JPS63186143A - Ultrasonic wave probe - Google Patents

Ultrasonic wave probe

Info

Publication number
JPS63186143A
JPS63186143A JP62015934A JP1593487A JPS63186143A JP S63186143 A JPS63186143 A JP S63186143A JP 62015934 A JP62015934 A JP 62015934A JP 1593487 A JP1593487 A JP 1593487A JP S63186143 A JPS63186143 A JP S63186143A
Authority
JP
Japan
Prior art keywords
ultrasonic
defect
angle
vibrating body
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62015934A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nishifuji
西藤 勝之
Akio Ushiyama
牛山 昭生
Masahiro Kondo
正博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP62015934A priority Critical patent/JPS63186143A/en
Publication of JPS63186143A publication Critical patent/JPS63186143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To permit detection of the microdefect near the surface of a test specimen by disposing a 1st and 2nd oscillating bodies which transmit and receive longitudinal ultrasonic waves at the refractive angle near the critical angle to and from the inside of the test specimen in cascade in the same ultrasonic beam direction via an acoustic shielding plate. CONSTITUTION:Square plate oscillators 3-1 and 3-2 are fixed to the slopes on wedges 4-1, 4-2 respectively made of an acrylic resin in such a manner that the incident angle thetai of the ultrasonic beam in a perpendicular direction attains a prescribed refractive angle thetaO. The 1st oscillating body 1 and the 2nd oscillating body 2 are disposed in cascade to maintain a spacing (d) from each other via the acoustic shielding plate 5 so that the 1st and 2nd ultrasonic beams 7-1, 7-2 direct the same direction. The oscillating bodies 1, 2 has the divided structure in which said bodies are dispose in cascade separately for transmission and reception in the radiation direction of the ultrasonic waves. Since the blind zone of the oscillating body is small, the detection of the defect 8 at a short distance is facilitated even in the defect detection in the short propagation time of the ultrasonic wave in the test specimen 6 by intermittent oscillation of the oscillating body 1. The detection of the defect 8 at short distance ear the surface of the test specimen 6 with high revolving power is thus permitted.

Description

【発明の詳細な説明】 rfB業トの利用分野) この発明は例えば超音波の送信ならびに受信を行う分割
斜角形式の超音波探触子、特に縦波を用いて被検体の表
面近傍における欠陥検出を行うための超音波探触子に関
するものである。
[Detailed Description of the Invention] Application field of RFB industry) This invention relates to a split-bevel type ultrasonic probe that transmits and receives ultrasonic waves, in particular, detects defects near the surface of an object using longitudinal waves. The present invention relates to an ultrasonic probe for detection.

〔従来の技術〕[Conventional technology]

第7図は例えば従来の超音波探触子の上面図、第8図は
第7図の側面図であり、これらの図において、上は第1
振動体、又は第2m動体、3−1.3−2は電気−音響
変換および音響−電気変換を行う振動子、4−1.4−
2は傾斜面に振動子3−1.3−2を固着する合成樹脂
系材料の楔、5は振動子3−1と振動子3−2相互間の
音響結合を抑制する音響遮蔽板、6は被検体、8は被検
体6内に存在する欠陥、θ1は入射角、θ。は屈折角、
δは第1振動体上と第2振動体スによる超音波ビームの
開き角である。
For example, FIG. 7 is a top view of a conventional ultrasonic probe, and FIG. 8 is a side view of FIG.
A vibrating body, or a second m moving body, 3-1.3-2 is a vibrator that performs electro-acoustic conversion and acoustic-electric conversion, 4-1.4-
2 is a wedge made of synthetic resin material that fixes the vibrator 3-1 and 3-2 to the inclined surface; 5 is an acoustic shielding plate that suppresses acoustic coupling between the vibrator 3-1 and the vibrator 3-2; and 6 is the object to be inspected, 8 is a defect existing in the object to be inspected 6, θ1 is the incident angle, θ. is the angle of refraction,
δ is the opening angle of the ultrasonic beam on the first vibrating body and the second vibrating body.

