JP5250248B2 - Defect end detection method and defect end detection device - Google Patents

Defect end detection method and defect end detection device Download PDF

Info

Publication number
JP5250248B2
JP5250248B2 JP2007315897A JP2007315897A JP5250248B2 JP 5250248 B2 JP5250248 B2 JP 5250248B2 JP 2007315897 A JP2007315897 A JP 2007315897A JP 2007315897 A JP2007315897 A JP 2007315897A JP 5250248 B2 JP5250248 B2 JP 5250248B2
Authority
JP
Japan
Prior art keywords
defect
transducers
pair
dimensional image
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007315897A
Other languages
Japanese (ja)
Other versions
JP2009139225A (en
Inventor
悟 城下
辰之 永井
晋 龍王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2007315897A priority Critical patent/JP5250248B2/en
Publication of JP2009139225A publication Critical patent/JP2009139225A/en
Application granted granted Critical
Publication of JP5250248B2 publication Critical patent/JP5250248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、欠陥等端部の検出方法及び欠陥等端部の検出装置に関する。さらに詳しくは、面状欠陥又は材料の非連続部(以下、欠陥等)に対し振動子より超音波を送受信することによりこの欠陥等の検査基準方向に対する端部を検出する欠陥等端部の検出方法及び欠陥等端部の検出装置に関する。
The present invention relates to a method for detecting a defect end portion and a defect end detection device. More specifically, the detection of the end of the defect or the like that detects the end of the defect or the like with respect to the inspection reference direction by transmitting / receiving ultrasonic waves to / from the non-continuous part of the material (hereinafter referred to as a defect or the like) from the vibrator. The present invention relates to a method and an apparatus for detecting a defect end portion.

従来、欠陥の検出のための超音波送受信方法として、例えば特許文献1,2に記載の如きものが知られている。特許文献1に記載の方法によれば、種々の条件での受信信号からくさび内エコー、底面エコー及び欠陥エコー等のピーク位置やピーク値等を算出し、それらの値から位置やサイズ等を求めている。そのため、受信信号の処理が煩雑であると共に、測定作業も煩雑となっていた。しかも、表示される波形から簡便に欠陥の端部を検出することは困難であった。   Conventionally, as ultrasonic transmission / reception methods for detecting defects, for example, those described in Patent Documents 1 and 2 are known. According to the method described in Patent Document 1, peak positions and peak values of wedge echoes, bottom surface echoes, defect echoes, etc. are calculated from received signals under various conditions, and positions, sizes, etc. are obtained from these values. ing. Therefore, the processing of the received signal is complicated and the measurement work is also complicated. In addition, it is difficult to easily detect the edge of the defect from the displayed waveform.

また、特許文献2に記載の方法によれば、所謂またぎ走査を前提とする方法であり、例えば検査対象となる溶接部の溶接線の両側に探触子を挟んで配置していた。そのため、探触子の配置が限定されるため、適用部位が限定されていた。   Further, according to the method described in Patent Document 2, it is a method on the premise of so-called straddle scanning. For example, the probe is disposed on both sides of the weld line of the welded portion to be inspected. Therefore, since the arrangement of the probe is limited, the application site is limited.

一方、サイジングの測定方法として、dBドロップ法やL線カット法が知られている。しかし、これらの方法では欠陥長さを推定することは可能であるが、正確に欠陥長さを測定することは困難であった。また、他の測定方法として、TOFD法や端部エコー法も知られている。しかし、TOFD法では、欠陥を跨ぐように探触子を配置しなければならず、適用できる部位が限定されていた。また、端部エコー法では、端部エコーの特定に試験者の技量や経験が必要であり、測定結果にばらつきが生じていた。
特開平9−257773号公報 特開平11−352111号公報
On the other hand, a dB drop method and an L-line cut method are known as sizing measurement methods. However, although these methods can estimate the defect length, it is difficult to accurately measure the defect length. As other measurement methods, the TOFD method and the end echo method are also known. However, in the TOFD method, the probe has to be arranged so as to straddle the defect, and the applicable parts are limited. In the end echo method, the tester's skill and experience are required to identify the end echo, and the measurement results vary.
JP-A-9-257773 Japanese Patent Laid-Open No. 11-352111

かかる従来の実情に鑑みて、本発明は、欠陥等の端部を簡便且つ正確に検出することの可能な欠陥等端部の検出方法及び欠陥等端部の検出装置を提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide a method for detecting an end portion of a defect and the like, and a detection device for the end portion of the defect, which can easily and accurately detect the end portion of the defect. To do.

上記目的を達成するため、本発明に係る欠陥等端部の検出方法の特徴は、欠陥等に対し振動子より超音波を送受信することによりこの欠陥等の検査基準方向に対する端部を検出する方法において、前記検査基準方向に直交する基準面について一対の振動子を面対称に配置し、これら一対の振動子をこの検査基準方向に移動させると共にこれら一対の振動子に超音波を送受信させて受信信号の二次元画像を記録し、各振動子の記録された二次元画像が合成された合成二次元画像における欠陥信号の交差部により前記端部を検出することにある。   In order to achieve the above-mentioned object, the feature of the method for detecting an end portion of a defect, etc. according to the present invention is a method for detecting the end portion of the defect or the like with respect to the inspection reference direction by transmitting and receiving ultrasonic waves from the vibrator. , A pair of transducers are arranged symmetrically with respect to a reference plane orthogonal to the inspection reference direction, the pair of transducers are moved in the inspection reference direction, and ultrasonic waves are transmitted to and received from the pair of transducers. The two-dimensional image of the signal is recorded, and the end portion is detected by the intersection of the defect signals in the synthesized two-dimensional image obtained by synthesizing the recorded two-dimensional image of each transducer.

上記特徴によれば、一対の振動子の受信信号から合成された合成二次元画像上に信号の交差部が形成される。この交差部は幾何学的に位置が特定できるので、画像上から容易に欠陥端部を検出することができる。そして、前記端部の検出を欠陥等の前記検査基準方向における両端に対して行うことにより欠陥等の長さを求めることができる。   According to the above feature, signal intersections are formed on the synthesized two-dimensional image synthesized from the received signals of the pair of transducers. Since the position of the intersection can be specified geometrically, the defect end can be easily detected from the image. And the length of a defect etc. can be calculated | required by detecting the said edge part with respect to the both ends in the said test | inspection reference | standard directions, such as a defect.

