にきずが存在すると判断できる。   On the other hand, you may obtain | require from the echo height of the echo estimated as the same flaw detected with the receiving side probe in each of several angles, for example, each angle of 5 degrees, 25 degrees, and 60 degrees. The probes having the same frequency and vibration diameter are considered to have substantially the same spread of the ultrasonic beam, and the reception angle is obtained from the ratio of the echo heights of the probes. For example, in FIG. 9, if the ratio of the echo height of θ is 5 ° and 25 ° is 1: 2, there is a flaw at a position where θ is divided by 2: 1 between 5 ° and 25 °. It can be judged.

次に、きずの深さの算出方法について説明する。前述のようにきず位置は、送受信側探触子11、12の間隔ときずの上端部の位置における伝播経路長と受信波のエコー高さから計算される。   Next, the flaw depth calculation method will be described. As described above, the flaw position is calculated from the propagation path length and the echo height of the received wave at the position of the upper end of the transmission / reception side probe 11, 12.

図10は送受信探触子を用いてきず位置を算出するための具体的な方法を示す図である。図10(A)は概念を模式化した図であり、図10(B)は、図10(A)のように模式化される前の実際の送信側探触子12と、受信側探触子11と、両者によって特定されるきず70の位置関係を示す図である。   FIG. 10 is a diagram illustrating a specific method for calculating a position without using a transmission / reception probe. FIG. 10A schematically illustrates the concept, and FIG. 10B illustrates the actual transmitter probe 12 and the receiver probe before being modeled as illustrated in FIG. It is a figure which shows the positional relationship of the child 11 and the flaw 70 specified by both.

ここで、X=0およびY=0の位置を原点とし、焦点Fの位置に送信側探触子11と受信側探触子12とが位置するものとする。w/2+w/2=wは送信側探触子12から受信側探触子11への超音波の伝播経路長を等しくする楕円軌跡を形成する距離であり、θは異なる受信側探触子の受信波のエコー高さから求めた受信角度である。   Here, it is assumed that the positions X = 0 and Y = 0 are the origin, and the transmitting probe 11 and the receiving probe 12 are positioned at the position of the focal point F. w / 2 + w / 2 = w is a distance that forms an elliptical trajectory that equalizes the propagation path length of the ultrasonic wave from the transmitting probe 12 to the receiving probe 11, and θ is a different receiving probe. This is the reception angle obtained from the echo height of the received wave.

また、aは楕円の長辺であり、bは楕円の短辺であり、cはエコー高さから求めた受信波のY軸の切片である。   Further, a is the long side of the ellipse, b is the short side of the ellipse, and c is the Y-axis intercept of the received wave obtained from the echo height.

この例であれば、楕円の軌跡と受信側探触子11の位置から受信角度θで引いた直線との交点14(○で示す)がきず70の位置として推定される。   In this example, an intersection 14 (indicated by a circle) between the elliptical trajectory and a straight line obtained by subtracting the reception angle θ from the position of the receiving probe 11 is estimated as the position of the flaw 70.

具体的には、きず70の位置14は、楕円と直線の連立式から求める。このようにすれば、交点の座標(x,y)を求めることができる。   Specifically, the position 14 of the flaw 70 is obtained from a simultaneous equation of an ellipse and a straight line. In this way, the coordinates (x, y) of the intersection can be obtained.

次に、きず70の高さの算出について説明する。上で求めたきず70の上端位置14のX座標上にきずがあるものとして、きず70の下端からのエコーの伝播距離から計算される楕円の式にX座標の値を代入して下端位置を求める。そして上端位置と下端位置との差をきず70の高さとする。   Next, calculation of the height of the scratch 70 will be described. Assuming that there is a flaw on the X coordinate of the upper end position 14 of the flaw 70 obtained above, the value of the X coordinate is substituted into the ellipse equation calculated from the echo propagation distance from the lower end of the flaw 70 to obtain the lower end position. Ask. The difference between the upper end position and the lower end position is the height of the flaw 70.