従来の超音波探触子は上記のように構成され、第1振動
体上と第2振動体λは超音波の送受信の方向に対し音響
遮蔽板5を中心にして左、右対称に配置され且つ振動子
3−1.3−2が固着される楔4−1はそれぞれ被検体
6への入射角が01をなしている。更に振動子3−1.
3−2は音響遮蔽板5に対し対称に左右方向にそれぞれ
傾斜をし、超音波の送受信方向には所定位置にて両超音
波ビームが交叉するよう開き角δをなしている。
The conventional ultrasonic probe is constructed as described above, and the first vibrating body and the second vibrating body λ are arranged symmetrically on the left and right with the acoustic shielding plate 5 as the center with respect to the direction of transmitting and receiving ultrasonic waves. Further, the wedges 4-1 to which the vibrators 3-1 and 3-2 are fixed each have an incident angle of 01 to the subject 6. Furthermore, the vibrator 3-1.
3-2 is symmetrically inclined in the left and right directions with respect to the acoustic shielding plate 5, and has an opening angle δ in the ultrasonic transmission and reception direction so that both ultrasonic beams intersect at a predetermined position.

被検体6を平板鋼材としその表面近傍の欠陥8の検出を
行うとき、入射角θ1により屈折角θ。
When detecting defects 8 near the surface of a flat steel object 6, the angle of refraction θ is determined by the angle of incidence θ1.

を大きくすると鋼中の縦波はその表面近傍を伝播する。When , the longitudinal waves in the steel propagate near its surface.

第1振動体上の振動子3−1を励振し、第2振動体スの
振動子3−2を用いて鋼中の欠陥8からの反射波を受信
する。第1振動体上の送信及び第2振動体スの受信の各
超音波ビームの交点が欠陥8の位置と一致したとき振動
子3−2は最大の受信レベルとなる。
The vibrator 3-1 on the first vibrator is excited, and the reflected wave from the defect 8 in the steel is received using the vibrator 3-2 on the second vibrator. When the intersection of the ultrasonic beams transmitted on the first vibrating body and received on the second vibrating body coincides with the position of the defect 8, the vibrator 3-2 reaches the maximum reception level.

超音波ビームは交叉位置を超音波探触子に更に接近させ
ると開き角δは大きな値となり、被検体6内を超音波が
伝播して欠陥8にて反射するとき、欠陥8に正対した方
向からの超音波の送受信に対して、斜入射時には縦波の
一部は横波に変換されるので反射波の内の一部は横波に
変換されるので反射波の内の一部を受信することになり
反射率の低下をもたらし、開き角δの増加に従い反射率
の低下は顕著になる。
When the ultrasonic beam crosses the position closer to the ultrasonic probe, the opening angle δ becomes larger, and when the ultrasonic beam propagates inside the object 6 and is reflected at the defect 8, it is directly facing the defect 8. When transmitting and receiving ultrasonic waves from any direction, at oblique incidence, some of the longitudinal waves are converted to transverse waves, so some of the reflected waves are converted to transverse waves, so some of the reflected waves are received. This results in a decrease in reflectance, and as the opening angle δ increases, the decrease in reflectance becomes more significant.

第5図はシームレスパイプの欠陥検出の一例を示し、1
0はステンレス材を用いたシームレスパイプ、11は縦
波超音波のビーム路程、12は横波超音波のビーム路程
であり、肉厚の大きいシームレスパイプ10などの表面
近傍にある欠陥8の検出を行うとき、超音波探触子から
の横波を用いると屈折角θ。が小さいのでビーム路程1
2はシームレスパイプ10の内面と外面との%ffi反
射により欠陥8に伝播され、反射して再び同一ビーム路
程12を経て超音波探触子に受信されるので伝播距離が
大きくなり超音波の減衰が著しくなる。
Figure 5 shows an example of seamless pipe defect detection.
0 is a seamless pipe made of stainless steel material, 11 is a beam path length of longitudinal ultrasonic waves, and 12 is a beam path length of transverse wave ultrasonic waves. Defects 8 near the surface of a thick seamless pipe 10 or the like are detected. When using a transverse wave from an ultrasound probe, the refraction angle θ. is small, so the beam path length is 1
2 is propagated to the defect 8 by %ffi reflection between the inner and outer surfaces of the seamless pipe 10, and is reflected and received by the ultrasonic probe again through the same beam path 12, so the propagation distance increases and the ultrasonic wave is attenuated. becomes significant.