前記一対の振動子を並列接続すると共に、これら各振動子に対して前記超音波を同時に送受信させることにより、前記合成を行うことが望ましい。同特徴によれば、超音波を同時に送受信することで、簡易に合成二次元画像を得ることができる。また、前記各振動子毎の受信信号の二次元画像を個別に記録し合成することにより前記合成二次元画像を得ても構わない。   It is desirable to perform the synthesis by connecting the pair of transducers in parallel and simultaneously transmitting and receiving the ultrasonic waves to and from each transducer. According to the same feature, a synthesized two-dimensional image can be easily obtained by simultaneously transmitting and receiving ultrasonic waves. The synthesized two-dimensional image may be obtained by individually recording and synthesizing a two-dimensional image of the received signal for each transducer.

前記一対の振動子は、複数の振動子を備えたフェーズドアレイ探触子の複数の振動子から選択しても構わない。係る場合、前記振動子の移動が前記選択によりなされることが望ましい。   The pair of transducers may be selected from a plurality of transducers of a phased array probe having a plurality of transducers. In such a case, it is desirable that the vibrator is moved by the selection.

また、本発明に係る欠陥等端部の検出装置の特徴は、欠陥等に対し振動子より超音波を送受信することによりこの欠陥等の検査基準方向に対する端部を検出する構成において、前記検査基準方向に直交する基準面について面対称に配置する一対の振動子と、これら一対の振動子をこの検査基準方向に移動させた時にこれら一対の振動子に超音波を送受信させて受信信号の二次元画像を記録する記録手段と、各振動子の記録された二次元画像が合成された合成二次元画像を得る合成手段とを備え、前記合成二次元画像における欠陥信号の交差部により前記端部を検出することにある。   The feature of the defect end detection device according to the present invention is that the inspection reference in the configuration in which the end of the defect or the like with respect to the inspection reference direction is detected by transmitting and receiving ultrasonic waves from the vibrator to the defect or the like. A pair of transducers arranged symmetrically with respect to a reference plane orthogonal to the direction, and when the pair of transducers are moved in the inspection reference direction, ultrasonic waves are transmitted to and received from the pair of transducers, and the received signal is two-dimensional. Recording means for recording an image; and synthesis means for obtaining a synthesized two-dimensional image obtained by synthesizing the two-dimensional images recorded by the respective transducers, wherein the end portion is defined by an intersection of defect signals in the synthesized two-dimensional image. It is to detect.

上記構成において、前記一対の振動子は、ケーシング内に取り付けられた超音波を送受信可能な探触子であり、前記一対の振動子の入出力を互いに接続することにより前記合成手段を構成するとよい。   In the above-described configuration, the pair of transducers may be probes attached to a casing and capable of transmitting and receiving ultrasonic waves, and the combining means may be configured by connecting the input and output of the pair of transducers to each other. .

前記合成手段は前記一対の振動子を並列接続すると共にこれら各振動子に対して前記超音波を同時に送受信させることにより前記合成を行うようにしても構わない。また、前記記録手段は前記各振動子毎の受信信号の二次元画像を個別に記録するものであり、前記合成手段はこれらの記録手段の画像を合成することにより前記合成二次元画像を得てもよい。   The synthesizing unit may perform the synthesis by connecting the pair of transducers in parallel and simultaneously transmitting and receiving the ultrasonic waves to and from these transducers. The recording means individually records a two-dimensional image of the received signal for each transducer, and the synthesizing means obtains the synthesized two-dimensional image by synthesizing the images of these recording means. Also good.

上記本発明に係る欠陥等端部の検出方法及び欠陥等端部の検出装置の特徴によれば、欠陥等の端部を簡便且つ正確に検出することが可能となった。   According to the features of the defect end detection method and the defect detection end device according to the present invention, it is possible to easily and accurately detect the defect end.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、図1〜図14を参照しながら、本発明の第一の実施形態について説明する。
図1に示すように、本発明に係る検出装置1は、PC等の信号処理装置2、信号処理部3、パルサーレシバー4、位置検出用のエンコーダ5、表示部7及び対をなす第一、第二振動子8,9で構成されている。本実施形態において、欠陥等として、図2,3に示す如き鋼板等の被検査体100の内部に存在する面状欠陥200を例に説明する。この欠陥200は、同図に示すように、一定の長さを有し、且つその長さ方向が推定可能なものである。
Next, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a detection device 1 according to the present invention includes a signal processing device 2 such as a PC, a signal processing unit 3, a pulsar receiver 4, a position detecting encoder 5, a display unit 7 and a first pair. It consists of second vibrators 8 and 9. In the present embodiment, as a defect or the like, a planar defect 200 existing inside the inspection object 100 such as a steel plate as shown in FIGS. As shown in the figure, the defect 200 has a certain length, and its length direction can be estimated.

本実施形態において、一対の振動子8,9は、それぞれ振動子を備えた一対の第一、第二探触子10,20により構成されている。パルサーレシバー4で発生させた送信信号を一対の探触子10,20に入力し、一対の探触子10,20から同時に超音波を送信する。送信された超音波は被検査体100に入射し、欠陥200で反射する。その欠陥からの反射信号を一対の探触子10,20でそれぞれ受信して、パルサーレシバー4に出力する。出力された各受信信号は、信号処理装置2、信号処理部3を介して二次元画像として記録されると共に、これら二次元画像を合成した合成二次元画像が表示器7に表示される。図4に表示部7に表示される合成二次元画像の例を示す。同図において、縦軸は超音波伝搬距離、横軸は走査距離を示す。なお、以下に示す図においても同様である。   In the present embodiment, the pair of transducers 8 and 9 is composed of a pair of first and second probes 10 and 20 each having a transducer. Transmission signals generated by the pulsar receiver 4 are input to the pair of probes 10 and 20, and ultrasonic waves are simultaneously transmitted from the pair of probes 10 and 20. The transmitted ultrasonic wave enters the inspection object 100 and is reflected by the defect 200. Reflected signals from the defect are received by the pair of probes 10 and 20 and output to the pulsar receiver 4. Each output reception signal is recorded as a two-dimensional image via the signal processing device 2 and the signal processing unit 3, and a combined two-dimensional image obtained by synthesizing these two-dimensional images is displayed on the display 7. FIG. 4 shows an example of a synthesized two-dimensional image displayed on the display unit 7. In the figure, the vertical axis represents the ultrasonic propagation distance, and the horizontal axis represents the scanning distance. The same applies to the following drawings.

エンコーダ5は、一対の探触子10,20と連動し、これら探触子10,20の走査位置を検出する。エンコーダ5からの信号を信号処理装置2に入力し、演算処理をすることで一対の探触子10,20の位置データを取得している。   The encoder 5 operates in conjunction with the pair of probes 10 and 20 and detects the scanning positions of the probes 10 and 20. The position data of the pair of probes 10 and 20 is acquired by inputting a signal from the encoder 5 to the signal processing device 2 and performing arithmetic processing.