ここで、交点を求める関係式は次のとおりである。
y=√((1-X)/a)*b
y=tanη×X+c
Here, the relational expression for obtaining the intersection is as follows.
y = √ ((1-X 2 ) / a 2 ) * b 2 )
y = tan η × X + c

次に、具体的な算出方法について説明する。ここでは、図1〜3に示したような複数の貫通孔を有する試験体を用いて、貫通孔をきずとして検出し、その位置を求める場合を説明する。図11はパソコンの表示画面を示す図である。図11(A)は受信角度が60°の探触子で受信した場合の試験体におけるある特定のきずに対して、そのきずの位置をカーソルで特定する場合を示す図であり、図11(B)はその場合のエコー高さを示す図である。図11(A)において横軸は試験体の端部からの距離を示し、縦軸は伝播時間を示す。図11(B)において横軸は試験体の端部からの距離を示し、縦軸はエコー高さを示す。同様に、図11(C)と(D)は受信角度が25°の場合の、図11(E)と(F)とは受信角度が5°の場合の、きずの位置と、エコー高さを示す。   Next, a specific calculation method will be described. Here, the case where a through hole is detected as a flaw using a test body having a plurality of through holes as shown in FIGS. FIG. 11 shows a display screen of a personal computer. FIG. 11A is a diagram showing a case where the position of a flaw is specified with a cursor with respect to a specific flaw in the specimen when the probe is received by a probe having a reception angle of 60 °. B) is a diagram showing the echo height in that case. In FIG. 11A, the horizontal axis indicates the distance from the end of the specimen, and the vertical axis indicates the propagation time. In FIG. 11B, the horizontal axis indicates the distance from the end of the specimen, and the vertical axis indicates the echo height. Similarly, FIGS. 11C and 11D show the flaw position and echo height when the reception angle is 25 °, and FIGS. 11E and 11F show the flaw position and echo height when the reception angle is 5 °. Indicates.

図11(A)および(B)を参照して、受信角度が60°の探触子で受信した場合のきずの位置の特定方法について説明する。図11(A)に示すように、画面上には試験体に設けられた複数のきずが画面上に参照番号71,72等で示すように表示される。表示されたそれぞれのきずのうち、所望のきず(ここでは参照番号72)をカーソル線81〜83で選択する。ここでカーソル線82はきずの上端部の位置を、カーソル線83はきずの下端部の位置を示す。   With reference to FIGS. 11A and 11B, a method for specifying the position of a flaw when the probe is received by a probe having a reception angle of 60 ° will be described. As shown in FIG. 11A, a plurality of flaws provided on the specimen are displayed on the screen as indicated by reference numerals 71, 72 and the like. Of the displayed flaws, a desired flaw (here, reference numeral 72) is selected with the cursor lines 81-83. Here, the cursor line 82 indicates the position of the upper end portion of the flaw, and the cursor line 83 indicates the position of the lower end portion of the flaw.

図11(A)において、きずの位置を特定すると、その位置におけるのエコー波形86が図11(B)に示すように表示される。ここでカーソル線82で示すきずの上端部がエコー波形86の極小部86aに対応し、カーソル線83で示すきずの下端部がエコー波形86の極大部86bに対応する。このようにしてきずの位置を特定すると、その時のエコー高さ等のデータが自動的に後に説明する、図13(A)に示すように入力される。   In FIG. 11A, when the position of the flaw is specified, an echo waveform 86 at that position is displayed as shown in FIG. Here, the upper end portion of the flaw indicated by the cursor line 82 corresponds to the minimum portion 86 a of the echo waveform 86, and the lower end portion of the flaw indicated by the cursor line 83 corresponds to the maximum portion 86 b of the echo waveform 86. When the position of the flaw is specified in this way, data such as the echo height at that time is automatically input as shown in FIG.

図12に図11に示したような表示画面を表示する表示部を有する探傷装置20のブロック図を示す。図12を参照して、探傷装置20は、制御部21と、表示部22と、演算部23と、受信側探触子11と送信側探触子12とのインターフェースとなるI/O部24とを有するパソコンであって、制御部21が表示部22、演算部23、I/O部24を制御してきずの位置を特定する。   FIG. 12 is a block diagram of the flaw detection apparatus 20 having a display unit that displays the display screen as shown in FIG. Referring to FIG. 12, flaw detection apparatus 20 includes a control unit 21, a display unit 22, a calculation unit 23, and an I / O unit 24 that serves as an interface between reception-side probe 11 and transmission-side probe 12. The control unit 21 controls the display unit 22, the calculation unit 23, and the I / O unit 24 to specify the position of the flaw.

