JP2006322900A - Ultrasonic inspecting method and ultrasonic inspecting apparatus - Google Patents

Ultrasonic inspecting method and ultrasonic inspecting apparatus Download PDF

Info

Publication number
JP2006322900A
JP2006322900A JP2005148520A JP2005148520A JP2006322900A JP 2006322900 A JP2006322900 A JP 2006322900A JP 2005148520 A JP2005148520 A JP 2005148520A JP 2005148520 A JP2005148520 A JP 2005148520A JP 2006322900 A JP2006322900 A JP 2006322900A
Authority
JP
Japan
Prior art keywords
wave
defect
probe
ultrasonic
ultrasonic test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148520A
Other languages
Japanese (ja)
Other versions
JP4355679B2 (en
Inventor
Satoru Shiroshita
悟 城下
Tatsuyuki Nagai
辰之 永井
Hideki Yabushita
秀記 薮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2005148520A priority Critical patent/JP4355679B2/en
Publication of JP2006322900A publication Critical patent/JP2006322900A/en
Application granted granted Critical
Publication of JP4355679B2 publication Critical patent/JP4355679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic inspecting method and an ultrasonic inspecting apparatus, capable of simply and precisely measuring a height of a defect such as an aperture crack or the like on the rear surface of a welded zone in a stainless steel. <P>SOLUTION: An oscillator 11 operating in a longitudinal wave oblique angle probe 10 is moved along a surface of a test object 100 in a direction of a plane carrying a transmission wave. Then, a B-scope image of a reception signal is displayed on a coordinate having axes of a probe position and a reception time or corresponding units, such that an image of a longitudinal wave, a transversal wave, a mode transformed wave and a creeping wave represents their trajectories. Reflection paths and reflection sources corresponding to above wave kinds are specified from relative positional relations of respective trajectories, and a position and a size of the defect are presumed. For example, in the case of the defect which is in communication with the bottom of the test object, the size of the defect is determined from appearances of the creeping wave, the mode transformed wave and the longitudinal wave or the transversal wave from the head edge section of the defect. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、オーステナイト系ステンレス鋼溶接部の亀裂等を簡便に検出可能な超音波試験方法および超音波試験装置に関する。   The present invention relates to an ultrasonic test method and an ultrasonic test apparatus that can easily detect cracks and the like in welded portions of austenitic stainless steel.

従来、オーステナイト系ステンレス鋼溶接部の超音波探傷試験はフェライト鋼に比べ超音波の透過性が悪く欠陥の検出及び欠陥高さ(深さ)測定の適用性が劣っていることが知られている。従来の欠陥サイジング方法は例えば非特許文献1に記載されているように以下の手法が使用されている。イ)横波斜角探触子で有害な欠陥を検出。ロ)割れの存在が疑われる場合には、クリーピング波探触子を使用して試験体の裏面(探触子を走査している反対側の面)からの割れの有無を確認。ハ)クリーピング波探触子を使用して、割れの大きさの大まかな分類(大、中、小の区分)を行う。ニ)割れの大きさの分類結果を参考にして、割れの高さ(深さ)測定にはイ)端部エコー法、ロ)TOFD法、ハ)フェーズドアレイ法等の方法が単独又は組み合わせで用いられている。また、特許文献1の如く端部エコーの最大値を利用した試験方法が知られている。
JEAG4207−2004「軽水型原子力発電所用機器の供用期間中検査における超音波探傷指針」 特開平11−248690号
Conventionally, ultrasonic testing of austenitic stainless steel welds is known to have poorer ultrasonic transmission than ferritic steel and poor applicability for defect detection and defect height (depth) measurement. . As a conventional defect sizing method, for example, the following method is used as described in Non-Patent Document 1. B) A harmful defect is detected with a shear wave oblique angle probe. B) If the presence of cracks is suspected, use a creeping wave probe to check for cracks from the back of the specimen (the opposite side where the probe is scanned). C) Using a creeping wave probe, roughly classify the size of cracks (large, medium, and small). D) With reference to the classification results of the crack size, the height (depth) of the crack can be measured by a) the edge echo method, b) the TOFD method, or c) the phased array method alone or in combination. It is used. Further, as in Patent Document 1, a test method using the maximum value of the end echo is known.
JEAG 4207-2004 “Guidelines for ultrasonic testing in in-service inspection of equipment for light water nuclear power plants” JP-A-11-248690

これらの手法には次のような問題点があった。イ)試験を行う技術者が、クリーピング波探触子による方法、端部エコー法、TOFD法およびフェーズドアレイ法等の多くの技術に習熟していることが必要である。ロ)TOFD法は溶接部からのノイズがある場合には適用できない。ハ)端部エコー法、フェーズドアレイ法は欠陥の先端部からの信号と先端部以外の信号を識別するのが難しく、検査員の主観で測定結果が異なる。ニ)検査員の主観で測定結果が異なることから、測定値のばらつきが大きいなどである。   These methods have the following problems. B) It is necessary that the engineer performing the test is familiar with many techniques such as the creeping wave probe method, the end echo method, the TOFD method, and the phased array method. B) The TOFD method cannot be applied when there is noise from the weld. C) In the end echo method and the phased array method, it is difficult to distinguish the signal from the tip of the defect and the signal other than the tip, and the measurement results differ depending on the subjectivity of the inspector. D) Since the measurement results differ depending on the subjectivity of the inspector, there are large variations in measured values.

本発明の目的は、ステンレス鋼溶接部裏面開口割れ等の欠陥高さを簡便に精度よく測定することの可能な超音波試験方法および試験装置を提供することにある。   An object of the present invention is to provide an ultrasonic test method and a test apparatus capable of easily and accurately measuring the height of a defect such as a back surface opening crack in a stainless steel welded portion.

上記目的を達成するため、本発明に係る超音波試験方法の特徴は、縦波斜角探触子の作動する振動子を送信波の属する平面の方向に試験体表面に沿って移動させ、縦波、横波、モード変換波及びクリーピング波による画像が軌跡として表示されるように探触子位置と受信時間又はこれに相当する単位(以下、「受信時間等」)を軸とする座標に受信信号のBスコープ画像を表示し、各軌跡の相対的な位置関係から波の種類に応じた反射経路と反射源と特定し、欠陥の位置及び大きさを推定することにある。   In order to achieve the above object, the ultrasonic test method according to the present invention is characterized in that a transducer on which a longitudinal wave oblique angle probe operates moves in the direction of a plane to which a transmission wave belongs along the surface of the specimen, thereby Received at coordinates with probe position and reception time or equivalent unit (hereinafter referred to as “reception time”) as axes so that images by waves, transverse waves, mode conversion waves and creeping waves are displayed as trajectories The B scope image of the signal is displayed, the reflection path and the reflection source corresponding to the type of wave are identified from the relative positional relationship of each locus, and the position and size of the defect are estimated.

ここで、振動子を移動させるには、「前記縦波斜角探触子を移動させることにより前記作動する振動子を送信波の属する平面の方向に試験体表面に沿って移動させる」態様がある。また、「前記振動子が複数の列状振動子よりなり、前記作動する振動子を列状振動子内で切り替えて作動させることにより前記作動する振動子を送信波の属する平面の方向に試験体表面に沿って移動させる」ようにしてもよい。   Here, in order to move the transducer, an aspect of “moving the longitudinal wave oblique angle probe to move the activated transducer along the surface of the specimen in the direction of the plane to which the transmission wave belongs” is provided. is there. Further, “the vibrator is composed of a plurality of columnar vibrators, and the vibrator to be operated is switched in the columnar vibrator to operate the vibrator in the direction of the plane to which the transmission wave belongs. It may be moved along the surface.

前記欠陥が試験体の底に連通するものである場合、クリーピング波、モード変換波及び欠陥先端部からの横波又は縦波の表れ方により欠陥の大きさを判別するとよい。   In the case where the defect communicates with the bottom of the specimen, the size of the defect may be determined based on how the creeping wave, the mode conversion wave, and the transverse wave or longitudinal wave appear from the tip of the defect.

また、同一欠陥部分から生じる横波及び縦波の軌跡から前記探触子位置及び受信時間等をそれぞれ求め、これら2組の探触子位置及び受信時間等の関係より同一欠陥部分の座標を求めてもよい。   Further, the probe position and the reception time are obtained from the trajectory of the transverse wave and the longitudinal wave generated from the same defect portion, respectively, and the coordinates of the same defect portion are obtained from the relationship between the two sets of probe positions and the reception time. Also good.

さらに、本発明は、前記欠陥が試験体の底に連通するものであり、クリーピング波の軌跡から前記探触子位置及び受信時間等を求め、前記欠陥部分の前記底における位置を求めることにある。   Further, according to the present invention, the defect communicates with the bottom of the specimen, and the probe position and the reception time are obtained from the locus of the creeping wave, and the position of the defect portion on the bottom is obtained. is there.

前記欠陥のうち中間部分から生じるモード変換波の軌跡の複数点から前記探触子位置及び受信時間等をそれぞれ求め、これら複数組の探触子位置及び受信時間等の幾何学的関係より中間欠陥部分の座標を求めることを特徴とする。   Among the defects, the probe position and the reception time are obtained from a plurality of points of the trajectory of the mode-converted wave generated from the intermediate part, respectively, and the intermediate defect is obtained from the geometric relationship such as the plurality of sets of probe positions and the reception times. It is characterized by obtaining the coordinates of the part.

上記各特徴において、同一欠陥部分から生じる縦波の軌跡上の少なくとも2点から前記探触子位置及び受信時間等をそれぞれ求め、これら2組以上の探触子位置及び受信時間等の関係より同一欠陥部分の座標を求めてもよい。   In each of the above characteristics, the probe position and the reception time are obtained from at least two points on the trajectory of the longitudinal wave generated from the same defective portion, and the same from the relationship between the two or more sets of probe positions and the reception time. You may obtain | require the coordinate of a defect part.

さらに、前記各方法により求めた欠陥部分の座標を二次元座標に表示することにより前記欠陥を画像化する方法を採用してもよい。   Furthermore, a method of imaging the defect by displaying the coordinates of the defect portion obtained by each of the above methods in two-dimensional coordinates may be adopted.