図1〜3に示すように、第一探触子10は、斜角探触子であり、大略、第一振動子8となる振動子11と楔12とコネクタ13とを有する。楔12は入射角調整用であり、例えばアクリル製のものが用いられる。この振動子11で励起した超音波を楔12を介して試験体表面100aに入射させる。その際、楔12と試験体表面100aとの間には接触媒質を介在させておく。また、対をなす第二探触子20には、第一探触子10と同一構造の斜角探触子を用いている。符号21は、振動子11と対をなす第二振動子9となる振動子である。また、符号22は楔12、符号23はコネクタ13にそれぞれ対応する。   As shown in FIGS. 1 to 3, the first probe 10 is an oblique angle probe, and generally includes a vibrator 11, a wedge 12, and a connector 13 that become the first vibrator 8. The wedge 12 is for adjusting the incident angle, and for example, an acrylic one is used. The ultrasonic wave excited by the vibrator 11 is made incident on the specimen surface 100 a through the wedge 12. At that time, a contact medium is interposed between the wedge 12 and the specimen surface 100a. In addition, an oblique probe having the same structure as that of the first probe 10 is used as the paired second probe 20. Reference numeral 21 denotes a vibrator serving as the second vibrator 9 that forms a pair with the vibrator 11. Reference numeral 22 corresponds to the wedge 12, and reference numeral 23 corresponds to the connector 13.

図1〜3に示すように、一対の探触子10,20は、その探触子間距離の中点を含み被検査体表面100aと直交する基準面となる平面300に対し対称となるように連結部材14で固定されている。そして、この基準面300が検査基準方向となるX軸方向と直交するように被検査体100に載置される。また、一対の振動子11,21は、被検査体表面100aへの入射角が同一となり、超音波の送受信方向軸が基準面300上で交差するように位置が設定されている。このような基準面300に対する面対称の配置によって、基準面300と欠陥200との交点と振動子11,21間の超音波の伝播距離は等しくなる。   As shown in FIGS. 1 to 3, the pair of probes 10 and 20 are symmetrical with respect to a plane 300 that is a reference plane that includes the midpoint of the distance between the probes and is orthogonal to the surface 100a to be inspected. It is fixed to the connection member 14. Then, the reference surface 300 is placed on the inspection object 100 so as to be orthogonal to the X-axis direction which is the inspection reference direction. In addition, the pair of transducers 11 and 21 have the same incident angle with respect to the surface 100a to be inspected, and the positions are set so that the transmission / reception direction axes of the ultrasonic waves intersect on the reference plane 300. With such a plane-symmetric arrangement with respect to the reference plane 300, the propagation distance of the ultrasonic wave between the intersection of the reference plane 300 and the defect 200 and the vibrators 11 and 21 becomes equal.

一対の探触子10,20の各振動子11,21は、パルサーレシバー4にコネクタ13,23を介して電気的に並列に接続されている。これにより、一対の振動子11,21において超音波を同時に送受信することができる。振動子11から送信された超音波は欠陥で反射し、その反射信号が振動子11,21でそれぞれ受信される。また、振動子21から送信された超音波は欠陥で反射し、その反射信号が振動子11,21でそれぞれ受信される。そして、これら受信信号にエンコーダ5の位置情報が付加された二次元画像が記録される。超音波を同時に送受信することで、各受信信号の二次元画像から図4に示す如き合成二次元画像を得ることが可能となる。すなわち、本実施形態において、電気的に並列に接続された一対の振動子11,21が合成手段を構成する。そして、図1に示すように、一対の振動子11,21間でそれぞれ超音波の送受信を行い、被検査体100内部に生じた欠陥端部200a,bを検出する。   The transducers 11 and 21 of the pair of probes 10 and 20 are electrically connected in parallel to the pulsar receiver 4 via connectors 13 and 23. Thereby, ultrasonic waves can be transmitted and received simultaneously in the pair of transducers 11 and 21. The ultrasonic waves transmitted from the transducer 11 are reflected by the defect, and the reflected signals are received by the transducers 11 and 21, respectively. Further, the ultrasonic wave transmitted from the vibrator 21 is reflected by the defect, and the reflected signals are received by the vibrators 11 and 21, respectively. Then, a two-dimensional image in which the position information of the encoder 5 is added to these received signals is recorded. By simultaneously transmitting and receiving ultrasonic waves, a synthesized two-dimensional image as shown in FIG. 4 can be obtained from the two-dimensional image of each received signal. That is, in this embodiment, a pair of vibrators 11 and 21 electrically connected in parallel constitutes a synthesizing unit. Then, as shown in FIG. 1, ultrasonic waves are transmitted and received between the pair of transducers 11 and 21 to detect defect end portions 200 a and 200 b generated inside the inspection object 100.

次に、本実施形態における欠陥端部の検出手順について説明する。
まず、欠陥200の近傍にエンコーダ5を取り付けた一対の探触子10,20を上述の基準面300が欠陥200の長手方向と直交するように配置する。この欠陥200は、図1〜3に示すように、X軸方向に一定の長さを有すると共にZ軸方向に深さを有する亀裂等の面状欠陥である。
Next, a procedure for detecting a defect end in the present embodiment will be described.
First, the pair of probes 10 and 20 having the encoder 5 attached in the vicinity of the defect 200 are arranged so that the above-described reference plane 300 is orthogonal to the longitudinal direction of the defect 200. As shown in FIGS. 1 to 3, the defect 200 is a planar defect such as a crack having a certain length in the X-axis direction and a depth in the Z-axis direction.

次に、一対の探触子10,20で超音波を同時に送受信し、被検査体100上を欠陥200の長手方向Xに走査する。この走査方向が検査基準方向Fであり、基準面300と直交する。そして、エンコーダ5から送られた一対の探触子10,20の位置信号と、各振動子11,21で受信された超音波の受信信号から二次元画像を得る。得られた各二次元画像を信号処理装置2,信号処理部3を介し、図4に例示する合成二次元画像を生成し、表示器7に表示する。   Next, ultrasonic waves are simultaneously transmitted and received by the pair of probes 10 and 20, and the inspection object 100 is scanned in the longitudinal direction X of the defect 200. This scanning direction is the inspection reference direction F and is orthogonal to the reference plane 300. Then, a two-dimensional image is obtained from the position signals of the pair of probes 10 and 20 sent from the encoder 5 and the ultrasonic reception signals received by the transducers 11 and 21. Each obtained two-dimensional image is generated through the signal processing device 2 and the signal processing unit 3 to generate a synthesized two-dimensional image illustrated in FIG.