第6図は溶接構造体における欠陥検出の一例を示し、1
3は金属材、14は溶接部であり、溶接部14直下の浅
い位置に発生した欠陥8の検出に対して、横波を用いて
行うときの超音波ビームのビーム路程12は金属材13
の下面にて反射して欠陥8に伝播され、反射波は再び同
一ビーム路程12を経て超音波探触子に受信される。
Figure 6 shows an example of defect detection in a welded structure;
3 is a metal material, 14 is a welded part, and the beam path 12 of the ultrasonic beam when using transverse waves to detect a defect 8 occurring at a shallow position directly below the welded part 14 is the metal material 13.
The reflected wave is reflected by the lower surface of the beam and propagated to the defect 8, and the reflected wave passes through the same beam path 12 again and is received by the ultrasonic probe.

(発明が解決しようとする問題点〕 上記のような従来の超音波探触子では、振動子3−1.
3−2は超音波の送受信方向に対し音響遮蔽板5を中心
にして左右対称に配置されているので、縦波を用いて、
被検体6内の近距離にある欠陥8の検出を行うときその
検出感度を上げるため、第1振動体上および第2振動体
スによる送信ビームと受信ビームによる交叉位置は欠陥
8の位置に一致することが要求されているので超音波探
触子は欠陥位置の広い範囲に使用できない。また遠距離
にある欠陥8に対しては開き角δは小さいが近距離にあ
る欠陥8に対しては開き角δが大きくなるので、欠陥8
による反射波のうちの一部は横波に変換されて反射率が
低下することになり、超音波探触子による欠陥8の検出
感度が低下する。
(Problems to be Solved by the Invention) In the conventional ultrasonic probe as described above, the transducer 3-1.
3-2 is arranged symmetrically with respect to the ultrasound transmission and reception direction with the acoustic shielding plate 5 as the center, so using longitudinal waves,
In order to increase the detection sensitivity when detecting a defect 8 located at a short distance within the object 6, the intersection position between the transmitting beam and the receiving beam on the first vibrating body and the second vibrating body coincides with the position of the defect 8. Ultrasonic probes cannot be used to cover a wide range of defect locations. Also, the opening angle δ is small for the defect 8 located at a long distance, but the opening angle δ becomes large for the defect 8 located at a short distance.
A part of the reflected waves are converted into transverse waves and the reflectance decreases, resulting in a decrease in the detection sensitivity of the defect 8 by the ultrasonic probe.

横波を用いると屈折角θ。が小さいので肉厚の大きいシ
ームレスパイプ10の表面近傍の欠陥8を検出するとき
または溶接構造における溶接部14下部に発生した亀裂
などを検出するとき、ビーム路程12は被検体6の内部
の多重反射により伝播するのでビーム路程12が増して
減衰が著しくなるので微小欠陥8などの検出が困難であ
るという問題点があった。
When using transverse waves, the refraction angle θ. Since the beam path 12 is small, when detecting a defect 8 near the surface of a seamless pipe 10 with a large wall thickness or a crack generated at the bottom of a welded part 14 in a welded structure, the beam path 12 is determined by multiple reflections inside the object 6. As the beam propagates, the beam path length 12 increases and the attenuation becomes significant, making it difficult to detect minute defects 8 and the like.

この発明はかかる問題点を解決するためになされたもの
で近距離における被検体表面近傍にある微小欠陥8に対
し十分な検出感度を有する超音波探触子を得ることを目
的とする。
The present invention was made to solve this problem, and an object of the present invention is to obtain an ultrasonic probe having sufficient detection sensitivity for minute defects 8 near the surface of a subject at short distances.