また、本発明は、縦波斜角探触子と、この探触子を送信波の属する平面の方向に試験体表面に沿って移動させた状態における座標を記録するエンコーダーと、前記探触子を送信波の属する平面の方向に試験体表面に沿って移動させた場合に、縦波、横波、モード変換波及びクリーピング波による画像が表示されるように探触子位置と受信時間又はこれに相当する単位(以下、「受信時間等」)を軸とする座標に受信信号のBスコープ画像を表示する表示装置とを備えたことを特徴とする。   The present invention also provides a longitudinal wave oblique angle probe, an encoder for recording coordinates in a state in which the probe is moved along the surface of the test body in the direction of the plane to which the transmission wave belongs, and the probe. The probe position and the reception time or this so that the image by the longitudinal wave, the transverse wave, the mode conversion wave and the creeping wave is displayed when the probe is moved in the direction of the plane to which the transmission wave belongs. And a display device that displays a B-scope image of a received signal at coordinates having a unit (hereinafter, “reception time etc.”) as an axis.

また、本発明の上記方法に用いる超音波試験装置の他の特徴は、試験体表面を転動する転動機構と、試験体表面に沿って転がる回転軸が互いに直交する一対のローラー及びこれら各ローラーに連携するエンコーダーとを備え、各ローラーの表面には各ローラーの転動軸に沿った方向に溝が形成されていることにある。一方のローラーが転動する際、他の溝は溝に沿った滑りを許容して、転動による直進性が向上することにより位置特定が容易となる。ここで、前記転動機構が、前後一対ずつケーシングに揺動自在に取り付けられるアーム及びその先端のボールとよりなり、一対のアーム44の傾きを同期させる調芯機構を備えているとよい。同特徴により、様々な径の配管にも正確に沿わせることが可能となる。   In addition, other features of the ultrasonic testing apparatus used in the above-described method of the present invention include a rolling mechanism that rolls on the surface of the test body, a pair of rollers whose rotation axes that roll along the surface of the test body are orthogonal to each other, and each of these. An encoder associated with the roller, and a groove is formed on the surface of each roller in a direction along the rolling axis of each roller. When one of the rollers rolls, the other grooves allow sliding along the grooves, and the straightness by rolling improves, so that the position can be easily identified. Here, the rolling mechanism may include an arm that is swingably attached to the casing one by one in front and rear and a ball at the tip thereof, and may include a centering mechanism that synchronizes the inclination of the pair of arms 44. This feature makes it possible to accurately follow pipes of various diameters.

また、上記いずれかに記載の超音波試験方法に用いる超音波試験装置の他の特徴は、Bスコープ画像の軌跡をカーソルで指示することにより前記各軌跡の相対的な位置関係を特定することにある。   In addition, another feature of the ultrasonic testing apparatus used in any of the ultrasonic testing methods described above is that the relative positional relationship between the trajectories is specified by designating the trajectory of the B scope image with a cursor. is there.

上記本発明の特徴によれば、上述の受信信号のBスコープ画像を表示し、各軌跡の相対的な位置関係から波の種類に応じた反射経路と反射源と特定し、欠陥の位置及び大きさを推定する。したがって、ステンレス鋼溶接部裏面開口割れ等の欠陥高さでも、簡便に精度よく測定することの可能な超音波試験方法および試験装置を提供することが可能となった。
本発明の他の目的、構成及び効果については、以下の発明を実施するための最良の形態の項で明らかになるであろう。
According to the above feature of the present invention, the B scope image of the received signal is displayed, the reflection path and the reflection source corresponding to the type of wave are identified from the relative positional relationship of each locus, and the position and size of the defect. Estimate. Therefore, it is possible to provide an ultrasonic test method and a test apparatus that can easily and accurately measure the height of a defect such as a crack opening on the back surface of a stainless steel weld.
Other objects, configurations and effects of the present invention will become apparent from the following description of the best mode for carrying out the invention.

次に、図1〜図27を参照しながら、本発明の第一の実施形態及び実施例について説明する。図1に示すように、本発明における超音波試験方法は、クリーピング波探触子と呼ばれる縦波斜角探触子10を使用する一探触子斜角法である。探触子10は試験体100に対して横波超音波S及び縦波超音波Lを入射させている。位置検出器20は探触子10と連動し、探触子10の空間的位置を検出する。探触子10および位置検出器20と接続された送受信装置30は、CPU31、送信部32、受信部33、位置検出部34、表示部35、信号処理部36で構成されている。   Next, the first embodiment and examples of the present invention will be described with reference to FIGS. As shown in FIG. 1, the ultrasonic testing method in the present invention is a single probe oblique angle method using a longitudinal wave oblique angle probe 10 called a creeping wave probe. The probe 10 causes the transverse wave ultrasonic wave S and the longitudinal wave ultrasonic wave L to enter the test body 100. The position detector 20 works with the probe 10 to detect the spatial position of the probe 10. The transmission / reception device 30 connected to the probe 10 and the position detector 20 includes a CPU 31, a transmission unit 32, a reception unit 33, a position detection unit 34, a display unit 35, and a signal processing unit 36.

送信部32で発生させた送信信号を探触子10に入力し、試験体100におけるエコーとして受信した複数種の超音波を受信部33に入力し、信号処理部36、CPU31で演算処理している。また、位置検出器20からの信号を位置検出部34に入力させ、信号処理部36、CPU31で演算処理をすることで探触子10の位置データを取得している。図2は、表示部35で示されるデータであり、CPU31で演算処理されたデータである。   A transmission signal generated by the transmission unit 32 is input to the probe 10, a plurality of types of ultrasonic waves received as echoes in the test body 100 are input to the reception unit 33, and arithmetic processing is performed by the signal processing unit 36 and the CPU 31. Yes. Further, the position data of the probe 10 is obtained by inputting a signal from the position detector 20 to the position detector 34 and performing arithmetic processing by the signal processor 36 and the CPU 31. FIG. 2 shows data displayed on the display unit 35 and data that has been arithmetically processed by the CPU 31.

本実施形態における超音波試験方法では、探触子10は、単一の振動子11を楔12に取り付けてなる。そして、探触子10に位置検出器20を取り付け、試験体100上を欠陥Dに対して前後方向に走査させ、位置検出器20から送られた探触子10の位置信号と、探触子10で受信された複数種の超音波の信号からBスコープ画像を得る。図1に示すように試験体100上で探触子10を走査させると、図2,3に示すBスコープ画像例を得る。   In the ultrasonic testing method according to the present embodiment, the probe 10 has a single transducer 11 attached to a wedge 12. Then, the position detector 20 is attached to the probe 10, the specimen 100 is scanned in the front-rear direction with respect to the defect D, the position signal of the probe 10 sent from the position detector 20, and the probe A B scope image is obtained from a plurality of types of ultrasonic signals received at 10. When the probe 10 is scanned on the test body 100 as shown in FIG. 1, B scope image examples shown in FIGS.

図3(a)に示すように、Bスコープ上には縦波L、横波S、モード変換波Mおよびクリーピング波Cによる欠陥からの信号が軌跡として表示される。図3,4中、Lは縦波、Sは横波(クリーピング波含む)、Mはモード変換波を示し、また、1は欠陥先端部、2は欠陥底部、aは欠陥右側部、bは欠陥左側部をそれぞれ示し、以下同様である。図3(a)に示す画像例の各軌跡と反射源(欠陥D)との位置関係を図4(a)に示す。図4(a)の例は、幅のある先端を有する欠陥Dの場合の画像例で、溶接欠陥の溶け込み不良の形状に対応している。なお、縦波L、横波Sは伝播速度が異なるため、表示位置か異なることになる。   As shown in FIG. 3A, signals from defects due to the longitudinal wave L, the transverse wave S, the mode conversion wave M, and the creeping wave C are displayed on the B scope as trajectories. 3 and 4, L is a longitudinal wave, S is a transverse wave (including creeping wave), M is a mode conversion wave, 1 is a defect tip, 2 is a defect bottom, a is a defect right side, and b is The left side of the defect is shown, and so on. FIG. 4A shows the positional relationship between each locus in the image example shown in FIG. 3A and the reflection source (defect D). The example of Fig.4 (a) is an example of an image in the case of the defect D having a wide tip, and corresponds to the shape of the poor penetration of the welding defect. Note that the vertical wave L and the horizontal wave S have different propagation speeds, and therefore display positions thereof are different.

一方、溝の幅が狭くなると破線で示した左先端部からの軌跡L1b,S1bと実線で示した右先端部からの軌跡L1a,S1aがそれぞれ接近する。割れの先端のように幅が狭い場合には、図3(a)に破線・実線で示した軌跡は一致して、図3(b)、図4(b)に示すようにL1a,S1aが表れる。図4(a)(b)に示す画像の比較から様々な欠陥D(割れ)高さの測定方法が可能となる。   On the other hand, when the width of the groove becomes narrower, the loci L1b and S1b from the left tip shown by the broken line and the loci L1a and S1a from the right tip shown by the solid line approach each other. When the width is narrow like the tip of a crack, the trajectories shown by the broken line and the solid line in FIG. 3A match, and L1a and S1a are as shown in FIG. 3B and FIG. 4B. appear. From the comparison of the images shown in FIGS. 4A and 4B, various methods for measuring the height of the defect D (crack) are possible.

次に、本実施形態における測定方法の説明を行う。
裏面開口割れの疑われる試験体100の欠陥Dの位置でBスキャン画像を採取する。まず、例えば、予想される欠陥D位置の近傍に探触子10を置き、欠陥Dから遠ざかる方向に走査し、縦波Lによる溝底部のエコーが消滅する範囲まで走査する。
走査範囲は、0.5スキップ横波S位置>探触子10位置>0.5スキップ縦波L位置、 データ採取範囲(時間軸):超音波の伝搬時間0μsecから0.5スキップの縦波L伝ぱ時間より長い範囲で縦波Lによる欠陥D底部の信号が消滅する範囲までとする。
Next, the measurement method in this embodiment will be described.
A B-scan image is taken at the position of the defect D of the test body 100 suspected of cracking the back surface opening. First, for example, the probe 10 is placed in the vicinity of an expected defect D position, scanning is performed in a direction away from the defect D, and scanning is performed until the echo at the groove bottom due to the longitudinal wave L disappears.
The scanning range is 0.5 skip transverse wave S position> probe 10 position> 0.5 skip longitudinal wave L position, data collection range (time axis): in the range longer than ultrasonic wave propagation time 0 μsec to 0.5 skip longitudinal wave L propagation time The range is such that the signal at the bottom of the defect D due to the longitudinal wave L disappears.