ここで、生成される合成二次元画像での欠陥端部の検出原理について説明する。
図5に合成二次元画像の模式図を示す。符号A1,B1,C1は第一探触子10の位置を示し、符号A2,B2,C2は対をなす第二探触子20の位置を示す。また、符号A1,A2の中央を基点A、B1,B2の中央を基点B、C1,C2の中央を基点Cとする。なお、この基点A〜Cは説明の便宜上の基準に過ぎず、基点として探触子の位置A1〜C1,A2〜C2を用いても構わない。
Here, the detection principle of the defect edge part in the produced | generated synthetic | combination two-dimensional image is demonstrated.
FIG. 5 shows a schematic diagram of a synthesized two-dimensional image. Reference numerals A1, B1, and C1 indicate positions of the first probe 10, and reference numerals A2, B2, and C2 indicate positions of the paired second probes 20. Further, the center of the symbols A1 and A2 is the base point A, the center of B1 and B2 is the base point B, and the center of C1 and C2 is the base point C. Note that the base points A to C are merely a reference for convenience of explanation, and the probe positions A1 to C1 and A2 to C2 may be used as the base points.

同図に示すように、一対の探触子10,20を基点Aから基点Cへ移動させた場合、合成二次元画像上には、1本の略水平な第一の信号P1、右肩上がりの第二の信号P2及び右肩下がりの第三の信号P3が表れる。   As shown in the figure, when the pair of probes 10 and 20 is moved from the base point A to the base point C, one substantially horizontal first signal P1 and a right-handed rise are displayed on the synthesized two-dimensional image. The second signal P2 and the third signal P3 descending to the right appear.

第一の信号P1は、第一、第二探触子10,20で送信した超音波が欠陥200で反射し、その反射信号を第二、第一探触子20,10で受信して得られる信号である。第一探触子10と第二探触子20とは、上述の如く基準面300に対し面対称に配置してあるので、第一、第二探触子10,20間の超音波の伝搬距離はほぼ一定となり、略水平な波形として表れる。   The first signal P1 is obtained when the ultrasonic waves transmitted by the first and second probes 10 and 20 are reflected by the defect 200 and the reflected signal is received by the second and first probes 20 and 10. Signal. Since the first probe 10 and the second probe 20 are arranged symmetrically with respect to the reference plane 300 as described above, the propagation of ultrasonic waves between the first and second probes 10 and 20. The distance is almost constant and appears as a substantially horizontal waveform.

第二の信号P2は、第一探触子10において超音波を送信し、欠陥端部200aで反射した超音波を第一探触子10で受信した信号である。また、第三の信号P3は、第二探触子20において送受信した欠陥端部200aからの反射信号である。   The second signal P2 is a signal obtained by transmitting the ultrasonic wave in the first probe 10 and receiving the ultrasonic wave reflected by the defect end portion 200a by the first probe 10. The third signal P3 is a reflected signal from the defect end portion 200a transmitted and received in the second probe 20.

一対の探触子10,20を検査基準方向Fに沿って基点Aから基点Cへ移動させると、第一探触子10は欠陥端部200aに接近していくので、第一探触子10で送受信する超音波の伝搬経路は縮小していく。そのため、第二の信号P2は右肩上がりの傾斜した波形として表れる。一方、第二探触子20は欠陥端部200aから遠ざかるので、超音波の伝搬経路は拡大していく。そのため、第三の信号P3は右肩下がりの傾斜した波形として表れる。   When the pair of probes 10 and 20 are moved from the base point A to the base point C along the inspection reference direction F, the first probe 10 approaches the defect end portion 200a. The propagation path of the ultrasonic waves transmitted and received at will be reduced. Therefore, the second signal P2 appears as an inclined waveform that rises to the right. On the other hand, since the second probe 20 moves away from the defect end portion 200a, the propagation path of the ultrasonic wave expands. Therefore, the third signal P3 appears as an inclined waveform with a downward slope.

基点Aは、欠陥端部200aと基準面300が一致する地点である。一対の探触子10,20は基準面300に対して面対称に配置してあるので、第一探触子10での超音波の伝搬距離と第二探触子20での超音波の伝搬距離は等しくなる。そして、第一、第二探触子10,20間の超音波の伝搬距離とも等しくなる。そのため、これらの各信号P1〜3は互いに交差して交差部Eが形成される。この交差部Eにより、欠陥端部200aを検出することができる。   The base point A is a point where the defect end portion 200a and the reference plane 300 coincide. Since the pair of probes 10 and 20 are arranged in plane symmetry with respect to the reference plane 300, the propagation distance of the ultrasonic wave at the first probe 10 and the propagation of the ultrasonic wave at the second probe 20. The distance will be equal. The ultrasonic wave propagation distance between the first and second probes 10 and 20 is also equal. Therefore, these signals P1 to P3 intersect with each other to form an intersection E. The defect end 200a can be detected by the intersection E.

また、他方端部200bにおいても同様に、上述の原理により交差部が形成される。従って、基準面300と直交する検査基準方向Fとなる面状欠陥200の長手方向に走査することで、両交差部Eの位置から欠陥の長さLを簡便に測定することが可能となる。   Similarly, at the other end 200b, an intersection is formed according to the principle described above. Therefore, by scanning in the longitudinal direction of the planar defect 200 that is the inspection reference direction F orthogonal to the reference surface 300, the length L of the defect can be easily measured from the position of both intersections E.

本実施形態において、面状欠陥は図2,3に示す如き形状に限らず、様々な形状においてもその端部を検出することができる。以下、その検出例について説明する。
裏面側に開口するスリットを模擬欠陥として形成したSUS板において、上述と同様に走査した。その走査結果の合成二次元画像を図6に示す。同図に示す如く、第一の信号P1と第二、第三信号P2,P3との交差部Eが明瞭に表れており、端部の位置を特定可能であることが伺える。
In the present embodiment, the planar defect is not limited to the shape shown in FIGS. 2 and 3, and the end portion can be detected in various shapes. Hereinafter, the detection example will be described.
Scanning was performed in the same manner as described above on a SUS plate in which a slit opened on the back side was formed as a simulated defect. A composite two-dimensional image of the scanning result is shown in FIG. As shown in the figure, the intersection E between the first signal P1 and the second and third signals P2 and P3 appears clearly, and it can be seen that the position of the end can be specified.

また、上述のスリットにおいて、一方端部を先細りさせた模擬欠陥を形成したSUS板にて同様に走査した結果を図7に示す。同図に示す合成二次元画像においても、上記と同様に交差部Eが表れており、先細りの端部形状であってもその端部を検出することが可能である。   Further, FIG. 7 shows the result of scanning in the same manner with a SUS plate in which a simulated defect having one end tapered in the above-described slit is formed. Also in the synthesized two-dimensional image shown in the figure, the intersection E appears in the same manner as described above, and it is possible to detect the end of the tapered end shape.

