JPS5926898B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer

Info

Publication number
JPS5926898B2
JPS5926898B2 JP54100106A JP10010679A JPS5926898B2 JP S5926898 B2 JPS5926898 B2 JP S5926898B2 JP 54100106 A JP54100106 A JP 54100106A JP 10010679 A JP10010679 A JP 10010679A JP S5926898 B2 JPS5926898 B2 JP S5926898B2
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transducer
hole
inspected
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54100106A
Other languages
Japanese (ja)
Other versions
JPS5624573A (en
Inventor
美明 山本
智明 植竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP54100106A priority Critical patent/JPS5926898B2/en
Publication of JPS5624573A publication Critical patent/JPS5624573A/en
Publication of JPS5926898B2 publication Critical patent/JPS5926898B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波ビームを線状に集束しかつその集束ビー
ムを長くすることのできる水浸探傷用超音波送受波器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic transducer for water immersion flaw detection that can focus an ultrasonic beam into a line and make the focused beam long.

最近、超音波探傷をする際、検出欠陥の大きさ、方向性
等定量的な測定により欠陥評価の精度をより高めると同
時に、検査時間を一層短縮することが強く要望されてい
る。
Recently, when performing ultrasonic flaw detection, there is a strong demand to further improve the accuracy of defect evaluation by quantitatively measuring the size, directionality, etc. of detected defects, and at the same time to further shorten the inspection time.

そこで1欠陥位置を正確に決めるためビームを集束する
必要があり、2検査時間を短縮するために上述のビーム
の集束は点より線状とすることが望ましく、3さらに水
浸探傷をする際に被検査材に超音波を放射した場合その
表面からの反射波(Sエコー)による影響を回避する必
要がある。然るに従来、普通に用いられている水浸用垂
直探触子では超音波ビームは振動子の周波数と直径に依
存するのである限度以上に細く絞ることができなかつた
Therefore, 1) it is necessary to focus the beam in order to accurately determine the defect position; 2) it is desirable to focus the beam on a line rather than a point in order to shorten the inspection time; 3) and When ultrasonic waves are emitted onto a material to be inspected, it is necessary to avoid the influence of reflected waves (S echoes) from the surface of the material. However, in conventional water immersion vertical probes, the ultrasonic beam depends on the frequency and diameter of the transducer, so it has not been possible to narrow it down beyond a certain limit.

また焦点形探触子として超音波ビームを細く絞つたもの
は集束帯域が短く、点に等しい状態であった。またsエ
コーの影響を回避するための分割形探触子では、通常二
分割形が用いられているため探触子構造上、方向性が強
くかつ同一面積の振動子を送受共用に用いた場合に比し
その半分の面積の振動子で送信と受信を行つていること
になり、感度において損失があつた。
In addition, the focus type probe that focused the ultrasonic beam narrowly had a short focusing band, which was equivalent to a point. In addition, in split type probes to avoid the influence of s-echo, a two-piece type is usually used, so due to the probe structure, if a transducer with strong directionality and the same area is used for both transmission and reception. This meant that transmission and reception were performed using a transducer with half the area, resulting in a loss in sensitivity.

本発明は上述のような問題点を解決するためになされた
もので、振動子より発射した超音波ビームが被検査材に
おいて線状に集束しかつその集束線長が被検査材の板厚
に等しくすることのできる超音波受波器を提供すること
を目的とする。
The present invention was made to solve the above-mentioned problems, and the ultrasonic beam emitted from the transducer is focused linearly on the material to be inspected, and the length of the focused line is equal to the thickness of the material to be inspected. It is an object of the present invention to provide an ultrasonic receiver capable of equalization.

つぎに本発明を図示の一実施例について説明する。第1
図は中央に空孔をもつた超音波振動子を示す。第2図は
本発明による超音波送受波器の断面図であり、1は圧電
磁器または単結晶よりなる超音波振動子、2は中央に超
音波振動子の空孔と尊大の空孔を有し内側面に特定の傾
斜7をもつた円形状のプラスチック材の楔、3はエポキ
シエラストマー、ブチルゴム、フェノール樹脂等に吸音
′ 効果のあるフィラー等を混入してなる吸音体、4は
タングステン、エポキシ複合材よりなるダンパ、5は電
気接続用コネクタ、6は超音波振動子1よりコネクタ5
へのリード線、8はケースであり、環状形振動子1に中
央の空孔を合せてプラスチッ5 ク材の円形状の楔2を
密着させ、前記の振動子1及び楔2の空孔に筒状の吸音
体3を嵌合させ、これ等がケース8内にダンパ4で装填
されている。ワー第3図にこのような超音波送受波器を
、水中において被検査材例えば鋼板11に対して垂直に
配して超音波振動子より超音波ビームを発射した状態を
一つの断面について図示している。
Next, the present invention will be described with reference to an illustrated embodiment. 1st
The figure shows an ultrasonic transducer with a hole in the center. FIG. 2 is a cross-sectional view of the ultrasonic transducer according to the present invention, in which 1 is an ultrasonic vibrator made of piezoelectric ceramic or single crystal, and 2 has a hole for the ultrasonic vibrator and a large hole in the center. 3 is a sound absorbing material made of epoxy elastomer, butyl rubber, phenol resin, etc. mixed with a filler having a sound absorbing effect, and 4 is tungsten, epoxy. A damper made of composite material, 5 a connector for electrical connection, 6 a connector 5 from the ultrasonic transducer 1
The lead wire 8 is a case, and a circular wedge 2 made of plastic material is tightly attached to the annular vibrator 1 with the center hole aligned with the hole in the vibrator 1 and the wedge 2. A cylindrical sound absorbing body 3 is fitted, and these are loaded into a case 8 with a damper 4. Figure 3 shows a cross section of the state in which such an ultrasonic transducer is placed perpendicularly to a material to be inspected, such as a steel plate 11, underwater, and an ultrasonic beam is emitted from an ultrasonic vibrator. ing.