次に、探傷装置20を用いたきず70の位置の解析方法について説明する。探傷装置20は、きずの深さ算出機能を備えている。この機能は、エクセル(登録商標)のような表計算ソフトウエアに連動して、探傷結果のカーソル表示位置や伝播時間とエコー高さ等をこの表計算ソフトウエアに与えて表計算ソフトウエア上で算出し、その結果を表示部に表示する機能である。   Next, a method for analyzing the position of the flaw 70 using the flaw detection apparatus 20 will be described. The flaw detection apparatus 20 has a flaw depth calculation function. This function is linked with spreadsheet software such as Excel (registered trademark), and the cursor display position of the flaw detection result, propagation time, echo height, etc. are given to this spreadsheet software. This is a function for calculating and displaying the result on the display unit.

なお、上記したように算出結果はカーソルの動きにあわせてリアルタイムで表示部22に表示される。   As described above, the calculation result is displayed on the display unit 22 in real time in accordance with the movement of the cursor.

一例として、図13にこのソフトウエアを用いたTOFD法での結果表示画面を示す。   As an example, FIG. 13 shows a result display screen by the TOFD method using this software.

図13(A)は図11に示したようにカーソルを用いてきずの位置を特定したときのソフトウエアの表示画面例を示す図である。ここでは、ある探傷例における、受信側探触子の公称屈折角と、探傷ゲイン値と、上端エコー高さと、下端エコー高さと、上端ビームの伝播時間と、下端ビームの伝播時間とが、それぞれの角度ごとに自動的に入力された状態を示す。上記したように、受信側探触子11の公称屈折角ごとに、探傷感度のゲインが調整され、上端エコー高さ、下端エコー高さ、上端伝播時間、下端伝播時間が表示される。   FIG. 13A is a diagram showing an example of a software display screen when the position where the cursor is not used is specified as shown in FIG. Here, the nominal refraction angle, flaw detection gain value, top echo height, bottom echo height, top beam propagation time, and bottom beam propagation time of the receiving probe in a certain flaw detection example, respectively, The state automatically input for each angle is shown. As described above, the gain of flaw detection sensitivity is adjusted for each nominal refraction angle of the receiving probe 11 and the upper end echo height, the lower end echo height, the upper end propagation time, and the lower end propagation time are displayed.

これが入力されると、図12(B)に示すように、きず位置、きず深さ、および、きず高さが上記の式に基づいて自動的に算出される。   When this is input, as shown in FIG. 12 (B), the flaw position, flaw depth, and flaw height are automatically calculated based on the above equations.

なお、上記実施の形態においては、屈折角として、5°、25°、60°の場合について説明したが、これに限らず、溶接部をカバーできれば、3つの角度に限らず、2つの角度等であってもよいし、複数の角度において、他の組合せでもよい。   In the above-described embodiment, the case where the refraction angle is 5 °, 25 °, or 60 ° has been described. However, the present invention is not limited to this. Or other combinations at a plurality of angles.

また、上記実施の形態において、送信角度は60°の場合について説明したが、これに限らず、任意の角度であってもよい。   Moreover, although the case where the transmission angle is 60 ° has been described in the above embodiment, the present invention is not limited to this and may be an arbitrary angle.

図面を参照してこの発明の実施形態を説明したが、本発明は、図示した実施形態に限定されるものではない。本発明と同一の範囲内において、または均等の範囲内において、図示した実施形態に対して種々の変更を加えることが可能である。   Although the embodiments of the present invention have been described with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications can be made to the illustrated embodiment within the same scope or equivalent scope as the present invention.

この発明に係るTOFD法を用いた溶接部の探傷装置および探傷方法は、溶接で接続されたノズルのきずの位置等を簡単に算出できるため、ノズルの溶接部の探傷装置、および、その方法として有利に利用される。   Since the flaw detection apparatus and the flaw detection method using the TOFD method according to the present invention can easily calculate the position of the flaw of the nozzle connected by welding, the flaw detection apparatus for the weld part of the nozzle and the method thereof It is advantageously used.