さらに、適用されうる被検査体の部位も限定されるものではない。例えば、SUS溶接部に形成したスリットの場合においても、図8に示す如く、第一の信号P1と第二、第三信号P2,P3との交差部Eが表れており、欠陥端部を検出することができる。また、両交差部E,Eから求まる欠陥長さL2は実測値と一致した。また、図9にSUS溶接部内部のSCC(応力腐食割れ)を示す。この溶接部を走査した結果の合成二次元画像を図10に示す。図10(a)は合成された合成二次元画像であり、図10(b)は図10(a)における信号P1〜P3を示す図である。図10に示すように、第一の信号P1と第二、第三信号P2,P3との交差部Eが表れており、端部の検出が可能である。そして、検出した端部から欠陥長さL3の測定が可能であり、図9に示す実測値L3と一致した。このように、一対の探触子を溶接部の溶接線を挟んで配置しなくても端部の検出が可能である。   Furthermore, the site | part of the to-be-inspected object which can be applied is not limited. For example, even in the case of the slit formed in the SUS welded portion, as shown in FIG. 8, the intersection E between the first signal P1 and the second and third signals P2 and P3 appears, and the defect end is detected. can do. Further, the defect length L2 obtained from both the intersections E and E coincided with the actually measured value. FIG. 9 shows SCC (stress corrosion cracking) inside the SUS weld. A composite two-dimensional image obtained as a result of scanning the weld is shown in FIG. FIG. 10A shows a synthesized two-dimensional image, and FIG. 10B shows the signals P1 to P3 in FIG. As shown in FIG. 10, an intersection E between the first signal P1 and the second and third signals P2 and P3 appears, and the end can be detected. Then, the defect length L3 can be measured from the detected end portion, which coincides with the actual measurement value L3 shown in FIG. As described above, it is possible to detect the end portion without arranging the pair of probes with the weld line of the welded portion interposed therebetween.

さらに他の検出例について説明する。上述の検出例では、超音波の送受信方向を欠陥の位置する方向に向けて探触子を配置した。しかし、本適用例においては、図11に示すように、超音波の送受信方向を検査基準方向Fに沿って互いに対向させて対をなす探触子10,20を基準面300に対して上述の如き面対称に配置する。対向配置した場合においても、基準面300に対し超音波の伝搬距離は等しくなる。   Still another detection example will be described. In the above-described detection example, the probe is arranged with the ultrasonic wave transmitting / receiving direction in the direction in which the defect is located. However, in this application example, as shown in FIG. 11, the probes 10 and 20 that form a pair with the ultrasonic wave transmission / reception directions facing each other along the inspection reference direction F are described above with respect to the reference plane 300. Arrange them symmetrically. Even in the case of facing each other, the propagation distance of the ultrasonic wave is equal to the reference plane 300.

対向配置した場合には、図12に示す如き、第一部材111と第二部材112よりなるT継手110における溶接部211,212での溶け込み量を測定することができる。一対の探触子10,20を検査基準方向Fに沿う溶接部の幅方向に走査すると、図13に示すように、溶接部端部211a,b、212a,bに対応して合成二次元画像上に交差部E1〜4が表れた。この交差部E1〜4により溶接部の各端部が検出できる。そして、交差部E2,3から溶接部211,212間の溶け込み量Lを測定することができる。一方、図14に示すTOFD法を用いた場合には、略水平な信号Qは表れるものの、端部からの信号が表れないため、画像上から溶接部の端部の特定は困難であり、溶け込み量を測定することも困難であることが伺える。なお、T継手110を例に説明したが、片継手であっても同様に溶け込み量を測定することは可能である。   When facing each other, as shown in FIG. 12, it is possible to measure the amount of penetration at the welded portions 211 and 212 in the T joint 110 composed of the first member 111 and the second member 112. When the pair of probes 10 and 20 are scanned in the width direction of the welded portion along the inspection reference direction F, as shown in FIG. 13, a composite two-dimensional image corresponding to the welded portion end portions 211a, 211b, and 212a, b. Intersections E1-4 appeared on the top. The ends of the welded portion can be detected by the intersections E1 to E4. And the penetration amount L between the welding part 211,212 from the cross | intersection part E2,3 can be measured. On the other hand, when the TOFD method shown in FIG. 14 is used, a substantially horizontal signal Q appears, but a signal from the end portion does not appear. Therefore, it is difficult to specify the end portion of the welded portion from the top of the image. It can be said that it is difficult to measure the amount. Although the T joint 110 has been described as an example, the amount of penetration can be similarly measured even with a single joint.

また、図15に示すように、第一部材121と第二部材122とを積層した被検査体120のスポット溶接部220における端部220a,bを検出することも可能である。ここで、端部220a,bはスポット溶接部220と第一、第二部材121,122の接合面123との境界部である。このような被検査体120においても端部220a,bを検出することができ、その端部220a,b間の長さからナゲット径Lを測定可能である。   Further, as shown in FIG. 15, it is also possible to detect the end portions 220a and 220b in the spot welded portion 220 of the inspection object 120 in which the first member 121 and the second member 122 are laminated. Here, the end portions 220a and 220b are boundary portions between the spot welded portion 220 and the joint surfaces 123 of the first and second members 121 and 122. Even in such a test object 120, the end portions 220a and 220b can be detected, and the nugget diameter L can be measured from the length between the end portions 220a and 220b.

このように、一対の探触子は超音波の送受信方向を欠陥等の位置する方向に向けて面対称に配置する場合の他、面対称に対向配置させても欠陥等端部を検出し、その長さを測定することができる。また、面状欠陥に限らず、溶接部等の材料の非連続部において端部の検出及び長さの測定が可能である。   In this way, the pair of probes detects the ends of the defects and the like even when they are arranged in plane symmetry with respect to the direction in which the ultrasonic wave is transmitted and received in the direction in which the defects are located, Its length can be measured. Moreover, not only a planar defect but an edge part can be detected and a length can be measured in a discontinuous part of a material such as a welded part.

最後に、本発明のさらに他の実施形態の可能性について説明する。なお、以下の実施形態において、上記実施形態と同様の部材等には同様の符号を付してある。   Finally, the possibilities of yet another embodiment of the present invention will be described. In the following embodiments, members similar to those in the above embodiments are denoted by the same reference numerals.

上記実施形態において、対をなす振動子8,9は、対をなす同一構造の探触子10,20により構成した。しかし、探触子を一対用いる必要はなく、対をなす振動子を有していればよい。図16に示す実施形態では、ケーシング内部に対をなす振動子を設けた探触子30を用いる点で上記実施形態と異なる。   In the above-described embodiment, the paired vibrators 8 and 9 are configured by the pair of probes 10 and 20 having the same structure. However, it is not necessary to use a pair of probes, and it is only necessary to have a pair of transducers. The embodiment shown in FIG. 16 differs from the above embodiment in that a probe 30 provided with a pair of transducers inside the casing is used.