そして、裏面開口割れの有無と割れの大、中、小の区分を行う。区分は従来手法のAスコープ画像のパターン(欠陥Dからの反射エコーの出現パターン)から行ってもよいが、Bスコープ画像の欠陥D(割れ)先端からの軌跡の出現位置をもとに判断しても良い。(図26参照)   And the presence or absence of a back surface opening crack and the large, medium, and small classification of a crack are performed. Classification may be performed from the pattern of the A scope image of the conventional method (appearance pattern of reflected echo from the defect D), but based on the appearance position of the locus from the tip of the defect D (crack) of the B scope image. May be. (See Figure 26)

Bスコープ画像から割れ高さのサイジング法は次の通りである。
(1)Bスコープ画像に得られた各軌跡の相対位置から欠陥D(割れ先端、割れ底部、中間部)と超音波の経路(縦波L、横波S、モード変換波M、クリーピング波Cを判断する。)(図25参照)
(2)解析手法の適用
割れ高さを求めるときの手法は以下による。
a 横波Sによる信号が得られる場合
イ) 割れ先端部の位置は横波Sと縦波Lの交点法で求める。
ロ) 割れ中間部の位置はモード変換波法で求める
ハ) 割れ底部は横波Sと縦波Lの交点法で求める。クリーピング波Cで求めても良い。
小欠陥でモード変換波Mの信号が得られない場合は、イ)とハ)を行う。
b 横波Sの信号が得られない場合
溶接部に余盛りがあって探触子10を欠陥D側に接近できない場合。あるいは溶接部で横波Sが減衰して信号が得られない場合は以下の方法による。
イ) 割れ先端部の位置は縦波Lの交点法で求める。
ロ) 割れ中間部の位置はモード変換波法で求める。
ハ) クリーピング波法で求める。
小欠陥でモード変換波の信号が得られない場合は、上記イ)とハ)を行う。以下、上記各測定法について詳解する。
The sizing method of the crack height from the B scope image is as follows.
(1) From the relative position of each trajectory obtained in the B scope image, the defect D (crack tip, crack bottom, middle part) and ultrasonic path (longitudinal wave L, transverse wave S, mode conversion wave M, creeping wave C) (See FIG. 25)
(2) Application of analysis method The method for obtaining the crack height is as follows.
a) When signal by transverse wave S is obtained b) The position of the crack tip is obtained by the intersection method of transverse wave S and longitudinal wave L.
B) The position of the middle part of the crack is obtained by the mode conversion wave method. C) The bottom part of the crack is obtained by the intersection method of the transverse wave S and the longitudinal wave L. The creeping wave C may be obtained.
When the signal of the mode conversion wave M cannot be obtained due to a small defect, steps a) and c) are performed.
b When the signal of the transverse wave S cannot be obtained When there is a surplus in the welded part and the probe 10 cannot approach the defect D side. Or when the transverse wave S attenuate | damps in a welding part and a signal is not acquired, it is based on the following method.
B) The position of the crack tip is determined by the intersection method of longitudinal waves L.
B) The position of the middle part of the crack is obtained by the mode conversion wave method.
C) Obtained by creeping wave method.
If a mode-converted wave signal cannot be obtained due to a small defect, perform steps a) and c) above. Hereinafter, each measurement method will be described in detail.

第一測定例:縦波Lと横波Sの交点による割れ高さ測定法
欠陥D(割れ)先端部の信号が縦波Lの経路と横波Sの経路の両方で得られる場合の解析方法を図5〜図6に示す。図5は解析に使用する軌跡を実線で示した。図5中のSの記号を有するものは横波、Lの記号を有するものは縦波で得られたデータを示している。
(a)作図による解析方法
手順1 (図5)
図5に例示するように縦波Lでの欠陥先端L1a及び欠陥底部L2aの超音波伝ぱ時間と、横波Sでの欠陥先端S1a及び欠陥底部S2aの超音波伝ぱ時間をそれぞれの探触子位置から求める。
手順2
First measurement example: Crack height measurement method at the intersection of longitudinal wave L and transverse wave S Analysis method when the signal at the tip of the defect D (crack) is obtained in both the longitudinal wave L path and the transverse wave S path 5 to 6 show. FIG. 5 shows the locus used for the analysis with a solid line. In FIG. 5, data having the symbol S indicates data obtained by the transverse wave, and data having the symbol L indicates the data obtained by the longitudinal wave.
(A) Analysis method procedure 1 by drawing (Figure 5)
As illustrated in FIG. 5, the ultrasonic wave propagation times of the defect tip L1a and the defect bottom L2a in the longitudinal wave L and the ultrasonic wave propagation times of the defect tip S1a and the defect bottom S2a in the transverse wave S are measured from the respective probe positions. Ask.
Step 2

試験体100中の縦波Lでの超音波伝ぱ距離LLと横波Sでの超音波伝ぱ距離LSを(1)式及び(2)式から求める。

Figure 2006322900
Figure 2006322900
ここで、TO:超音波伝ぱ時間(探触子くさび内伝ぱ時間を含む)
TW:くさび内伝ぱ時間(往復)
VL:試験体中の縦波音速
Vs:試験体中の横波音速
LL:縦波伝ぱ距離(片道)
LS:横波伝ぱ距離(片道) The ultrasonic propagation distance LL at the longitudinal wave L and the ultrasonic propagation distance LS at the transverse wave S in the test body 100 are obtained from the equations (1) and (2).
Figure 2006322900
Figure 2006322900
Where T O : Ultrasonic propagation time (including propagation time in the probe wedge)
T W : Propagation time in the wedge (round trip)
VL: Longitudinal wave velocity in the specimen
Vs: Transverse sound velocity in the specimen
LL: Longitudinal wave propagation distance (one way)
LS: Yokonami propagation distance (one way)

手順3 (図6a)
図6aに示すように、それぞれの探触子位置での試験体100中の超音波伝ぱ時間から計算した超音波の伝ぱ距離を半径として円を描き、交差した点が欠陥の先端および底部となる。
図5で伝ぱ時間を求めるための探触子位置YS1, YL1, YL2は画像の明瞭な位置で選べば良く、従来の端部エコー法のようにピーク位置を求める必要はない。YS2の位置は超音波伝ぱ時間が短い側の画像位置を使用する。伝ぱ時間が長い側を使用する場合は横波にクリーピング波の伝ぱ時間が加わるので、後述するクリーピング波の解析方法を使用する。
Step 3 (Figure 6a)
As shown in FIG. 6a, a circle is drawn with the propagation distance of the ultrasonic wave calculated from the ultrasonic wave propagation time in the test body 100 at each probe position as the radius, and the intersecting points become the tip and bottom of the defect. .
In FIG. 5, the probe positions YS1, YL1, and YL2 for obtaining the propagation time may be selected at clear positions in the image, and there is no need to obtain the peak position as in the conventional end echo method. The position of YS2 uses the image position on the side where the ultrasonic propagation time is short. When the propagation time is longer, the creeping wave propagation time is added to the transverse wave, so the creeping wave analysis method described later is used.

(b)計算による解析の場合(図6b)
計算により求める場合は図6bから円の半径をRa、Rbとし、円の中心A、Bの距離をLとすると、円の交点の座標(Px, Py), (Qx, Qy)は次式で求めることができる。

Figure 2006322900
Figure 2006322900
Figure 2006322900
Figure 2006322900
(B) In the case of analysis by calculation (FIG. 6b)
If the radius of the circle is Ra and Rb and the distance between the circle centers A and B is L from Fig. 6b, the coordinates (Px, Py), (Qx, Qy) of the intersection of the circles are as follows: Can be sought.
Figure 2006322900
Figure 2006322900
Figure 2006322900
Figure 2006322900

試験体100中の円の交点は(5)式、(6)式において負の符号(−)で求める。作図又は計算によるこの解析方法は探触子10の屈折角を使用しないので、従来使用されている端部エコー法に比べて誤差の要因が少ない長所を有している。従来行われているフェーズドアレイ法や端部エコー法は、欠陥先端部のピークエコー位置を求めるときに探傷者の主観が入る。本測定例はピーク位置を求めなくて良いので、探傷者の主観による誤差がない長所を有している。画像上で欠陥先端からのエコーや欠陥底部からのエコー位置が、他のエコーとの関係から特定できるので、従来のフェーズドアレイ法や端部エコー法のように欠陥先端部のエコーを特定する段階で誤認することがない長所を有している。   The intersection of the circles in the test body 100 is obtained by a negative sign (−) in the equations (5) and (6). This analysis method based on drawing or calculation does not use the refraction angle of the probe 10, and therefore has an advantage that there are fewer factors of error than the end echo method used conventionally. In the conventional phased array method and edge echo method, the subjectivity of the flaw detector enters when the peak echo position of the defect tip is obtained. Since this measurement example does not need to obtain the peak position, it has an advantage that there is no error due to the subjectivity of the flaw detector. Since the echo from the defect tip and the echo position from the bottom of the defect can be identified on the image from the relationship with other echoes, the stage of identifying the defect tip echo as in the conventional phased array method or edge echo method It has the advantage that it will not be mistaken.

第二測定例:クリーピング波による割れ底部の位置測定法
前記の第一測定例以外に、クリーピング波Cを解析して欠陥Dの底部の位置を求めることができる。クリーピング波Cを含む超音波の経路が最短となる条件を図7から求める。超音波が経路ABCを伝ぱする時の伝ぱ時間Tは、V1を横波音速、V2を縦波音速とすれば次式で求められる。
Second Measurement Example: Method for Measuring Position of Cracked Bottom by Creeping Wave In addition to the first measurement example, the position of the bottom of the defect D can be obtained by analyzing the creeping wave C. The condition that the path of the ultrasonic wave including the creeping wave C is the shortest is obtained from FIG. The propagation time T when the ultrasonic wave travels along the path ABC can be obtained by the following equation, where V1 is the transverse wave velocity and V2 is the longitudinal wave velocity.