いま超音波振動子1からプラスチツク材の円形状の楔の
傾斜面7の最外側より水中に超音波13が発射され、鋼
板11の表面より発生するエコー(Sエコー)13′は
楔2及び超音波振動子1の空孔の最外側を通り吸音体3
により吸収されるが前記超音波13の一部は鋼板に入射
し、底面15で反射(Bエコー)し、鋼板から水中へ超
音波13勤5円形状楔2′の外部へと進み、つぎに円形
状楔の傾斜面7の最内側より水中に発射された超音波1
4はSエコーとして鋼板のデツドゾーンを経て反射し、
その超音波14′は前記楔の反対側の楔グの傾斜面の最
内側の内部の吸収体に入射されそのま\吸収されるよう
に、円形状楔の傾斜面の角度とこの楔2及び超音波振動
子1の中央空孔の大きさを選んでおけば総べてのSエコ
ーは吸音体3に入射されてそれによる影響を回避するこ
とができる。これにより探傷不可能域デツドゾーンを極
めて小さくすることができる。またBエコーは受信され
ない。いま一例として、第4図において鋼板の厚さT=
10m77!、振動子の直径2R=20v1t1音速を
水中Cw=1500m/s1有機ガラス中Ca=274
0m/s1鋼(横波)中Cs=3200m/sとして楔
の傾斜角φ3を求める。そこで極力小さい傷も探傷でき
るよう分解能を高くするため波長の短い横波を使用する
とき、一般に水中から鋼板に入射して横波となる変換能
率がMAX,になるのは入射角φッが17変のときであ
るのでφッ=17゜として計算するととなる。
Now, an ultrasonic wave 13 is emitted from the ultrasonic transducer 1 into the water from the outermost side of the inclined surface 7 of a circular wedge made of plastic material, and an echo (S echo) 13' generated from the surface of the steel plate 11 is transmitted to the wedge 2 and the ultrasonic wave 13. The sound absorber 3 passes through the outermost hole of the sound wave vibrator 1.
A part of the ultrasonic wave 13 enters the steel plate, is reflected at the bottom surface 15 (B echo), and proceeds from the steel plate into the water to the outside of the circular wedge 2'. Ultrasonic waves 1 emitted into the water from the innermost side of the inclined surface 7 of the circular wedge
4 is reflected as an S echo through the dead zone of the steel plate,
The ultrasonic wave 14' is incident on the innermost absorber of the inclined surface of the wedge on the opposite side of the wedge and is absorbed as it is by adjusting the angle of the inclined surface of the circular wedge and the wedge 2. If the size of the central hole of the ultrasonic transducer 1 is selected, all the S echoes will be incident on the sound absorber 3 and the influence thereof can be avoided. This makes it possible to extremely reduce the dead zone where flaw detection is not possible. Also, no B echo is received. As an example, in Fig. 4, the thickness of the steel plate T=
10m77! , diameter of the vibrator 2R = 20v1t1 sound velocity in water Cw = 1500m/s1 Ca in organic glass = 274
The inclination angle φ3 of the wedge is determined by setting Cs=3200 m/s in 0 m/s1 steel (transverse wave). Therefore, when a transverse wave with a short wavelength is used to increase the resolution so that even the smallest flaws can be detected, the conversion efficiency of the transverse wave that enters the steel plate from water and becomes a transverse wave is generally at its maximum when the incident angle φ is 17 degrees. Therefore, when calculating with φ = 17°, it becomes.

第3図に示すように水中でかかる超音波送受波器より一
定の距離を隔て、ある厚さの被検査材に超音波ビームを
発射すると被検査材中に入射した超音波ビームは一度、
線16上に集束されて更に夫々進行して行く。
As shown in Figure 3, when an ultrasonic beam is emitted from an underwater ultrasonic transducer at a certain distance to a material to be inspected of a certain thickness, the ultrasonic beam that has entered the material to be inspected will
They are focused on a line 16 and further advance.