探触子30には、大略、一対の振動子31a,bと、一対の楔32a,bとがケーシング35内部に設けられている。一対の振動子31a,bは、上記実施形態と同様に基準面300に対して面対称となるように取り付けられている。また、各振動子31a,bはリード線36を介して電気的に並列にパルサーレシバー4に接続されている。すなわち、本実施形態において、一対の振動子31a,bが合成手段を構成する。一対の振動子31a,bをケーシング35に内蔵することにより、検査装置をより簡素化できる。そして、この探触子30を基準面300と直交する検査基準方向Fに沿って走査して欠陥端部の検出を行う。なお、本実施形態においても、ケーシング35内部で一対の振動子31a,bを対向させて取り付けることも可能である。   In general, the probe 30 is provided with a pair of transducers 31 a and 31 b and a pair of wedges 32 a and 32 b inside the casing 35. The pair of vibrators 31 a and 31 b are attached so as to be plane-symmetric with respect to the reference plane 300 as in the above embodiment. The vibrators 31 a and 31 b are electrically connected to the pulsar receiver 4 in parallel through lead wires 36. That is, in the present embodiment, the pair of vibrators 31a and 31b constitutes a synthesizing unit. By incorporating the pair of vibrators 31a and 31b in the casing 35, the inspection apparatus can be further simplified. Then, the probe 30 is scanned along the inspection reference direction F perpendicular to the reference plane 300 to detect a defect end. In the present embodiment also, the pair of vibrators 31a and 31b can be attached to face each other inside the casing 35.

上記各実施形態において、一対の振動子8,9から同時に超音波を送受信して二次元画像をそれぞれ記録すると共に合成二次元画像を生成した。しかし、超音波は同時に送受信される場合の他、時間をおいて超音波を送信しても構わない。   In each of the above embodiments, ultrasonic waves were simultaneously transmitted and received from the pair of vibrators 8 and 9 to record two-dimensional images, respectively, and generate a synthesized two-dimensional image. However, in addition to the case where ultrasonic waves are transmitted and received at the same time, ultrasonic waves may be transmitted after a time.

係る場合、図17に示すように、マルチプレクサ40の第1チャンネル41に第一の探触子10を接続し、第2チャンネル42に第二の探触子20を接続する。そして、マルチプレクサ40内部のスイッチを切り替えて信号を入出力させる。まず、第1チャンネル41を介して第一探触子10から送信信号を送出し、第一探触子10から超音波を送信する。そして、欠陥等200において反射した反射信号を第二探触子20で受信し、第2チャンネル42を介して受信信号を出力し、図18(a)に示す如き第一の二次元画像G1を記録する。第一の二次元画像G1には第一の信号P1が表れる。   In such a case, the first probe 10 is connected to the first channel 41 of the multiplexer 40 and the second probe 20 is connected to the second channel 42 as shown in FIG. Then, the switches inside the multiplexer 40 are switched to input / output signals. First, a transmission signal is transmitted from the first probe 10 via the first channel 41, and ultrasonic waves are transmitted from the first probe 10. Then, the reflected signal reflected by the defect 200 or the like is received by the second probe 20, and the received signal is output through the second channel 42, and a first two-dimensional image G1 as shown in FIG. Record. The first signal P1 appears in the first two-dimensional image G1.

次に、第2チャンネル42のスイッチを切り替えて、第2チャンネル42を介して第二探触子20において超音波を送受信し、同図(b)に示す第二の二次元画像G2を記録する。第二の二次元画像G2には第三の信号P3が表れる。そして、第1チャンネル41に切り替え、第1チャンネル41を介して第一探触子10において超音波を送受信し、同図(c)に示す第三の二次元画像G3を記録する。第三の二次元画像G3には第三の信号P2が表れる。得られた各二次元画像G1〜3を信号処理部3で画像処理して合成することで、同図(d)に示す合成二次元画像Iを得る。この合成二次元画像I上には、第一の信号P1と第二、第三の信号P2,P3との交差部Eが形成され、この交差部Eにより端部を検出することができる。   Next, the switch of the second channel 42 is switched, ultrasonic waves are transmitted / received in the second probe 20 via the second channel 42, and the second two-dimensional image G2 shown in FIG. . A third signal P3 appears in the second two-dimensional image G2. And it switches to the 1st channel 41, an ultrasonic wave is transmitted / received in the 1st probe 10 via the 1st channel 41, and the 3rd two-dimensional image G3 shown in the figure (c) is recorded. A third signal P2 appears in the third two-dimensional image G3. The obtained two-dimensional images G1 to G3 are subjected to image processing by the signal processing unit 3 and synthesized to obtain a synthesized two-dimensional image I shown in FIG. On the synthesized two-dimensional image I, an intersection E between the first signal P1 and the second and third signals P2 and P3 is formed, and an end can be detected by the intersection E.

また、上記各実施形態において、一対の振動子8,9を用いたが、振動子は上記構成のものに限らない。例えばフェーズドアレイ探触子を用いて欠陥端部を検出することも可能である。係る場合、検査基準方向に対し直交する基準面に対して面対称となる位置にある振動子を一対選択すればよい。また、フェーズドアレイ探触子を用いる場合には、フェーズドアレイ探触子自体を移動させて走査してもよく、一対の振動子の選択を検査基準方向に電気的に行うことで走査しても構わない。なお、本実施形態においても、上述のマルチプレクサ40を用いて合成二次元画像を得る。   In each of the above embodiments, the pair of vibrators 8 and 9 is used. However, the vibrator is not limited to the above-described structure. For example, it is possible to detect a defect end using a phased array probe. In such a case, a pair of transducers that are plane-symmetric with respect to a reference plane orthogonal to the inspection reference direction may be selected. When a phased array probe is used, scanning may be performed by moving the phased array probe itself, or scanning by electrically selecting a pair of transducers in the inspection reference direction. I do not care. Also in the present embodiment, a synthesized two-dimensional image is obtained using the multiplexer 40 described above.

上記第一、第二実施形態において、対をなす振動子から超音波を同時に送受信させて合成二次元画像を得た。しかし、超音波を例えば第一の振動子のみから送信させ、双方の振動子で受信させてもよい。係る場合、図5に示す合成二次元画像に第三の信号P3は表れない。しかし、第一の信号P1と第二の信号P2との交差部Eが形成されるので、この交差部Eにより欠陥等端部の検出及び長さ測定が可能である。   In the first and second embodiments, a composite two-dimensional image is obtained by simultaneously transmitting and receiving ultrasonic waves from a pair of transducers. However, ultrasonic waves may be transmitted from only the first transducer and received by both transducers, for example. In such a case, the third signal P3 does not appear in the synthesized two-dimensional image shown in FIG. However, since an intersection E between the first signal P1 and the second signal P2 is formed, it is possible to detect an end portion of the defect and measure the length by the intersection E.