Figure 2006322900
(5)式をxで微分すると
Figure 2006322900
f’(x)=0のときにTは最小となるので
Figure 2006322900
Figure 2006322900
Figure 2006322900
(10)式を整理すると
Figure 2006322900
Figure 2006322900
(5) Differentiating the equation by x
Figure 2006322900
T is minimum when f '(x) = 0
Figure 2006322900
Figure 2006322900
Figure 2006322900
(10) When organizing the formula
Figure 2006322900

オーステナイト系ステンレス鋼の横波音速を3100 m/sec、縦波音速を5790 m/secとすると、θ1 =32.37°となる。クリーピング波Cの波形を解析するときに、最短の伝ぱ時間以降を観測すればよい。クリーピング波Cを含む経路で超音波の伝ぱ時間が最短となるときの横波屈折角θ1は(11)式で示されるが、画像を形成するのは最も音圧の大きいビーム中心の経路で、図7のθ1が探触子の横波屈折角で伝ぱし、試験体内表面で縦波Lにモード変換してBC間を進む。欠陥D底部で反射した波はCB間を縦波Lで戻りBの位置で横波Sに変換した波がBA間を伝ぱして探触子10に戻る。クリーピング波Cの解析に使用する画像を図8の実線で示した。 When the transverse wave velocity of austenitic stainless steel is 3100 m / sec and the longitudinal wave velocity is 5790 m / sec, θ 1 = 32.37 °. What is necessary is just to observe after the shortest propagation time when analyzing the waveform of the creeping wave C. The transverse wave refraction angle θ 1 when the propagation time of the ultrasonic wave is the shortest in the path including the creeping wave C is expressed by the equation (11), but the image is formed in the path in the center of the beam with the highest sound pressure. , propagated in transverse refraction angle of probe theta 1 of FIG. 7, travels between BC and mode converted to a longitudinal wave L in the test body surface. The wave reflected from the bottom of the defect D returns between the CBs as a longitudinal wave L, and a wave converted to a transverse wave S at the position B passes through the BA and returns to the probe 10. An image used for analysis of the creeping wave C is shown by a solid line in FIG.

(a)作図による解析手順
手順1 (図8)
図8に示すように各探触子位置のときの超音波伝ぱ時間を求める。
手順2 (図9)
探触子位置から、使用した探触子の横波屈折角(θs)で試験体の内表面まで直線を引く。(図9の破線)
(A) Analysis procedure procedure 1 by drawing (Figure 8)
As shown in FIG. 8, the ultrasonic propagation time at each probe position is obtained.
Step 2 (Figure 9)
A straight line is drawn from the probe position to the inner surface of the specimen at the transverse wave refraction angle (θs) of the probe used. (Dashed line in FIG. 9)

手順3
クリーピング波で往復する伝ぱ時間TCを計算する。

Figure 2006322900
ここで、TO:超音波伝ぱ時間(探触子くさび内伝ぱ時間を含む)
TW:くさび内伝ぱ時間(往復)
TS:横波伝ぱ時間(往復)
Figure 2006322900
t:試験体の厚さ
VS:横波音速 Step 3
Calculate propagation time T C to and fro with creeping wave.
Figure 2006322900
Where T O : Ultrasonic propagation time (including propagation time in the probe wedge)
T W : Propagation time in the wedge (round trip)
T S : Propagation time (round trip)
Figure 2006322900
t: thickness of specimen
V S : shear wave speed

手順4 (図10)
クリーピング波の伝ぱ距離(片道)LCを求め、試験体の内表面と破線との交点を中心として半径LCの円を描く。

Figure 2006322900
Step 4 (Figure 10)
The creeping wave propagation distance (one way) L C is obtained, and a circle with a radius L C is drawn around the intersection of the inner surface of the specimen and the broken line.
Figure 2006322900

手順5 (図11)
手順1〜手順4を繰り返す。
円と内表面との交点が反射源の位置となるが、図11に示すように反射源位置は一点に集中する。これにより解析方法の正当性を確認できる。
Step 5 (Fig. 11)
Repeat step 1 to step 4.
The intersection of the circle and the inner surface is the position of the reflection source, but the reflection source position is concentrated at one point as shown in FIG. Thereby, the validity of the analysis method can be confirmed.

計算による解析の場合
探触子位置から反射源までの水平距離YFは次式で求める。

Figure 2006322900
In the case of analysis by calculation, the horizontal distance YF from the probe position to the reflection source is obtained by the following equation.
Figure 2006322900

第三測定例:モード変換波による欠陥D位置の測定法
モード変換波の経路から欠陥D先端と欠陥底部の中間部の反射源を求めることができる。モード変換波Mの経路は図12においてAB間を横波S、BE、EA間を縦波Lで伝ぱする。モード変換波Mが最短時間で伝ぱするときのθ1及びθ2を考える。図12に示すようにAEをCE軸で反転した線分EFを考えると、BEAの経路を最短時間で伝ぱするときにBEFは直線となる。従って、AB間を横波音速V1、BF間を縦波音速V2で進むときに合計時間Tが最短となるθ1、θ2を求めれば良い。
Third Measurement Example: Method for Measuring Defect D Position Using Mode-Converted Wave A reflection source at the intermediate portion between the tip of the defect D and the bottom of the defect can be obtained from the path of the mode-converted wave. In FIG. 12, the path of the mode-converted wave M is transmitted along AB between the transverse waves S, BE, and EA using the longitudinal wave L. Consider θ1 and θ2 when the mode conversion wave M propagates in the shortest time. As shown in FIG. 12, when considering a line segment EF obtained by inverting AE with the CE axis, the BEF becomes a straight line when propagating the BEA path in the shortest time. Therefore, θ1 and θ2 that minimize the total time T when traveling between AB at the transverse wave velocity V1 and between BF at the longitudinal wave velocity V2 may be obtained.

Figure 2006322900
(16)式をxで微分すると
Figure 2006322900
f’(x)=0のときにTが最小となるので
Figure 2006322900
(18)式を整理すると
Figure 2006322900
Figure 2006322900
Differentiating equation (16) by x
Figure 2006322900
T is minimum when f '(x) = 0
Figure 2006322900
(18)
Figure 2006322900

(19)式はスネルの法則と同じ式である。すなわちモード変換波Mが最短時間で伝ぱする経路はθ1、θ2がスネルの法則を満足する。(19)式においてθ2=90°の時は(11)式のクリーピング波Cの最短伝ぱ経路を表す式と同じになる。モード変換波の経路の伝ぱ時間と(19)式の関係からθ1、θ2を求めるのは数値計算による。実際の探傷では(19)式を満足しないで、超音波の広がりにより欠陥信号を得ていることを考える必要がある。図13は横波の入射角を固定してモード変換波の経路を考えた場合で、図13に示す楕円上の位置が可能な反射源位置となる。図13で経路2は底面のモード変換でスネルの関係を満足する。経路3はBEFが直線となる経路。経路5は探触子の縦波屈折角に等しい経路である。図13の各経路のエコー高さを考える。モード変換波の各経路のエコー高さ(h)は超音波の指向性と界面での反射損失の積に比例するので(20)式で表される。 Equation (19) is the same as Snell's law. That is, in the path through which the mode conversion wave M propagates in the shortest time, θ1 and θ2 satisfy Snell's law. In the equation (19), when θ 2 = 90 °, the equation is the same as the equation representing the shortest propagation path of the creeping wave C in the equation (11). The calculation of θ1 and θ2 from the relationship between the propagation time of the mode converted wave path and the equation (19) is based on numerical calculation. In actual flaw detection, it is necessary to consider that the defect signal is obtained by the spread of ultrasonic waves without satisfying the equation (19). FIG. 13 shows a mode-converted wave path with the incident angle of the transverse wave fixed, and the position on the ellipse shown in FIG. 13 is a possible reflection source position. In FIG. 13, path 2 satisfies the Snell relationship by mode conversion on the bottom surface. Route 3 is a route where the BEF is a straight line. Path 5 is a path equal to the longitudinal wave refraction angle of the probe. Consider the echo height of each path in FIG. Since the echo height (h) of each path of the mode-converted wave is proportional to the product of the directivity of the ultrasonic wave and the reflection loss at the interface, it is expressed by equation (20).

Figure 2006322900
Figure 2006322900

(20)式の計算結果からは図13の経路3(図12でBEFが直線となる経路)が最もエコー高さが高くなる経路で、欠陥面に超音波が入射する角度と反射する角度が等しい場合である。図13は横波Sの入射角度を固定して考えた場合で入射角度を変化させて考えることもできる。図14は横波Sの屈折角を変化させて作図した例で、探触子の横波屈折角で作図した場合と横波Sの角度を変化させた場合とで大きな差異が認められない。従って、探触子の横波屈折角を使用する方法でモード変換波Mの経路を代表させることができる。   From the calculation result of equation (20), the path 3 in FIG. 13 (the path in which the BEF is a straight line in FIG. 12) is the path with the highest echo height, and the angle at which the ultrasonic wave is incident on the defect surface and the angle at which it is reflected are This is the case. FIG. 13 shows a case where the incident angle of the transverse wave S is fixed, and the incident angle can be changed. FIG. 14 shows an example in which the refraction angle of the transverse wave S is changed, and there is no significant difference between the case of drawing with the transverse wave refraction angle of the probe and the case of changing the angle of the transverse wave S. Therefore, the path of the mode converted wave M can be represented by a method using the transverse wave refraction angle of the probe.

(a)作図によるモード変換波Mの反射源位置の解析方法(傾きのない欠陥Dの場合)
モード変換波の解析に使用する画像を図15の実線で示した。モード変換波の解析では、傾きのない欠陥Da(試験体表面に垂直方向に伸びた欠陥)と、傾きを有する欠陥Dbの解析を考える。欠陥が傾いているかいないかは、欠陥先端位置と欠陥底部位置を求めた結果から知ることができる。
(A) Analysis method of reflection source position of mode conversion wave M by drawing (in case of defect D without inclination)
The image used for the analysis of the mode conversion wave is shown by the solid line in FIG. In the analysis of the mode conversion wave, an analysis of a defect Da having no inclination (defect extending in a direction perpendicular to the surface of the specimen) and a defect Db having an inclination is considered. Whether or not the defect is inclined can be known from the result of obtaining the defect tip position and the defect bottom position.