11,41 受信側探触子、12,42 送信側探触子、20 探傷装置、21 制御部、22 表示部、23 演算部、24 I/O部、60 溶接部、61,131 ノズル、62,133 胴部、101、111,121 横穴試験体、102,103、112,113,122,123 貫通孔。   11, 41 Receiver probe, 12, 42 Transmitter probe, 20 Flaw detector, 21 Control unit, 22 Display unit, 23 Calculation unit, 24 I / O unit, 60 Welding unit, 61, 131 Nozzle, 62 133 Body, 101, 111, 121 Horizontal hole specimen, 102, 103, 112, 113, 122, 123 Through hole.

Claims (3)

TOFD法を用いた溶接部の探傷方法であって、
送信側探触子と受信側探触子とを前記溶接部を挟んで配置し、
前記送信側探触子から所定の角度で前記溶接部に超音波ビームを送信し、
前記受信側探触子で前記超音波ビームによる前記溶接部のきずからの回折波を受信し、
前記送信探触子から前記受信探触子への前記超音波の伝播経路長を等しくする楕円軌跡を算出し、
前記受信探触子の受信角度を複数切替えて、前記検出された楕円軌跡上で複数の回折波のエコー高さを算出し、
前記検出された複数の回折波のエコー高さに基づいて前記溶接部のきずの位置を算出し、
前記受信側探触子は前記溶接部の近傍に配置し、前記送信側探触子は前記溶接部から離して配置する、TOFD法を用いた溶接部の探傷方法。
A method for flaw detection of a weld using the TOFD method,
A transmitting probe and a receiving probe are arranged across the weld,
An ultrasonic beam is transmitted from the transmitting probe to the weld at a predetermined angle;
Receiving the diffracted wave from the flaw of the weld by the ultrasonic beam at the receiving probe;
Calculating an elliptical trajectory that equalizes the propagation path length of the ultrasonic wave from the transmitting probe to the receiving probe;
By switching a plurality of reception angles of the reception probe, calculating echo heights of a plurality of diffraction waves on the detected elliptical locus,
Based on the detected echo height of the plurality of diffracted waves, to calculate the position of the flaws of the weld,
A method for flaw detection of a welded portion using the TOFD method, wherein the receiving side probe is arranged in the vicinity of the welded portion, and the transmitting side probe is arranged away from the welded portion.
前記溶接部のきずの位置の検出は、受信角度を複数切替えた回折波の強度に応じて検出する、請求項1に記載のTOFD法を用いた溶接部の探傷方法。   The method for flaw detection of a welded portion using the TOFD method according to claim 1, wherein the detection of the position of a flaw in the welded portion is detected according to the intensity of a diffracted wave with a plurality of reception angles switched. TOFD法を用いた溶接部の探傷装置であって、
溶接部を挟んで配置される、送信側探触子および受信側探触子を含み、
前記送信側探触子は所定の角度で前記溶接部に超音波ビームを送信し、
前記受信側探触子は前記超音波ビームによる前記溶接部のきずからの回折波を受信し、
前記送信探触子から前記受信探触子への前記超音波の伝播経路長を等しくする楕円軌跡を算出する楕円軌跡算出手段と、
前記受信探触子の受信角度を複数切替えて、前記算出された楕円軌跡上で複数の回折波のエコー高さを算出するエコー高さ検出手段と、
前記楕円軌跡算出手段の算出した楕円軌跡と前記エコー高さ算出手段の算出したエコー高さに基づいて前記溶接部のきずの位置を算出するきず位置算出手段とを含み、
前記受信側探触子は前記溶接部の近傍に配置し、前記送信側探触子は前記溶接部から離して配置する、TOFD法を用いた溶接部の探傷装置。
A flaw detection apparatus for welds using the TOFD method,
Including a transmitter probe and a receiver probe disposed across the weld,
The transmitting probe transmits an ultrasonic beam to the weld at a predetermined angle;
The receiving probe receives a diffracted wave from a flaw of the weld by the ultrasonic beam,
Elliptic trajectory calculating means for calculating an elliptic trajectory for equalizing the propagation path length of the ultrasonic wave from the transmission probe to the reception probe;
Echo height detection means for switching a plurality of reception angles of the reception probe and calculating echo heights of a plurality of diffracted waves on the calculated elliptical locus;
Flaw position calculating means for calculating the position of the flaw of the weld based on the elliptical trajectory calculated by the elliptic trajectory calculating means and the echo height calculated by the echo height calculating means,
A flaw detection apparatus for a welded portion using a TOFD method, wherein the receiving side probe is arranged in the vicinity of the welded portion, and the transmitting side probe is arranged away from the welded portion.
JP2011235283A 2011-10-26 2011-10-26 Flaw detection method and flaw detection apparatus for welds using TOFD method Active JP5846367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235283A JP5846367B2 (en) 2011-10-26 2011-10-26 Flaw detection method and flaw detection apparatus for welds using TOFD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235283A JP5846367B2 (en) 2011-10-26 2011-10-26 Flaw detection method and flaw detection apparatus for welds using TOFD method