なお、振動子は、送信子取付中心軸と試験体表面の法線とのなす角で与えられる入射角を適宜調整可能に構成してもよい。   The vibrator may be configured such that the incident angle given by the angle formed by the transmitter mounting center axis and the normal of the specimen surface can be adjusted as appropriate.

本発明は、面状の欠陥又は材料の非連続部に対し、その端部を検出し、長さを測定する検出方法及び検出装置として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a detection method and a detection apparatus for detecting an end portion of a planar defect or a discontinuous portion of a material and measuring the length.

本発明に係る検査装置を示すブロック図である。It is a block diagram which shows the inspection apparatus which concerns on this invention. 探触子と欠陥との位置関係を示す概略平面図である。It is a schematic plan view which shows the positional relationship between a probe and a defect. 探触子と欠陥との位置関係を示す概略断面図である。It is a schematic sectional drawing which shows the positional relationship of a probe and a defect. 合成二次元画像の一例を示す図である。It is a figure which shows an example of a synthetic | combination two-dimensional image. 合成二次元画像における端部検出の原理を説明する図である。It is a figure explaining the principle of the edge part detection in a synthetic | combination two-dimensional image. 他の検出例における合成二次元画像の一例を示す図である。It is a figure which shows an example of the synthetic | combination two-dimensional image in another example of a detection. さらに他の検出例における合成二次元画像の例を示す図である。It is a figure which shows the example of the synthetic | combination two-dimensional image in another example of a detection. さらに他の検出例における合成二次元画像の例を示す図である。It is a figure which shows the example of the synthetic | combination two-dimensional image in another example of a detection. SUS溶接部におけるSCCを示す図である。It is a figure which shows SCC in a SUS welding part. 図9における合成二次元画像の一例を示す図である。It is a figure which shows an example of the synthetic | combination two-dimensional image in FIG. 探触子と欠陥との他の位置関係を示す図1相当図である。FIG. 3 is a view corresponding to FIG. 1 and showing another positional relationship between the probe and the defect. T継手における探触子の配置を示す概略図である。It is the schematic which shows arrangement | positioning of the probe in a T joint. 図12における合成二次元画像の一例を示す図である。It is a figure which shows an example of the synthetic | combination two-dimensional image in FIG. TOFDを用いた比較例を示す図13相当図である。FIG. 14 is a diagram corresponding to FIG. 13 illustrating a comparative example using TOFD. スポット溶接部における探触子の配置を示す概略図である。It is the schematic which shows arrangement | positioning of the probe in a spot weld part. 探触子の他の実施形態を示す概略図である。It is the schematic which shows other embodiment of a probe. さらに他の実施形態を示す概略図である。It is the schematic which shows other embodiment. 図17における二次元画像の模式図である。It is a schematic diagram of the two-dimensional image in FIG.

符号の説明Explanation of symbols

1:検出装置、2:信号処理装置、3:信号処理部、4:パルサーレシーバー、5:エンコーダ、7:表示器、8:第一振動子、9:第二振動子、10:第一探触子、11:第一振動子、12:楔、13:コネクタ、14:連結部材、20:第二探触子、21:第二振動子、22:楔、23:コネクタ、30:探触子、31a,b:振動子、32a,b:楔、33:コネクタ、35:ケーシング、36:リード線、40:マルチプレク、41:第1チャンネル、42:第2チャンネル、100:被検査体、100a:表面、110:被検査体(T継手)、111:第一部材、112:第二部材、120:被検査体、121:第一部材、122:第二部材、123:接合面、200:面状欠陥(欠陥等)、200a,b:端部、210:溶接部(欠陥等)、211,212:溶接部、220:スポット溶接部(欠陥等)、220a,b:端部(境界部)、300:検査対象部、E:交差部、G1〜G3:二次元画像、I:合成二次元画像、L:長さ、P1〜P3,Q:受信信号、 1: detection device, 2: signal processing device, 3: signal processing unit, 4: pulser receiver, 5: encoder, 7: display, 8: first vibrator, 9: second vibrator, 10: first probe Tensile, 11: first vibrator, 12: wedge, 13: connector, 14: connecting member, 20: second probe, 21: second vibrator, 22: wedge, 23: connector, 30: probe Child, 31a, b: vibrator, 32a, b: wedge, 33: connector, 35: casing, 36: lead wire, 40: multiplex, 41: first channel, 42: second channel, 100: device under test 100a: surface, 110: object to be inspected (T joint), 111: first member, 112: second member, 120: object to be inspected, 121: first member, 122: second member, 123: bonding surface, 200: Planar defects (defects, etc.), 200a, b: end portions, 210: welded portions Defects, etc.), 211, 212: welded part, 220: spot welded part (defect etc.), 220a, b: end part (boundary part), 300: inspection target part, E: intersection part, G1 to G3: two-dimensional image , I: composite two-dimensional image, L: length, P1 to P3, Q: received signal,

Claims (10)