〔問題点を解決するための手段) この発明に係る超音波探触子は、被検体内における縦波
超音波ビームの屈折角が臨界角に近い角度をなす形状の
合成樹脂材を用いた楔に固着された振動子と、振動子か
らの超音波ビームの指向方向が相互に一致し且つ音響遮
蔽板を介して超音波ビームの指向方向に縦列に配置され
た第1振動体ならびに第2振動体より構成されるもので
ある。
[Means for Solving the Problems] The ultrasound probe according to the present invention includes a wedge made of a synthetic resin material and shaped so that the refraction angle of the longitudinal ultrasound beam in the subject's body forms an angle close to the critical angle. a first vibrator and a second vibrator, which are arranged in tandem in the direction of the ultrasonic beam through an acoustic shielding plate, and the directions of the ultrasonic beams from the vibrator coincide with each other; It is made up of the body.

〔作用) この発明においては超音波探触子による超音波の送信な
らびに受信を行う振動子を被検体内における縦波の屈折
角が臨界角近傍になるようその入射角を選定し、第1振
動体及び第2振動体の間に音響遮蔽板を介在させて送受
信同一方向に向けて縦列に配置させることにより、被検
体内における縦波の屈折角が臨界角近傍になり超音波は
被検体の表面近傍を伝播して欠陥検出を行うので、近距
離における欠陥に対し送受信のビームパターンの指向方
向が一致して、欠陥からの直接反射波の受信となるので
ビーム路程が短く、送信と受信の振動体は区分されてい
るので欠陥位置測定における不感帯が小さくなり、小さ
な欠陥の検出に対しても十分な検出感度か得られ且つ分
解能良く行える。
[Function] In the present invention, the incident angle of the transducer for transmitting and receiving ultrasonic waves by the ultrasonic probe is selected so that the refraction angle of longitudinal waves in the subject is close to the critical angle, and the first vibration By interposing acoustic shielding plates between the body and the second vibrating body and arranging them in tandem so that the transmission and reception are directed in the same direction, the refraction angle of longitudinal waves within the subject becomes close to the critical angle, and the ultrasonic waves are directed toward the subject. Since defects are detected by propagating near the surface, the directivity of the transmitting and receiving beam patterns is the same for defects at a short distance, and the direct reflected wave from the defect is received, so the beam path is short and the transmission and reception Since the vibrating body is divided, the dead zone in defect position measurement becomes small, and even small defects can be detected with sufficient detection sensitivity and high resolution.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す超音波探触子の上面
図、第2図は第1図の側面図であり、図において、1〜
6.8は従来の超音波探触子と同一で、7−1は第1振
動体による第1超音波ビーム、7−2は第2振動体によ
る第2超音波ビームである。
FIG. 1 is a top view of an ultrasonic probe showing an embodiment of the present invention, and FIG. 2 is a side view of FIG. 1.
6.8 is the same as a conventional ultrasonic probe, 7-1 is a first ultrasonic beam generated by a first vibrating body, and 7-2 is a second ultrasonic beam generated by a second vibrating body.

方形板振動し3−1及び3−2はそれぞれアクリル樹脂
を用いた楔471.4−2上の斜面に垂直方向に対する
入射角θ五が被検体6内にて所定の屈折角θ。をなすよ
うに固着され、第1振動体上と第2振動体スは互いに音
響遮蔽板5を介して第1及び第2超音波ビーム?−1,
7−2が同一方向を指向し相互の間隔dを保持して縦列
配置されている。従って振動し3−1及び振動子3−2
の放射位置は距lidと異るが被検体6に対し第1及び
第2超音波ビーム7−1.7−2は同一特性を示しそれ
ぞれ超音波の送信ならびに受信に用いられる。
The rectangular plate vibrators 3-1 and 3-2 are each made of an acrylic resin wedge 471, and the angle of incidence θ5 with respect to the direction perpendicular to the slope on the 4-2 is a predetermined refraction angle θ within the subject 6. The top of the first vibrating body and the top of the second vibrating body are fixed to each other so as to form the first and second ultrasonic beams through the acoustic shielding plate 5. -1,
7-2 are oriented in the same direction and arranged in tandem with a distance d between them. Therefore, the vibration 3-1 and the vibrator 3-2
Although the radiation position is different from the distance lid, the first and second ultrasonic beams 7-1, 7-2 exhibit the same characteristics with respect to the subject 6 and are used for transmitting and receiving ultrasonic waves, respectively.