手順1 (図15)
図15に示すように各探触子位置のときの超音波伝ぱ時間を求める。
手順2 (図16)
探触子位置から、使用した探触子の横波屈折角(θs)で試験体の内表面まで直線を引く。(図16の破線)
Step 1 (Figure 15)
As shown in FIG. 15, the ultrasonic propagation time at each probe position is obtained.
Step 2 (Figure 16)
A straight line is drawn from the probe position to the inner surface of the specimen at the transverse wave refraction angle (θs) of the probe used. (Dashed line in Fig. 16)

手順3
モード変換波の縦波での伝ぱ時間TL を計算する。

Figure 2006322900
ここで、TO:超音波伝ぱ時間(探触子くさび内伝ぱ時間を含む)
TW:くさび内伝ぱ時間(往復)
TS:横波伝ぱ時間(片道)
Figure 2006322900
t:試験体の厚さ
VS:横波音速 Step 3
Calculate the propagation time TL of the longitudinal wave of the mode conversion wave.
Figure 2006322900
Where T O : Ultrasonic propagation time (including propagation time in the probe wedge)
T W : Propagation time in the wedge (round trip)
T S : Yokonami propagation time (one way)
Figure 2006322900
t: thickness of specimen
V S : shear wave speed

手順4 (図17)
モード変換波の縦波での伝ぱ距離LLを求め、点R1を中心として半径LLの円を描き、試験体表面と交わる点をQ1としてR1Q1を直線で結ぶ。

Figure 2006322900
Step 4 (Fig. 17)
The propagation distance L L of the longitudinal wave of the mode conversion wave is obtained, a circle with a radius L L is drawn around the point R 1 , and a point that intersects the surface of the specimen is Q 1 and R 1 Q 1 is connected by a straight line.
Figure 2006322900

手順5 (図18)
1 線分P1Q1を垂直に2等分する直線CC’を引き、直線R1Q1と交わる点をS1とする。
2 P1R1S1P1がモード変換波の経路となる。
Step 5 (Figure 18)
A straight line CC ′ that bisects one line segment P 1 Q 1 vertically is drawn, and a point that intersects the straight line R 1 Q 1 is defined as S 1 .
2 P 1 R 1 S 1 P 1 is the path of the mode conversion wave.

手順6 (図19)
各探触子位置と超音波伝ぱ時間で手順1〜手順5を繰り返す。
Step 6 (Figure 19)
Repeat step 1 to step 5 for each probe position and ultrasonic propagation time.

(b) 計算によるモード変換波の解析(傾きのない欠陥Daの場合)(図12)
図12より、探触子位置から反射源までの水平距離YFは次式で求める。

Figure 2006322900
ここでθ1は探触子の横波屈折角、θ2は(19)式のLL(図12のBFの長さ)から次式で求める。
Figure 2006322900
図12より、探傷面から反射源までの深さdは次式で求める。
Figure 2006322900
(B) Analysis of mode conversion wave by calculation (in the case of defect Da without inclination) (FIG. 12)
From FIG. 12, the horizontal distance Y F from the probe position to the reflection source is obtained by the following equation.
Figure 2006322900
Here θ1 is obtained transverse refraction angle of the probe, theta 2 from equation (19) L L (the length of the BF in FIG. 12) by the following equation.
Figure 2006322900
From FIG. 12, the depth d from the flaw detection surface to the reflection source is obtained by the following equation.
Figure 2006322900

モード変換による解析は大きな欠陥の場合に、欠陥中央部の位置を与えてくれる。中欠陥では欠陥先端部の位置が得られる場合もあるが、縦波Lによる欠陥先端部の情報が得られる場合は、縦波Lによる解析結果を優先する。従来の端部エコー法が欠陥の先端と底部の位置情報を得ようとするのに対し、本手法は欠陥中央部の情報が加わるので解析の信頼性が向上する。   Analysis by mode conversion gives the position of the center of the defect in the case of a large defect. In some cases, the position of the tip of the defect may be obtained for the medium defect, but when the information on the tip of the defect by the longitudinal wave L is obtained, the analysis result by the longitudinal wave L is given priority. Whereas the conventional end echo method tries to obtain the position information of the tip and bottom of the defect, the present method adds the information of the center of the defect, so the reliability of the analysis is improved.

(c)作図によるモード変換波の解析(傾いた欠陥の場合)
手順1〜3までは傾きのない欠陥の場合と同一の手順である。
手順1 (図15)
図15に示すように各探触子位置のときの超音波伝ぱ時間を求める。
手順2 (図16)
探触子位置から、使用した探触子の横波屈折角(θs)で試験体の内表面まで直線を引く。(図16の破線)
(C) Analysis of mode conversion wave by drawing (in case of tilted defect)
Procedures 1 to 3 are the same procedure as for a defect with no inclination.
Step 1 (Figure 15)
As shown in FIG. 15, the ultrasonic propagation time at each probe position is obtained.
Step 2 (Figure 16)
A straight line is drawn from the probe position to the inner surface of the specimen at the transverse wave refraction angle (θs) of the probe used. (Dashed line in Fig. 16)

手順3
(27)式、(28)式、(29)式は(21)式、(22)式、(23)式と同一である。モード変換波の縦波での伝ぱ時間TL を計算する。

Figure 2006322900
ここで、TO:超音波伝ぱ時間(探触子くさび内伝ぱ時間を含む)
TW:くさび内伝ぱ時間(往復)
TS:横波伝ぱ時間(片道)
Figure 2006322900
t:試験体の厚さ
VS:横波音速 Step 3
Equations (27), (28), and (29) are the same as equations (21), (22), and (23). Calculate the propagation time TL of the longitudinal wave of the mode conversion wave.
Figure 2006322900
Where T O : Ultrasonic propagation time (including propagation time in the probe wedge)
T W : Propagation time in the wedge (round trip)
T S : Yokonami propagation time (one way)
Figure 2006322900
t: thickness of specimen
V S : shear wave speed

手順4 欠陥の傾きを求める
欠陥の傾きは具体例1などに示す方法で、欠陥の先端部の座標および欠陥Dbの底部の座標が得られるので、計算により求めるか又は作図による測定から求める。
Procedure 4 Determining Defect Inclination Defect inclination is determined by the method shown in Example 1 and the like, since the coordinates of the tip of the defect and the coordinates of the bottom of the defect Db are obtained.

手順5(図20)
モード変換波の縦波Lでの伝ぱ距離LLを求め、点R1を中心として半径LLの円を描く。LLは(29)式から計算できる。

Figure 2006322900
次に図20の(a)に示すように点P1を通り欠陥Dbの傾き角αの直線を引き、円と交わる点をQ1としてR1Q1を直線で結ぶ。欠陥Dbの傾き角が−αの場合は図20の(b)に示すように点Pを通り−αの傾きで直線を引き、円と交わる点をQ1としてR1Q1を直線で結ぶ。 Step 5 (Figure 20)
Obtains the propagation distance L L in the longitudinal waves L mode converted waves, a circle with a radius L L around the point R 1. L L can be calculated from equation (29).
Figure 2006322900
Next, as shown in FIG. 20 (a), a straight line having the inclination angle α of the defect Db passing through the point P1 is drawn, and a point intersecting with the circle is defined as Q 1 and R 1 Q 1 is connected by a straight line. When the inclination angle of the defect Db is −α, a straight line is drawn with the inclination of −α passing through the point P as shown in FIG. 20B, and the point intersecting with the circle is defined as Q 1 and R 1 Q 1 is connected by the straight line. .

手順6 (図20)
線分P1Q1を垂直に2等分する直線CC’を引き、直線R1Q1と交わる点をS1とする。P1R1S1P1がモード変換波の経路となる。
Step 6 (Figure 20)
A straight line CC ′ that bisects the line segment P 1 Q 1 vertically is drawn, and a point that intersects the straight line R 1 Q 1 is defined as S 1 . P 1 R 1 S 1 P 1 is the path of the mode conversion wave.

手順7 (図21)
各探触子位置と超音波伝ぱ時間で手順1〜手順65を繰り返す。
Step 7 (Figure 21)
Repeat step 1 to step 65 for each probe position and ultrasonic propagation time.

(d) 計算によるモード変換波の解析(傾いた欠陥の場合)(図22)
図22より、試験体の厚さt1の補助線を描くとd1およびYF1は傾きのない欠陥Daの場合の計算と同様に求められる。d1およびYF1と欠陥の傾き角αから反射源位置Sの深さdおよび探触子と反射源の水平距離YFを求めることができる。図22より、

Figure 2006322900
ここでθsは横波Sの屈折角、αは欠陥の傾き角である。欠陥の傾き角が−αのときは
Figure 2006322900
となる。 (D) Analysis of mode-converted wave by calculation (in case of tilted defect) (Fig. 22)
From FIG. 22, when the auxiliary line of the thickness t 1 of the test specimen is drawn, d1 and YF1 can be obtained in the same manner as in the case of the defect Da having no inclination. The depth d of the reflection source position S and the horizontal distance YF between the probe and the reflection source can be obtained from d1 and YF1 and the inclination angle α of the defect. From Figure 22,
Figure 2006322900
Here, θs is the refraction angle of the transverse wave S, and α is the inclination angle of the defect. When the tilt angle of the defect is -α
Figure 2006322900
It becomes.

次に横波Sでの超音波の伝ぱ距離P1R1の長さLSを求めると、

Figure 2006322900
縦波Lでの超音波の伝ぱ距離R1Q1の長さLLは(29)式より求まるのでθ2は次式で表される。
Figure 2006322900
ここでT1=Ls×COSθ1となる。したがって、YF1およびd1は次式で求められる。
Figure 2006322900
Figure 2006322900
以上から反射源位置の深さdおよび探触子10からの水平距離YFは
Figure 2006322900
Figure 2006322900
と書ける。欠陥Dbの傾き角が−αのときは
Figure 2006322900
Figure 2006322900
となる。 Next, when obtaining the length L S of the propagation distance P 1 R 1 of the ultrasonic wave in the transverse wave S,
Figure 2006322900
Since the length L L of the propagation distance R 1 Q 1 of the ultrasonic wave in the longitudinal wave L is obtained from the equation (29), θ 2 is expressed by the following equation.
Figure 2006322900
Here, T 1 = Ls × COSθ 1 . Therefore, YF1 and d1 are obtained by the following equations.
Figure 2006322900
Figure 2006322900
From the above, the depth d of the reflection source position and the horizontal distance YF from the probe 10 are
Figure 2006322900
Figure 2006322900
Can be written. When the inclination angle of the defect Db is −α
Figure 2006322900
Figure 2006322900
It becomes.