面状欠陥又は材料の非連続部(以下、欠陥等)に対し振動子より超音波を送受信することによりこの欠陥等の検査基準方向に対する端部を検出する欠陥等端部の検出方法であって、
前記検査基準方向に直交する基準面について一対の振動子を面対称に配置し、これら一対の振動子をこの検査基準方向に移動させると共にこれら一対の振動子に超音波を送受信させて受信信号の二次元画像を記録し、各振動子の記録された二次元画像が合成された合成二次元画像における欠陥信号の交差部により前記端部を検出する欠陥等端部の検出方法。
A method for detecting an end portion of a defect such as a defect that detects an end portion of the defect or the like with respect to an inspection reference direction by transmitting / receiving ultrasonic waves to / from a discontinuous portion of the material (hereinafter referred to as a defect). ,
A pair of transducers are arranged symmetrically with respect to a reference plane orthogonal to the inspection reference direction, the pair of transducers are moved in the inspection reference direction, and ultrasonic waves are transmitted to and received from the pair of transducers. A method for detecting an end portion of a defect or the like, in which a two-dimensional image is recorded and the end portion is detected by an intersection of defect signals in a combined two-dimensional image obtained by combining the recorded two-dimensional images of the respective transducers.
前記端部の検出を欠陥等の前記検査基準方向における両端に対して行うことにより欠陥等の長さを求める請求項1記載の欠陥等端部の検出方法。 The method for detecting an end portion of a defect or the like according to claim 1, wherein the length of the defect or the like is obtained by detecting the end portion with respect to both ends in the inspection reference direction of the defect or the like. 前記一対の振動子を並列接続すると共にこれら各振動子に対して前記超音波を同時に送受信させることにより前記合成を行う請求項1又2に記載の欠陥等端部の検出方法。 The method for detecting a defect end portion according to claim 1 or 2, wherein the synthesis is performed by connecting the pair of transducers in parallel and simultaneously transmitting and receiving the ultrasonic waves to and from these transducers. 前記各振動子毎の受信信号の二次元画像を個別に記録し合成することにより前記合成二次元画像を得る請求項1又2に記載の欠陥等端部の検出方法。 The method for detecting a defect end portion according to claim 1 or 2, wherein the synthesized two-dimensional image is obtained by individually recording and synthesizing a two-dimensional image of the received signal for each transducer. 前記一対の振動子は、複数の振動子を備えたフェーズドアレイ探触子の複数の振動子から選択される請求項1又2に記載の欠陥等端部の検出方法。 3. The defect end detection method according to claim 1, wherein the pair of transducers is selected from a plurality of transducers of a phased array probe including a plurality of transducers. 前記振動子の移動が前記選択によりなされる請求項5に記載の欠陥等端部の検出方法。 The method for detecting a defect end portion according to claim 5, wherein the transducer is moved by the selection. 面状欠陥又は材料の非連続部(以下、欠陥等)に対し振動子より超音波を送受信することによりこの欠陥等の検査基準方向に対する端部を検出する欠陥等端部の検出装置であって、
前記検査基準方向に直交する基準面について面対称に配置する一対の振動子と、これら一対の振動子をこの検査基準方向に移動させた時にこれら一対の振動子に超音波を送受信させて受信信号の二次元画像を記録する記録手段と、各振動子の記録された二次元画像が合成された合成二次元画像を得る合成手段とを備え、前記合成二次元画像における欠陥信号の交差部により前記端部を検出する欠陥等端部の検出装置。
An apparatus for detecting an end portion of a defect or the like that detects an end portion of the defect or the like with respect to an inspection reference direction by transmitting and receiving ultrasonic waves from a vibrator to a discontinuous portion of the material (hereinafter referred to as a defect or the like). ,
A pair of transducers arranged symmetrically with respect to a reference plane orthogonal to the inspection reference direction, and when the pair of transducers are moved in the inspection reference direction, ultrasonic waves are transmitted to and received from the pair of transducers and received signals Recording means for recording the two-dimensional image, and synthesizing means for obtaining a synthesized two-dimensional image obtained by synthesizing the recorded two-dimensional images of the respective transducers, and by the intersection of the defect signals in the synthesized two-dimensional image, A device for detecting an end of a defect or the like that detects the end.
前記一対の振動子は、ケーシング内に取り付けられた超音波を送受信可能な探触子であり、前記一対の振動子の入出力を互いに接続することにより前記合成手段を構成する請求項7記載の欠陥等端部の検出装置。 8. The pair of transducers according to claim 7, wherein the pair of transducers are probes attached to a casing and capable of transmitting and receiving ultrasonic waves, and the synthesizing unit is configured by connecting input and output of the pair of transducers to each other. Detection device for defects and other edges. 前記合成手段は前記一対の振動子を並列接続すると共にこれら各振動子に対して前記超音波を同時に送受信させることにより前記合成を行うものである請求項7に記載の欠陥等端部の検出装置。 8. The defect end detection apparatus according to claim 7, wherein the synthesizing unit performs the synthesis by connecting the pair of transducers in parallel and simultaneously transmitting and receiving the ultrasonic waves to and from the transducers. . 前記記録手段は前記各振動子毎の受信信号の二次元画像を個別に記録するものであり、前記合成手段はこれらの記録手段の画像を合成することにより前記合成二次元画像を得るものである請求項7又は8に記載の欠陥等端部の検出装置。 The recording means individually records a two-dimensional image of the received signal for each transducer, and the synthesizing means obtains the synthesized two-dimensional image by synthesizing the images of these recording means. The apparatus for detecting an end portion of a defect or the like according to claim 7 or 8.
JP2007315897A 2007-12-06 2007-12-06 Defect end detection method and defect end detection device Active JP5250248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315897A JP5250248B2 (en) 2007-12-06 2007-12-06 Defect end detection method and defect end detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315897A JP5250248B2 (en) 2007-12-06 2007-12-06 Defect end detection method and defect end detection device

Publications (2)

Publication Number Publication Date
JP2009139225A JP2009139225A (en) 2009-06-25
JP5250248B2 true JP5250248B2 (en) 2013-07-31

Family

ID=40869979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315897A Active JP5250248B2 (en) 2007-12-06 2007-12-06 Defect end detection method and defect end detection device

Country Status (1)

Country Link
JP (1) JP5250248B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185902B2 (en) * 2009-09-17 2013-04-17 三菱重工業株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for turbine rotor disk
JP5383892B2 (en) * 2012-11-19 2014-01-08 三菱重工業株式会社 Ultrasonic flaw detector for turbine rotor disk
JP2017075866A (en) * 2015-10-15 2017-04-20 東京理学検査株式会社 Measuring apparatus and measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134663A (en) * 1984-12-06 1986-06-21 Toshiba Corp Ultrasonic test equipment
JP2007046913A (en) * 2005-08-05 2007-02-22 Mitsubishi Heavy Ind Ltd Welded structure flaw detection testing method, and steel welded structure flaw detector
JP5132886B2 (en) * 2006-01-16 2013-01-30 非破壊検査株式会社 Boundary surface position detection method and boundary surface position detection device

Also Published As

Publication number Publication date
JP2009139225A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
KR101928946B1 (en) Three-dimensional matrix phased array spot weld inspection system
JP5618529B2 (en) 3D ultrasonic inspection equipment
JP5841026B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4470655B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP4838697B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection wedge
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
US9816964B1 (en) Ultrasonic method and device for volumetric examination of aluminothermic rail welds
JP4728838B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP5829175B2 (en) Ultrasonic flaw detection method and apparatus by TOFD method
JP2011247649A (en) Method and program for identifying surface shape of ultrasonic wave flaw detection test piece, aperture synthesis processing program, and phased array flaw detection program
JP5574731B2 (en) Ultrasonic flaw detection test method
KR101698746B1 (en) Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JP5250248B2 (en) Defect end detection method and defect end detection device
JP2002062281A (en) Flaw depth measuring method and its device
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JP2018100852A (en) Ultrasonic inspection device, ultrasonic inspection method and joint block material manufacturing method
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
WO2020039850A1 (en) Method and device for evaluating bonding interface
JP4731358B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP2011122827A (en) Array probe measuring method and array probe measuring instrument
KR20150023434A (en) Steel material quality evaluation method and quality evaluation device
JP4175762B2 (en) Ultrasonic flaw detector
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP3765417B2 (en) Ultrasonic flaw detection method and apparatus
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250