Publications (2)

Publication Number Publication Date
JP2013092468A JP2013092468A (en) 2013-05-16
JP5846367B2 true JP5846367B2 (en) 2016-01-20

Family

ID=48615686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235283A Active JP5846367B2 (en) 2011-10-26 2011-10-26 Flaw detection method and flaw detection apparatus for welds using TOFD method

Country Status (1)

Country Link
JP (1) JP5846367B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590344A (en) * 2012-02-29 2012-07-18 天津诚信达金属检测技术有限公司 Ultrasonic TOFD (Time of Flight Diffraction) detection method for T-shaped welding joint
CN103940906A (en) * 2014-04-22 2014-07-23 国家电网公司 Time of flight diffraction (TOFD) detection method capable of confirming defect size and location parameters
CN104483387B (en) * 2014-12-30 2017-10-10 国电科学技术研究院 Nuclear power examines technique with the TOFD of heavy wall austenitic steel pipeline inner wall defect
CN110988132A (en) * 2019-12-20 2020-04-10 中国化学工程第三建设有限公司 Welding seam single-side TOFD detection method
CN111707735B (en) * 2020-05-14 2023-08-18 北京工业大学 Method for quantifying transverse cracks of fan spindle by using dual-mode diffraction waves
CN111913434B (en) * 2020-07-03 2022-06-10 哈尔滨工业大学 Method for calculating motion trail of ultrasonic elliptical vibration cutting technology

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109860A (en) * 1982-12-16 1984-06-25 Toshiba Corp Ultrasonic flaw detector
JP4148959B2 (en) * 2005-05-19 2008-09-10 川崎重工業株式会社 Ultrasonic flaw detection method and apparatus

Also Published As

Publication number Publication date
JP2013092468A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4910768B2 (en) Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method
EP2124046B1 (en) Method for controlling quality of tubular body and tubular body manufacturing method
JP5846367B2 (en) Flaw detection method and flaw detection apparatus for welds using TOFD method
WO2016155403A1 (en) Ultrasonic detection and locating method and device based on tofd and phased array
CN106290583A (en) A kind of ultrasonic phase array detection Small-diameter Tube Seams Special test block
CN106257999A (en) Portable matrix phased array means of spot welds checks system
CN109313164B (en) Apparatus for detecting defect and method for detecting defect thereof
CN103969341A (en) Ultrasonic testing special probe for butt girth welding of austenitic stainless steel pipe
JP2008286640A (en) Device and method for ultrasonic flaw detection of pipe
JP2019504311A (en) Crack measuring apparatus and method
JP2011149888A (en) Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
JP5574731B2 (en) Ultrasonic flaw detection test method
KR20220034889A (en) Ultrasonic Inspection Systems and Ultrasonic Inspection Methods
JP2006322900A (en) Ultrasonic inspecting method and ultrasonic inspecting apparatus
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
TWI471559B (en) Ultrasonic sensor, the use of its inspection methods and inspection devices
JP2005274583A (en) Ultrasonic flaw detection method and its system
CN103512953B (en) Adopt multi-probe supersonic testing method
JP2009014513A (en) Ultrasonic flaw detection method
JP2006138672A (en) Method of and device for ultrasonic inspection
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP5957297B2 (en) Defect search device, scan device, and defect search method
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R150 Certificate of patent or registration of utility model

Ref document number: 5846367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250