第3図は音響遮蔽板を設置する場合の他の実施態様を示
す上面図、第4図は第3図の側面図である。
FIG. 3 is a top view showing another embodiment in which an acoustic shielding plate is installed, and FIG. 4 is a side view of FIG. 3.

構成は上記実施例と同一であり、第1振動体1と第2振
動体又の間に設は超音波の放射時の信号の受信用振動体
への干渉を逓減させるための音響遮蔽板5は第1及び第
2振動体上及びスからの超音波の被検体6への入射角θ
1と等しい角度傾斜させると、第1及び第2振動体上及
びスの間隔dが小さくなり従って振動子3−1と振動子
3−2の送信位置と受信位置との間の距離が短縮される
ので、超音波の伝播路の損失が減少し、感度の向上がで
き、超音波探触子の寸法も小さくできる。
The configuration is the same as that of the above embodiment, and an acoustic shielding plate 5 is provided between the first vibrating body 1 and the second vibrating body to reduce the interference of the signal to the receiving vibrating body when ultrasonic waves are emitted. is the incident angle θ of the ultrasonic waves from the first and second vibrating bodies and from
When the angle of inclination is equal to 1, the distance d between the first and second vibrating bodies and S becomes smaller, and the distance between the transmitting position and the receiving position of the vibrators 3-1 and 3-2 is shortened. Therefore, loss in the ultrasonic propagation path is reduced, sensitivity can be improved, and the size of the ultrasonic probe can be reduced.

第5図はシームシスバイブ内欠陥検出の一例を示す、ス
テンレス材のシームレスパイプ10を被検体6とし、超
音波探触子をシームレスパイプ10に油などのカプラン
トを介して接触させ、楔4−1に固着され入射角θ1を
なす振動子3−1を間欠的に励振するとステ゛ンレスバ
イブ10内にて屈折角θ。の方向に縦波超音波が放射さ
れる。
FIG. 5 shows an example of defect detection in the Seam System Vibrator. A seamless pipe 10 made of stainless steel is the object 6. An ultrasonic probe is brought into contact with the seamless pipe 10 through a couplant such as oil, and a wedge 4- When the vibrator 3-1, which is fixed to the stainless steel vibrator 10 and has an incident angle θ1, is intermittently excited, a refraction angle θ is generated within the stainless steel vibrator 10. Longitudinal ultrasound waves are emitted in the direction of.

屈折角θ。は75°以上の臨界角近傍になるよう入射角
θ1を選定すると第1超音波ビーム7−1はシームレス
パイプ10の表面近傍を伝播する。
Refraction angle θ. The first ultrasonic beam 7-1 propagates near the surface of the seamless pipe 10 when the incident angle θ1 is selected so that it is close to a critical angle of 75° or more.

表面近傍の欠陥8よりの反射波は、振動子3−1に縦列
に配置されビーム指向方向が互いに一致する第2超音波
ビーム7−2の振動子3−2により、シームレスパイプ
10内の多重反射の伝播路の反射波の受信を行うことな
く直接伝播が受信されるので、ビーム路程11がビーム
路程12に比し短くなり信号の減衰が少なく、常に最良
のビーム利得特性が用いられるので信号対雑音比が優れ
効率よい受信が行える。
The reflected wave from the defect 8 near the surface is multiplexed in the seamless pipe 10 by the transducer 3-2 of the second ultrasonic beam 7-2, which is arranged in tandem with the transducer 3-1 and whose beam direction directions coincide with each other. Since the direct propagation is received without receiving the reflected wave on the reflection propagation path, the beam path length 11 is shorter than the beam path length 12, and there is less signal attenuation, and the best beam gain characteristics are always used, so the signal It has an excellent noise-to-noise ratio and allows efficient reception.

音響遮蔽板5は振動子3−1からの送信波の振動子3−
2への直接結合を軽減させる作用を行う。
The acoustic shielding plate 5 protects the oscillator 3- from the transmitted wave from the oscillator 3-1.
acts to reduce direct binding to 2.