第四測定例:クリーピング波探触子による縦波交点法
縦波Lによる欠陥D先端からの反射画像を用いて欠陥先端の位置を求めることもできる。使用する画像を図23の実線で示した。
作図による解析手順
Fourth Measurement Example: Longitudinal Intersection Method Using Creeping Wave Probe The position of the defect tip can also be obtained using a reflection image from the tip of the defect D by the longitudinal wave L. The image used is shown by the solid line in FIG.
Analysis procedure by drawing

手順1 (図23)
図23に示すように各探触子位置のときの超音波伝ぱ時間を求める。
手順2 (図24)
それぞれの探触子位置での試験体中の超音波伝ぱ時間から計算した超音波の伝ぱ距離を半径として円を描き、交差した点が欠陥の先端となる。欠陥Dの底部を求めるときは、縦波Lによる欠陥D底部からの軌跡を用いて欠陥D先端の場合と同様に求める。図23で伝ぱ時間を求めるための探触子位置 YL1, YL2は画像の明瞭な位置で選べば良く、従来の端部エコー法のようにピーク位置を求める必要はない。計算による解析は式(3)〜式(6)の円の交点を求める方法を使用する。
Step 1 (Figure 23)
As shown in FIG. 23, the ultrasonic propagation time at each probe position is obtained.
Step 2 (Figure 24)
A circle is drawn with the propagation distance of the ultrasonic wave calculated from the ultrasonic wave propagation time in the specimen at each probe position as the radius, and the intersection point becomes the tip of the defect. The bottom of the defect D is obtained in the same manner as in the case of the tip of the defect D using the trajectory from the bottom of the defect D by the longitudinal wave L. The probe positions YL1 and YL2 for obtaining the propagation time in FIG. 23 may be selected at clear positions in the image, and there is no need to obtain the peak position as in the conventional end echo method. The analysis by calculation uses the method of obtaining the intersection of the circles of Equations (3) to (6).

図25において、本発明の測定方法のフロー図を示す。探触子10を走査させることにより、Bスコープ画像を得て、欠陥Dの大きさを判断することにより、その欠陥の大きさに応じた測定方法(第一測定例〜第四速定例)を選択する。欠陥Dの大きさを判断する際、図2に示されるBスコープ画像を画像処理し、パターンマッチング等の画像認識手段を採用することにより、コンピュータソフトウエアを用いて欠陥Dの大きさを自動で識別させ、その大きさに応じた測定方法を自動で選択することも可能である。この場合、測定方法(第一〜第四測定例)のうち適切なものを適宜自動選択して上述のアルゴリズムを動作させ、上記欠陥Dの位置と大きさを自動的に算出させるとよい。   In FIG. 25, the flowchart of the measuring method of this invention is shown. By scanning the probe 10, a B scope image is obtained, and the size of the defect D is determined, whereby a measurement method (first measurement example to fourth speed example) according to the size of the defect is performed. select. When determining the size of the defect D, the B scope image shown in FIG. 2 is subjected to image processing, and image recognition means such as pattern matching is employed to automatically determine the size of the defect D using computer software. It is also possible to identify and automatically select a measurement method according to the size. In this case, an appropriate one of the measurement methods (first to fourth measurement examples) may be automatically selected as appropriate, and the above algorithm may be operated to automatically calculate the position and size of the defect D.

図26、図27で実施例を示す。図26は欠陥Dの大きさの違いによる測定結果を示すものである。第一測定例〜第四測定例の方法を単独または組み合わせで用いて欠陥Dの高さを正確に測定することができる。図27は疲労割れを挿入したオーステナイト系ステンレス鋼の溶接部に対し、本発明を適用した結果を示す。本発明による測定値は挿入した疲労割れの製作値とよく一致している。本手法は作図による解析方法が使用できるだけでなく、計算により欠陥の寸法を求めることもできるので、図2の符号Pxyに示すように、得られた画像の軌跡上の点をマウスで走査するカーソルによりクリックすることで、割れ高さを自動的に計算させたり、計算結果としての割れを画像で表示することも可能である。図2の態様では、下側のタグに表示されているとおり、「縦波による欠陥先端」、「横波による欠陥先端」、「モード変換による欠陥中央部」、「クリーピング波による欠陥底部」をそれぞれ選択可能である。   An example is shown in FIGS. FIG. 26 shows the measurement results based on the difference in the size of the defect D. The height of the defect D can be accurately measured using the methods of the first measurement example to the fourth measurement example alone or in combination. FIG. 27 shows a result of applying the present invention to a welded part of austenitic stainless steel in which fatigue cracks are inserted. The measured values according to the present invention are in good agreement with the production values of the inserted fatigue cracks. In this method, not only the analysis method by drawing can be used, but also the size of the defect can be obtained by calculation. As shown by the symbol Pxy in FIG. 2, the cursor for scanning the point on the locus of the obtained image with the mouse By clicking the button, it is possible to automatically calculate the crack height or display the crack as a calculation result as an image. In the mode of FIG. 2, as indicated on the lower tag, “defect tip due to longitudinal wave”, “defect tip due to transverse wave”, “defect center due to mode conversion”, “defect bottom due to creeping wave” Each can be selected.

次に、本発明の他の実施形態について説明する。なお、先の第一実施形態と同様の部材には同様の符号を付してある。   Next, another embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the member similar to previous 1st embodiment.

図28〜図30は探触子10及び位置検出器20の他の実施形態を示す。本実施形態における超音波探傷装置40は、大略、ケーシング41、4本のアーム44、探触子10、探触子ホルダー48及び位置検出器20を備えている。ケーシング41は、小型で手の掌に収まるサイズで構成され、取り扱いが容易である。   28 to 30 show other embodiments of the probe 10 and the position detector 20. The ultrasonic flaw detector 40 in this embodiment is generally provided with a casing 41, four arms 44, a probe 10, a probe holder 48, and a position detector 20. The casing 41 is small and has a size that fits in the palm of the hand, and is easy to handle.

アーム44は軸43aを介してギヤ43と共に前後一対ずつケーシング41に揺動自在に取り付けられる。各アーム44の先端には試験体表面を転動させるためのボール44aが取り付けられている。ギヤ43はケーシング前後でそれぞれ互いに噛み合い、小径配管から平面まで対応するように一対のアーム44の傾きを同期させる調芯機構42を構成する。調芯機構42、アーム44,ボール44aにより転動機構を構成する。   The arms 44 are swingably attached to the casing 41 in pairs with the gear 43 via the shaft 43a. A ball 44 a for rolling the surface of the test body is attached to the tip of each arm 44. The gear 43 meshes with each other before and after the casing, and constitutes an alignment mechanism 42 that synchronizes the inclination of the pair of arms 44 so as to correspond from a small diameter pipe to a flat surface. The alignment mechanism 42, the arm 44, and the ball 44a constitute a rolling mechanism.

探触子ホルダー48は、ケーシング41側の基部48aと揺動部48cとの間をヒンジ48bで弾性的に接続している。探触子10を保持する保持部48eは揺動部48cと軸48dで接続されている。この探触子ホルダー48により探触子10は常に試験体表面に同一角度で接触する。   The probe holder 48 elastically connects the base portion 48a on the casing 41 side and the swinging portion 48c with a hinge 48b. A holding portion 48e for holding the probe 10 is connected to the swing portion 48c by a shaft 48d. Due to the probe holder 48, the probe 10 always contacts the surface of the specimen at the same angle.

位置検出器20は、受け軸47aで揺動するローラホルダー47に固定されたx,y方向用ローラ45a、45bと、x、y方向用エンコーダ46a、46bとよりなる。x方向用ローラ45aは、x方向に走査するときに滑らないようにy軸に沿った表面溝を加工する。またこの溝はy方向に走査するときに抵抗が小さくなる効果がある。x方向用エンコーダ46aは、x方向に走査した時の位置検出器20の移動距離を位置検出装置34に送る。y方向用ローラ45bは、y方向に走査するときに滑らないようにx軸に沿った表面溝を加工してある。またこの溝はx方向に走査するときに抵抗が小さくなる効果がある。y方向用エンコーダ46bは、y方向に走査した時の位置検出器20の移動距離を位置検出装置34に送る。ローラ受け軸47は、x方向用ローラ45a、y方向用ローラ45bが受け軸47aを中心としてシーソー運動を行い試験体100への倣い性を確保する。   The position detector 20 includes x and y direction rollers 45a and 45b fixed to a roller holder 47 that swings around a receiving shaft 47a, and x and y direction encoders 46a and 46b. The x-direction roller 45a processes a surface groove along the y-axis so as not to slip when scanning in the x-direction. Further, this groove has an effect of reducing the resistance when scanning in the y direction. The x-direction encoder 46 a sends the movement distance of the position detector 20 when scanning in the x direction to the position detection device 34. The y-direction roller 45b has a surface groove along the x-axis so as not to slip when scanning in the y-direction. Also, this groove has an effect of reducing resistance when scanning in the x direction. The y-direction encoder 46 b sends the movement distance of the position detector 20 when scanning in the y direction to the position detection device 34. In the roller receiving shaft 47, the x-direction roller 45a and the y-direction roller 45b perform seesaw motion around the receiving shaft 47a to ensure the copying property to the test body 100.