従つてその線16上にもし傷があつた場合、集束された
超音波ビームにより探傷点が極めて明確にされ、その位
置に関する分解能を著しく向上することができるととも
に探傷感度もあげることができる。而して点ホーカスの
探触子ではできなかつた被検査材の表面から底面にわた
る範囲を一度に探傷できるので鋼板全体を検査する場合
、探触子のスキヤンニングを一回だけ全面にわたつて行
なえばよい。従つて検査時間の一層の短縮ができる。
Therefore, if there is a flaw on the line 16, the focused ultrasonic beam makes the flaw detection point extremely clear, and the resolution of the position can be significantly improved, as well as the flaw detection sensitivity. Therefore, it is possible to detect flaws in a range from the surface to the bottom of the inspected material at once, which is not possible with a point-focused probe, so when inspecting the entire steel plate, the probe can be scanned over the entire surface only once. Bye. Therefore, the inspection time can be further shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は環状形超音波振動子の斜視図、第2図は本発明
による超音波送受波器の構造を示す断面図、第3図は本
発明による超音波送受波器より水を介して被検査材中に
発射される超音波ビームを断面図により表わしたもの、
第4図は具体例の説明図である。 1・・・・・・環状形超音波振動子、2・・・・・・円
形状楔、3・・・・・・吸音体、7・・・・・・円形状
楔の傾斜面、11・・・・・・被検査材、12・・・・
・・超音波振動子の空孔。
Fig. 1 is a perspective view of an annular ultrasonic transducer, Fig. 2 is a sectional view showing the structure of an ultrasonic transducer according to the present invention, and Fig. 3 is a perspective view of an annular ultrasonic transducer according to the present invention. A cross-sectional view of the ultrasonic beam emitted into the material to be inspected.
FIG. 4 is an explanatory diagram of a specific example. DESCRIPTION OF SYMBOLS 1... Annular ultrasonic transducer, 2... Circular wedge, 3... Sound absorber, 7... Inclined surface of circular wedge, 11 ... Material to be inspected, 12...
...Vacancies in the ultrasonic vibrator.

Claims (1)

【特許請求の範囲】[Claims] 1 中央に空孔を有する環状形超音波振動子に、前記空
孔と等大の孔を中央に有するプラスチック材の円形状の
楔を前記空孔に重ねて密接させ、前記空孔の位置に筒状
の超音波吸収体を設けて、前記振動子より液体を介し被
検査材中に発射した超音波ビームを線状に集束すること
を特徴とする超音波送受波器。
1. A circular wedge of plastic material having a hole of the same size as the hole in the center is placed over and close to the hole in the annular ultrasonic transducer having a hole in the center, and placed at the position of the hole. An ultrasonic transducer characterized in that a cylindrical ultrasonic absorber is provided to linearly focus an ultrasonic beam emitted from the vibrator into a material to be inspected through a liquid.
JP54100106A 1979-08-06 1979-08-06 Ultrasonic transducer Expired JPS5926898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54100106A JPS5926898B2 (en) 1979-08-06 1979-08-06 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54100106A JPS5926898B2 (en) 1979-08-06 1979-08-06 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPS5624573A JPS5624573A (en) 1981-03-09
JPS5926898B2 true JPS5926898B2 (en) 1984-07-02

Family

ID=14265123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54100106A Expired JPS5926898B2 (en) 1979-08-06 1979-08-06 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JPS5926898B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186294U (en) * 1987-05-23 1988-11-29
JP2018156463A (en) 2017-03-17 2018-10-04 東芝メモリ株式会社 Memory system

Also Published As

Publication number Publication date
JPS5624573A (en) 1981-03-09

Similar Documents

Publication Publication Date Title
US9952183B2 (en) Focusing wedge for ultrasonic testing
KR860001348A (en) Ultrasonic Scanning Methods and Devices
US3262307A (en) Omnidirectional ultrasonic search system
US4388831A (en) Ultrasonic probe for nondestructive inspection
US4760737A (en) Procedure for flaw detection in cast stainless steel
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
JPS60235054A (en) Ultrasonic inspection method and device for bolt
JPS5926898B2 (en) Ultrasonic transducer
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
US4080839A (en) Testing method using ultrasonic energy
JPH0336921Y2 (en)
JPH0334588B2 (en)
JP2019174239A (en) Ultrasonic flaw detection method
JPS6356946B2 (en)
Jagadeeshwar et al. Wave visualization of ultrasonic guided waves in a metallic structure using fiber bragg gratings
JPS63186143A (en) Ultrasonic wave probe
JPS6229957Y2 (en)
JPS6319795Y2 (en)
RU1824574C (en) Method for ultrasonic testing of pipeline surface
JPS6070351A (en) Ultrasonic flaw detection of columnar matter
JPS60190855A (en) Dual-probe ultrasonic flaw detection apparatus
SU1490619A1 (en) Method for ultrasonic flaw detection of vessel filled with fluid and having a shape of body of revolution
JPH0521011Y2 (en)
JPH06341975A (en) Ultrasonic inspection device
JP2883051B2 (en) Ultrasonic critical angle flaw detector