第1振劾体工及び第2移動体スは超音波の放射方向に縦
列に送信用及び受信用と分離して配置された分割構造を
なしているので、第1振動体上を間欠励振して被検体6
内の超音波の伝播時間が短い欠陥検出においても、第2
振動体スの不感帯が小さいので近距離における欠陥8の
検出が容易になり、従って被検体6の表面近傍の近距離
の欠陥8の検出が分解嘘良く行える。
The first vibration body and the second moving body have a divided structure in which transmitting and receiving bodies are arranged in tandem in the ultrasonic radiation direction, so that the first vibration body can be intermittently excited. Subject 6
Even in defect detection where the propagation time of ultrasonic waves is short, the second
Since the dead zone of the vibrating body is small, it is easy to detect defects 8 at short distances, and therefore defects 8 at short distances near the surface of the object 6 can be detected easily.

上記入射角θ1において被検体6内には同時に横波も発
生するが、横波は屈折角θ。が小さいので直下方向への
多重反射伝播を行い、伝播速度は縦波の約1/2であり
反射波の到達時間が著しく異なるので両者の信号の分離
を行うことは容易である。
At the above incident angle θ1, a transverse wave is also generated within the object 6 at the same time, but the transverse wave has a refraction angle θ. Since the reflection wave is small, multiple reflection propagation in the direct downward direction is performed, and since the propagation speed is about 1/2 that of the longitudinal wave and the arrival times of the reflected waves are significantly different, it is easy to separate the two signals.

第4図に示す溶接構造体における欠陥検出において、溶
接部14直下に発生した欠陥8への縦波は直接伝播のた
めビーム路程11は横波のビーム路程12に比し短く伝
播速度も異なるので反射波の識別は容易に行える。
In detecting a defect in the welded structure shown in FIG. 4, the longitudinal wave generated directly below the weld 14 propagates directly, so the beam path 11 is shorter than the beam path 12 of the transverse wave and the propagation speed is different, so it is reflected. Wave identification is easy.

上記実施例は第1振動体上より送信し、第2振動体スに
て受信を行うが、第2振動体スより送信し第1振動体上
にて受信しても同様の動作を行うことかできる。
In the above embodiment, transmission is performed from the first vibrating body and reception is performed by the second vibrating body, but the same operation can be performed even when transmitting from the second vibrating body and receiving by the first vibrating body. I can do it.

また欠陥8の位置が移動して超音波探触子よりの距離が
変っても振動子3・−1及び3−2の開き角δを変える
必要がなく更に開き角δのための傾斜も不要となるので
楔4−1.4−2の構造は非常に簡単になる。
Furthermore, even if the position of defect 8 moves and the distance from the ultrasound probe changes, there is no need to change the opening angle δ of transducers 3-1 and 3-2, and there is no need to tilt for the opening angle δ. Therefore, the structure of wedge 4-1 and 4-2 becomes very simple.

本発明により斜入射の縦波を用いて減衰の大きい被検体
6内の近距離における表面近傍にある欠陥8が、送信用
ならびに受信用の各振動体より成る分割された斜角探触
子を用いて感度ならびに分解能良く検出できる。
According to the present invention, a defect 8 located near the surface at a short distance in a subject 6 with large attenuation can be detected by using a longitudinal wave of oblique incidence using a divided oblique angle probe consisting of each vibrating body for transmitting and receiving. can be used for detection with good sensitivity and resolution.