試験に際しては、探触子ホルダー48を把持し、探触子10を試験体100に押さえつけてx、y方向に移動させる。また、本手法を達成するための超音波探傷装置40は、図28〜30のような構造以外にも、例えばガイドレールを有して探触子10をXY方向に走査できる機構でもよく、空中超音波あるいは赤外線などで位置を検出できるものでも良い。
図31は、表面開口割れおよび内部割れの高さの測定を行う他の実施形態の可能性を示す。図31(a)は試験体100における表面開口割れの高さの測定方法を示すものであり、縦波L、横波Sを測定することにより、欠陥Dの高さを測定することができるものと推定される。図31(b)は試験体100の内部割れの高さの測定方法を示すものであり、縦波L、横波Sを測定することにより、欠陥Dの高さを測定することができるものと推定される。
In the test, the probe holder 48 is grasped and the probe 10 is pressed against the test body 100 and moved in the x and y directions. In addition to the structure as shown in FIGS. 28 to 30, the ultrasonic flaw detector 40 for achieving this method may be a mechanism that has a guide rail, for example, and can scan the probe 10 in the XY directions. It may be one that can detect the position with ultrasonic waves or infrared rays.
FIG. 31 shows the possibility of another embodiment for measuring the height of surface opening cracks and internal cracks. FIG. 31A shows a method for measuring the height of surface opening cracks in the test body 100, and by measuring the longitudinal wave L and the transverse wave S, the height of the defect D can be measured. Presumed. FIG. 31 (b) shows a method for measuring the height of the internal crack of the test body 100, and it is estimated that the height of the defect D can be measured by measuring the longitudinal wave L and the transverse wave S. Is done.

上記実施形態では、「前記縦波斜角探触子を移動させることにより前記作動する振動子を送信波の属する平面の方向に試験体表面に沿って移動させる」ように構成した。しかし、図32に示すように、「振動子が複数の列状振動子11’よりなり、前記作動する振動子を列状振動子11’内で切り替えて作動させることにより作動する振動子(11a,11b,11c…)を送信波の属する平面の方向に試験体100表面に沿って移動させる」ようにしてもよい。   In the above-described embodiment, the configuration is such that “the moving transducer is moved along the surface of the specimen in the direction of the plane to which the transmission wave belongs” by moving the longitudinal wave oblique angle probe. However, as shown in FIG. 32, “the vibrator is composed of a plurality of columnar vibrators 11 ′, and the vibrator (11a that operates by switching and operating the vibrator to be operated in the columnar vibrator 11 ′”). , 11b, 11c... May be moved along the surface of the specimen 100 in the direction of the plane to which the transmission wave belongs.

本手法はオーステナイト系ステンレス鋼溶接部の裏面開口割れ等の欠陥を対象としているが、フェライト系や他の材質の他の種類の欠陥にも適用することができる。   Although this technique is intended for defects such as back surface opening cracks in austenitic stainless steel welds, it can also be applied to other types of defects in ferrite and other materials.

本発明の構成を示すブロック図である。It is a block diagram which shows the structure of this invention. 本発明の測定結果の表示画面を示す図である。It is a figure which shows the display screen of the measurement result of this invention. (a)探触子による試験体の走査画像を示す図である。(b)探触子による試験体の走査画像(割れの場合)(A) It is a figure which shows the scanning image of the test body by a probe. (B) Scanned image of the specimen with the probe (in case of cracks) (a)走査画像と反射源の関係(溝付き試験体)を示す図である。(b)走査画像と反射源の関係(割れの場合)を示す図である。(A) It is a figure which shows the relationship (test body with a groove | channel) of a scanning image and a reflective source. (B) It is a figure which shows the relationship (in the case of a crack) of a scanning image and a reflective source. 欠陥先端と欠陥底部の伝搬時間を示す図である。It is a figure which shows the propagation time of a defect front-end | tip and a defect bottom part. (a)縦波と横波の交点による欠陥(割れ)高さ測定法を示す図である。(b)円の交点の計算を示す図である。(A) It is a figure which shows the defect (crack) height measuring method by the intersection of a longitudinal wave and a transverse wave. (B) It is a figure which shows calculation of the intersection of a circle. クリーピング波の最短伝ぱ経路を示す図である。It is a figure which shows the shortest propagation path of a creeping wave. クリーピング波の伝ぱ時間を示す図である。It is a figure which shows propagation time of a creeping wave. 横波による伝ぱを示す図である。It is a figure which shows propagation by a transverse wave. 2次クリーピング波による伝ぱを示す図である。It is a figure which shows the propagation by a secondary creeping wave. クリーピング波の反射源位置を示す図である。It is a figure which shows the reflection source position of a creeping wave. モード変換波の経路の計算を示す図である。It is a figure which shows calculation of the path | route of a mode conversion wave. 超音波の拡がりによるモード変換波の経路を示す図である。It is a figure which shows the path | route of the mode conversion wave by the spreading of an ultrasonic wave. 横波屈折角を変化させて反射源位置を求めた場合を示す図である。It is a figure which shows the case where a reflection source position is calculated | required by changing a transverse wave refraction angle. モード変換波の伝ぱ時間を示す図である。It is a figure which shows the propagation time of a mode conversion wave. 横波による伝ぱを示す図である。It is a figure which shows propagation by a transverse wave. 縦波による伝ぱ距離を示す図である。It is a figure which shows the propagation distance by a longitudinal wave. モード変換波の経路を示す図である。It is a figure which shows the path | route of a mode conversion wave. モード変換波の反射源位置を示す図である。It is a figure which shows the reflection source position of a mode conversion wave. モード変換波の経路(傾いた欠陥) (a)α度傾いた欠陥、(b)−α度傾いた欠陥を示す図である。Mode conversion wave path (inclined defect) (a) Defect inclined by α degrees, (b) Defect inclined by α degrees. モード変換波の反射源位置を示す図である。It is a figure which shows the reflection source position of a mode conversion wave. モード変換波の経路の計算(傾いた欠陥)を示す図である。It is a figure which shows the calculation (tilted defect) of the path | route of a mode conversion wave. 縦波先端反射波の伝ぱ時間を示す図である。It is a figure which shows the propagation time of a longitudinal wave front-end | tip reflected wave. クリーピング波探触子による縦波交点法を示す図である。It is a figure which shows the longitudinal wave intersection method by a creeping wave probe. Bスコープ上の軌跡の出現位置フロー図を示す図である。It is a figure which shows the appearance position flow figure of the locus | trajectory on a B scope. クリーピング波探触子による欠陥の画像を示す図であるIt is a figure which shows the image of the defect by a creeping wave probe. 欠陥の画像化を示す図であるIt is a figure which shows imaging of a defect 探触子と位置検出器の他の実施形態を示す平面図である。It is a top view which shows other embodiment of a probe and a position detector. 図28の側面図である。It is a side view of FIG. 図29の他方向側面図である。FIG. 30 is a side view in the other direction of FIG. 29. 表面および内部欠陥への適用を示す図である。It is a figure which shows the application to a surface and an internal defect. 探触子の他の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows other embodiment of a probe.

符号の説明Explanation of symbols

10:探触子、11:振動子、11’:振動子アレイ、11a、11b、11c…:振動子単位、20:位置検出器、30、送受信装置、31:CPU、32:送信部、33:受信部、34:位置検出部、35:表示部、36信号処理部、40:超音波探傷装置、41:ケーシング、42:調芯機構、43:ギア、44:アーム,44a:ボール、45a:x方向用ローラ、45b:y方向用ローラ、46a:x方向用エンコーダ、46b:y方向用エンコーダ、47:ローラホルダー、47a:受け軸、48:探触子ホルダ、48a:基部、48c:揺動部、48b:ヒンジ、48d:軸、48e:保持部、100:試験体、L:縦波、S:横波、D:欠陥、M:モード変換波、C:クリーピング波
10: probe, 11: transducer, 11 ′: transducer array, 11a, 11b, 11c...: Transducer unit, 20: position detector, 30, transmitter / receiver, 31: CPU, 32: transmitter, 33 : Receiving unit, 34: position detecting unit, 35: display unit, 36 signal processing unit, 40: ultrasonic flaw detector, 41: casing, 42: alignment mechanism, 43: gear, 44: arm, 44a: ball, 45a : X direction roller, 45b: y direction roller, 46a: x direction encoder, 46b: y direction encoder, 47: roller holder, 47a: receiving shaft, 48: probe holder, 48a: base, 48c: Swing part, 48b: hinge, 48d: shaft, 48e: holding part, 100: specimen, L: longitudinal wave, S: transverse wave, D: defect, M: mode conversion wave, C: creeping wave

Claims (13)