〔発明の効果] この発明は以上説明した通り、被検体内へ臨界角近傍の
屈折角度で縦波超音波の送受信を行う第1振動体及び第
2振動体を音響遮蔽板を介して同一超音波ビーム方向に
縦列に配置し、間欠励振による超音波の送信ならびに受
信を行う簡単な構造により、 被検体内の近距離表面近傍の欠陥検出に対して、縦波を
用いた超音波探触子よりの送信及び受信のための超音波
ビームは常に同一方向を指向しているので検出感度向上
のため、第1振動体と第2振動体のそれぞれの超音波ビ
ームによる交叉位置を欠陥位置に一致させるため振動子
を楔に固着する時に開き角δの調整が必要なく、 開き角の角度の増加による欠陥よりの反射波の一部は横
波に変換されるので縦波の反射率か低下することがない
ので常に最大利得の超音波ビームを用いた欠陥検出がで
き、且つ臨界角近傍の縦波を用いており、そのビーム路
程は被検体内部において多重反射でなく直接伝播を行う
ので伝播距離が短く減衰も小さいので微小欠陥の検出に
おける信号対雑音比が大きくでき、 更に第1及び第2振動体を用いて送受分割されているの
で欠陥位置測定における不感帯が非常に小さくなり分解
能が向上され、溶接構造体の欠陥検出も容易に行え、更
に音響遮蔽板を傾斜させると超音波探触子の寸法を小さ
くできるという効果がある。
[Effects of the Invention] As explained above, the present invention allows the first and second vibrating bodies, which transmit and receive longitudinal ultrasound into the subject at a refraction angle near the critical angle, to transmit and receive the same ultrasound through an acoustic shielding plate. An ultrasonic probe that uses longitudinal waves for detecting defects near the surface of a subject with a simple structure that is arranged in tandem in the direction of the acoustic beam and transmits and receives ultrasonic waves through intermittent excitation. Since the ultrasonic beams for transmission and reception are always oriented in the same direction, in order to improve detection sensitivity, the intersection position of the ultrasonic beams of the first and second vibrating bodies must match the defect position. Therefore, there is no need to adjust the aperture angle δ when fixing the vibrator to the wedge, and as the aperture angle increases, a portion of the reflected waves from the defects are converted into transverse waves, so the reflectance of longitudinal waves decreases. Since there is no ultrasonic beam, defects can always be detected using the maximum gain ultrasonic beam, and longitudinal waves near the critical angle are used, and the beam path does not undergo multiple reflections but direct propagation inside the object, so the propagation distance is short. Since it is short and has low attenuation, the signal-to-noise ratio in detecting minute defects can be increased, and since the transmission and reception are divided using the first and second vibrating bodies, the dead zone in defect position measurement is extremely small, improving resolution. Defects in the welded structure can be easily detected, and furthermore, by tilting the acoustic shielding plate, the size of the ultrasonic probe can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す上面図、第2図は第
1図実施例の側面図、第3図はこの発明の他の実施例を
示す上面図、第4図は第3図の側面図、第5図はシーム
レスパイプ内欠陥検出の一例、第6図は溶接構造体にお
ける欠陥検出の一例、第7図は従来の超音波探触子の上
面図、第8図は第7図の側面図である。 図において、土は第1撮動体、又は第2振動体、3−1
.3−2は振動子、4−1.4−2は楔、5は音響遮蔽
板、6は被検体、7−1は第1超音波ビーム、7−2は
第2超音波ビーム、8は欠陥、θ1は入射角、θ。は屈
折角、dは第1及び第2振動体間隔である。 なお、各図中同一符号は同一または相当部分を示す。 代理人 弁理士 佐 藤 正 年 第4図 第5図 第6図 8′13 昭和62  年4 月20日
FIG. 1 is a top view showing one embodiment of the invention, FIG. 2 is a side view of the embodiment shown in FIG. 1, FIG. 3 is a top view showing another embodiment of the invention, and FIG. 5 is an example of defect detection in a seamless pipe, FIG. 6 is an example of defect detection in a welded structure, FIG. 7 is a top view of a conventional ultrasonic probe, and FIG. 8 is an example of defect detection in a welded structure. FIG. 7 is a side view of FIG. 7; In the figure, soil is the first imaging body or the second vibrating body, 3-1
.. 3-2 is a transducer, 4-1, 4-2 is a wedge, 5 is an acoustic shielding plate, 6 is a subject, 7-1 is a first ultrasonic beam, 7-2 is a second ultrasonic beam, 8 is a Defect, θ1 is the angle of incidence, θ. is the refraction angle, and d is the distance between the first and second vibrating bodies. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Tadashi Sato Figure 4 Figure 5 Figure 6 8'13 April 20, 1988

Claims (2)

【特許請求の範囲】[Claims] (1)超音波の送受信を行う第1振動体と第2振動体が
音響遮蔽板を介して分割配置された斜入射をなす超音波
探触子において、 被検体内における縦波超音波ビームの屈折角が臨界角に
近い角度をなす形状の合成樹脂材より成る楔に固着され
た振動子と、この振動子の放射する超音波ビームの指向
方向を相互に一致させ前記音響遮蔽板を介して超音波ビ
ームの指向方向に所定間隔にて縦列に配置された第1振
動体ならびに第2振動体とを備えたことを特徴とする超
音波探触子。
(1) In an oblique-incidence ultrasonic probe in which a first vibrating body and a second vibrating body that transmit and receive ultrasonic waves are arranged separately through an acoustic shielding plate, the longitudinal ultrasonic beam inside the subject is A vibrator fixed to a wedge made of a synthetic resin material with a refraction angle close to the critical angle and an ultrasonic beam emitted by this vibrator are aligned in direction with each other and are transmitted through the acoustic shielding plate. An ultrasonic probe comprising a first vibrating body and a second vibrating body arranged in tandem at predetermined intervals in the direction of directivity of an ultrasonic beam.
(2)音響遮蔽板を振動子の放射する超音波の入射角と
等しく傾斜させたことを特徴とする特許請求の範囲第1
項記載の超音波探触子。
(2) Claim 1, characterized in that the acoustic shielding plate is inclined at an angle equal to the incident angle of the ultrasonic waves emitted by the vibrator.
Ultrasonic probe as described in section.
JP62015934A 1987-01-28 1987-01-28 Ultrasonic wave probe Pending JPS63186143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62015934A JPS63186143A (en) 1987-01-28 1987-01-28 Ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62015934A JPS63186143A (en) 1987-01-28 1987-01-28 Ultrasonic wave probe

Publications (1)

Publication Number Publication Date
JPS63186143A true JPS63186143A (en) 1988-08-01

Family

ID=11902602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62015934A Pending JPS63186143A (en) 1987-01-28 1987-01-28 Ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPS63186143A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367164A (en) * 1989-08-04 1991-03-22 Nkk Corp Ultrasonic flaw detection
JP2007205959A (en) * 2006-02-03 2007-08-16 Kawada Industries Inc Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method
JP2013083627A (en) * 2011-09-29 2013-05-09 Hitachi-Ge Nuclear Energy Ltd Ultrasonic sensor and inspection method and inspection device using the same
JP2013242202A (en) * 2012-05-18 2013-12-05 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection apparatus
JP2018036280A (en) * 2017-11-13 2018-03-08 東北特殊鋼株式会社 Ultrasonic flaw inspection device for round bar material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367164A (en) * 1989-08-04 1991-03-22 Nkk Corp Ultrasonic flaw detection
JP2007205959A (en) * 2006-02-03 2007-08-16 Kawada Industries Inc Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method
JP2013083627A (en) * 2011-09-29 2013-05-09 Hitachi-Ge Nuclear Energy Ltd Ultrasonic sensor and inspection method and inspection device using the same
JP2013242202A (en) * 2012-05-18 2013-12-05 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection apparatus
JP2018036280A (en) * 2017-11-13 2018-03-08 東北特殊鋼株式会社 Ultrasonic flaw inspection device for round bar material

Similar Documents

Publication Publication Date Title
EP0212899B1 (en) Ultrasonic testing of materials
JPS63186143A (en) Ultrasonic wave probe
JPH04157360A (en) Supersonic probe
JP2012141213A (en) Ultrasonic inspection method and ultrasonic inspection device
JPH07253414A (en) Method and apparatus for ultrasonic flaw detection
JP2978708B2 (en) Composite angle beam probe
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
JPS6319795Y2 (en)
JPH11316216A (en) Ultrasonic probe
JP3493941B2 (en) Ultrasonic probe
JPH0375557A (en) Ultrasonic probe
JPH0521011Y2 (en)
JPH01187447A (en) Two-split type vertical probe
JP2585658B2 (en) Ultrasonic probe
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JPH0212609Y2 (en)
JP2000283965A (en) Ultrasonic rail flaw detector
JPS6327748A (en) Ultrasonic probe
JPH0521502B2 (en)
JP2002257800A (en) Ultrasonic flaw detection method and device for square billet
JPH07260747A (en) Method and device for ultrasonic flaw detection
JPS6144349A (en) Method and apparatus for ultrasonic flaw detection
JPH0328375Y2 (en)
JPH08220079A (en) Ultrasonic probe
JPH08248009A (en) Ultrasonic inspection system for thin metal plate