縦波斜角探触子の作動する振動子を送信波の属する平面の方向に試験体表面に沿って移動させ、縦波、横波、モード変換波及びクリーピング波による画像が軌跡として表示されるように探触子位置と受信時間又はこれに相当する単位(以下、「受信時間等」)を軸とする座標に受信信号のBスコープ画像を表示し、各軌跡の相対的な位置関係から波の種類に応じた反射経路と反射源と特定し、欠陥の位置及び大きさを推定する超音波試験方法。 The transducer on which the longitudinal wave oblique angle probe operates is moved along the surface of the specimen in the direction of the plane to which the transmission wave belongs, and images of longitudinal waves, transverse waves, mode conversion waves, and creeping waves are displayed as trajectories. In this way, the B scope image of the received signal is displayed on the coordinates with the probe position and the reception time or a unit corresponding to this as the axis (hereinafter, “reception time etc.”) as an axis, and the wave is determined from the relative positional relationship of each trajectory. An ultrasonic test method that identifies a reflection path and a reflection source according to the type of the object and estimates the position and size of the defect. 前記欠陥が試験体の底に連通するものであり、クリーピング波、モード変換波及び欠陥先端部からの横波又は縦波の表れ方により欠陥の大きさを判別することを特徴とする請求項1記載の超音波試験方法。 2. The defect is characterized in that the defect communicates with the bottom of the specimen, and the size of the defect is determined based on the appearance of a creeping wave, a mode conversion wave, and a transverse wave or a longitudinal wave from the tip of the defect. The described ultrasonic test method. 同一欠陥部分から生じる横波及び縦波の軌跡から前記探触子位置及び受信時間等をそれぞれ求め、これら2組の探触子位置及び受信時間等の関係より同一欠陥部分の座標を求めることを特徴とする請求項1又は2記載の超音波試験方法。 The probe position and the reception time are obtained from the trajectory of the transverse wave and the longitudinal wave generated from the same defect portion, respectively, and the coordinates of the same defect portion are obtained from the relationship between the two sets of probe positions and the reception time. The ultrasonic test method according to claim 1 or 2. 前記欠陥が試験体の底に連通するものであり、クリーピング波の軌跡から前記探触子位置及び受信時間等を求め、前記欠陥部分の前記底における位置を求めることを特徴とする請求項1又は2記載の超音波試験方法。 2. The defect communicates with a bottom of a specimen, and the probe position and reception time are obtained from a creeping wave trajectory, and the position of the defect portion on the bottom is obtained. Or the ultrasonic test method of 2. 前記欠陥のうち中間部分から生じるモード変換波の軌跡の複数点から前記探触子位置及び受信時間等をそれぞれ求め、これら複数組の探触子位置及び受信時間等の幾何学的関係より中間欠陥部分の座標を求めることを特徴とする請求項1又は2記載の超音波試験方法。 Among the defects, the probe position and the reception time are obtained from a plurality of points of the trajectory of the mode-converted wave generated from the intermediate part, respectively, and the intermediate defect is obtained from the geometric relationship such as the plurality of sets of probe positions and the reception times. The ultrasonic test method according to claim 1, wherein the coordinates of the part are obtained. 同一欠陥部分から生じる縦波の軌跡上の少なくとも2点から前記探触子位置及び受信時間等をそれぞれ求め、これら2組以上の探触子位置及び受信時間等の関係より同一欠陥部分の座標を求めることを特徴とする請求項1又は2記載の超音波試験方法。 The probe position and reception time are obtained from at least two points on the trajectory of the longitudinal wave generated from the same defect portion, and the coordinates of the same defect portion are determined from the relationship between these two or more sets of probe positions and reception times. The ultrasonic test method according to claim 1, wherein the ultrasonic test method is obtained. 前記各方法により求めた欠陥部分の座標を二次元座標に表示することにより前記欠陥を画像化することを特徴とする請求項1又は2記載の超音波試験方法。 3. The ultrasonic testing method according to claim 1, wherein the defect is imaged by displaying the coordinates of the defect portion obtained by each of the methods in two-dimensional coordinates. 前記縦波斜角探触子を移動させることにより前記作動する振動子を送信波の属する平面の方向に試験体表面に沿って移動させることを特徴とする請求項1又は2記載の超音波試験方法。 The ultrasonic test according to claim 1 or 2, wherein the operating transducer is moved along the surface of the specimen in the direction of the plane to which the transmission wave belongs by moving the longitudinal wave oblique angle probe. Method. 前記振動子が複数の列状振動子よりなり、前記作動する振動子を列状振動子内で切り替えて作動させることにより前記作動する振動子を送信波の属する平面の方向に試験体表面に沿って移動させることを特徴とする請求項1又は2記載の超音波試験方法。 The vibrator is composed of a plurality of columnar vibrators, and the actuating vibrator is switched and operated in the columnar vibrator to move the actuating vibrator along the surface of the specimen in the direction of the plane to which the transmission wave belongs. The ultrasonic test method according to claim 1, wherein the ultrasonic test method is moved. 請求項1〜9のいずれかに記載の超音波試験方法に用いる超音波試験装置であって、縦波斜角探触子と、この探触子を送信波の属する平面の方向に試験体表面に沿って移動させた状態における座標を記録するエンコーダーと、前記探触子を送信波の属する平面の方向に試験体表面に沿って移動させた場合に、縦波、横波、モード変換波及びクリーピング波による画像が表示されるように探触子位置と受信時間又はこれに相当する単位(以下、「受信時間等」)を軸とする座標に受信信号のBスコープ画像を表示する表示装置とを備えたことを特徴とする超音波試験装置。 An ultrasonic test apparatus for use in the ultrasonic test method according to any one of claims 1 to 9, wherein a longitudinal wave oblique angle probe and the surface of the test specimen in the direction of a plane to which a transmission wave belongs When the probe is moved along the surface of the test object in the direction of the plane to which the transmission wave belongs, the longitudinal wave, the transverse wave, the mode conversion wave, and the clock are recorded. A display device that displays a B-scope image of a received signal at coordinates with a probe position and a reception time or a unit corresponding thereto (hereinafter referred to as “reception time, etc.”) as axes so that an image by a leaping wave is displayed; An ultrasonic testing apparatus comprising: 請求項1〜9のいずれかに記載の超音波試験方法に用いる超音波試験装置であって、試験体表面を転動する転動機構と、試験体表面に沿って転がる回転軸が互いに直交する一対のローラー及びこれら各ローラーに連携するエンコーダーとを備え、各ローラーの表面には各ローラーの転動軸に沿った方向に溝が形成されていることを特徴とする超音波試験装置。 It is an ultrasonic test apparatus used for the ultrasonic test method in any one of Claims 1-9, Comprising: The rolling mechanism which rolls on the surface of a test body, and the rotating shaft which rolls along a test body surface are mutually orthogonally crossed. An ultrasonic testing apparatus comprising a pair of rollers and an encoder that cooperates with each of the rollers, and a groove is formed on the surface of each roller in a direction along a rolling axis of each roller. 前記転動機構が、前後一対ずつケーシングに揺動自在に取り付けられるアーム及びその先端のボールとよりなり、一対のアーム44の傾きを同期させる調芯機構を備えたことを特徴とする請求項11に記載の超音波試験装置。 12. The rolling mechanism includes an arm that is swingably attached to the casing in pairs of front and rear and a ball at the tip thereof, and includes an alignment mechanism that synchronizes the inclination of the pair of arms 44. The ultrasonic test apparatus described in 1. 請求項1〜9のいずれかに記載の超音波試験方法に用いる超音波試験装置であって、Bスコープ画像の軌跡をカーソルで指示することにより前記各軌跡の相対的な位置関係を特定することを特徴とする超音波試験装置。

The ultrasonic test apparatus used in the ultrasonic test method according to claim 1, wherein a relative positional relationship between the trajectories is specified by designating a trajectory of a B scope image with a cursor. Ultrasonic testing device characterized by

JP2005148520A 2005-05-20 2005-05-20 Ultrasonic test method and ultrasonic test apparatus Expired - Fee Related JP4355679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148520A JP4355679B2 (en) 2005-05-20 2005-05-20 Ultrasonic test method and ultrasonic test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148520A JP4355679B2 (en) 2005-05-20 2005-05-20 Ultrasonic test method and ultrasonic test apparatus

Publications (2)

Publication Number Publication Date
JP2006322900A true JP2006322900A (en) 2006-11-30
JP4355679B2 JP4355679B2 (en) 2009-11-04

Family

ID=37542678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148520A Expired - Fee Related JP4355679B2 (en) 2005-05-20 2005-05-20 Ultrasonic test method and ultrasonic test apparatus

Country Status (1)

Country Link
JP (1) JP4355679B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021564A1 (en) * 2009-08-21 2011-02-24 三菱重工業株式会社 Ultrasonic inspection probe and ultrasonic inspection apparatus
CN102012402A (en) * 2010-10-29 2011-04-13 西安建筑科技大学 Calculation method of punctiform and vertical-bore defect equivalent aperture of steel structure weld root
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
JP2013231681A (en) * 2012-05-01 2013-11-14 Toshiba Plant Systems & Services Corp Non-destructive test device and non-destructive test method
CN105334263A (en) * 2015-09-29 2016-02-17 国家电网公司 GIS lead-in and lead-out bushing plug welding line ultrasound phased array detection probe and scanning apparatus
CN106770664A (en) * 2016-11-22 2017-05-31 中国计量大学 A kind of method that edge defect detection is improved based on total focus imaging algorithm
JP2017161441A (en) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 Welded joint ultrasonic flaw detecting method and welded joint ultrasonic flaw detector
CN111257426A (en) * 2020-02-25 2020-06-09 上海航天精密机械研究所 Multi-mode full-focus detection method, system and medium for welding seam of rocket fuel storage tank

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
WO2011021564A1 (en) * 2009-08-21 2011-02-24 三菱重工業株式会社 Ultrasonic inspection probe and ultrasonic inspection apparatus
JP2011043407A (en) * 2009-08-21 2011-03-03 Mitsubishi Heavy Ind Ltd Probe for ultrasonic inspection, and ultrasonic inspection device
US8783111B2 (en) 2009-08-21 2014-07-22 Mitsubishi Heavy Industries, Ltd. Ultrasonic testing probe and ultrasonic testing apparatus
CN102012402A (en) * 2010-10-29 2011-04-13 西安建筑科技大学 Calculation method of punctiform and vertical-bore defect equivalent aperture of steel structure weld root
JP2013231681A (en) * 2012-05-01 2013-11-14 Toshiba Plant Systems & Services Corp Non-destructive test device and non-destructive test method
CN105334263A (en) * 2015-09-29 2016-02-17 国家电网公司 GIS lead-in and lead-out bushing plug welding line ultrasound phased array detection probe and scanning apparatus
JP2017161441A (en) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 Welded joint ultrasonic flaw detecting method and welded joint ultrasonic flaw detector
CN106770664A (en) * 2016-11-22 2017-05-31 中国计量大学 A kind of method that edge defect detection is improved based on total focus imaging algorithm
CN106770664B (en) * 2016-11-22 2019-05-07 中国计量大学 A method of edge defect detection is improved based on total focus imaging algorithm
CN111257426A (en) * 2020-02-25 2020-06-09 上海航天精密机械研究所 Multi-mode full-focus detection method, system and medium for welding seam of rocket fuel storage tank

Also Published As

Publication number Publication date
JP4355679B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4355679B2 (en) Ultrasonic test method and ultrasonic test apparatus
EP3667311B1 (en) Shear wave oblique probe reflected/diffracted/deformed wave detection method
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
US6532820B1 (en) Combined ultrasonic techniques for evaluations (CUTE)
JP2014048169A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
JP5846367B2 (en) Flaw detection method and flaw detection apparatus for welds using TOFD method
JP5574731B2 (en) Ultrasonic flaw detection test method
JP4559931B2 (en) Ultrasonic flaw detection method
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
JP2002062281A (en) Flaw depth measuring method and its device
JP6552946B2 (en) Ultrasonic inspection method and apparatus
CN109142527B (en) Defect positioning method for ultrasonic phased array weld joint detection
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP3740123B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4431926B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2009014513A (en) Ultrasonic flaw detection method
JP5250248B2 (en) Defect end detection method and defect end detection device
JP2006138672A (en) Method of and device for ultrasonic inspection
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP5145066B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2002243703A (en) Ultrasonic flaw detector
JP5955638B2 (en) Weld metal shape estimation method, estimation apparatus, and estimation program
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
JP5478989B2 (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Ref document number: 4355679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150807

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees