JPH08220079A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH08220079A
JPH08220079A JP2270995A JP2270995A JPH08220079A JP H08220079 A JPH08220079 A JP H08220079A JP 2270995 A JP2270995 A JP 2270995A JP 2270995 A JP2270995 A JP 2270995A JP H08220079 A JPH08220079 A JP H08220079A
Authority
JP
Japan
Prior art keywords
focusing
signal
defect
subject
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2270995A
Other languages
Japanese (ja)
Inventor
Seiichi Wakayama
精一 若山
Toshiyuki Murakami
俊行 村上
Kazuyuki Unate
一之 宇奈手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2270995A priority Critical patent/JPH08220079A/en
Publication of JPH08220079A publication Critical patent/JPH08220079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE: To detect a defect signal with a high sensitivity by providing a focusing-type reception vibrator which is arranged nearly symmetrically so that a focusing part and an axis face each other with a specific gap for the focusing-type transmission vibrator where the focusing part is placed nearly on the surface of the test sample and the axis is inclined. CONSTITUTION: When ultrasonic waves are transmitted from a focusing-type transmission vibrator 5, they enter from a focusing part 7 the surface of a test sample 11 and propagate as ultrasonic waves with spread directivity 9. Namely, they uniformly disperse and propagate in the sample 11. A focusing-type reception vibrator 6 has reception characteristics with nearly the same spread directivity as that of the focusing-type transmission vibrator 5. Namely, it has a uniform reception sensitivity for the flaw-detection region of the sample 11. Surface wave is attenuated by providing a sound-absorbing material 4, thus receiving a signal from a defective part with a high S/N ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波探傷法に用いる超
音波探触子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe used for ultrasonic flaw detection.

【0002】[0002]

【従来の技術】金属等の構造物を検査するために、超音
波探傷法を用いて行なう探傷方法がある。その内の一つ
として、対向する斜角探触子を用い、超音波の伝搬信号
に基づき欠陥の有無および欠陥の深さを検出する方法が
ある。
2. Description of the Related Art There is a flaw detection method using an ultrasonic flaw detection method for inspecting a structure such as a metal. As one of them, there is a method of detecting the presence / absence of a defect and the depth of the defect based on a propagation signal of an ultrasonic wave, using opposing bevel probes.

【0003】図3は、従来装置の例を示すもので、一定
の間隔Lで対向配置した送信探触子21、受信探触子2
2の一対を被検体11の表面に当てて被検査部の探傷を
行なう。また、同図は、被検体中の超音波の伝搬経路を
合わせて示したもので、図4は従来の探触子で得られる
探傷信号例を示したものである。
FIG. 3 shows an example of a conventional device, which is a transmission probe 21 and a reception probe 2 which are arranged opposite to each other at a constant interval L.
The pair of two is applied to the surface of the subject 11 to detect flaws in the inspected portion. Further, FIG. 4 also shows the propagation paths of ultrasonic waves in the subject, and FIG. 4 shows an example of flaw detection signals obtained by a conventional probe.

【0004】このときに用いられる伝搬波として、通常
縦波が用いられている。縦波は、被検体を伝搬する音波
の中で、最も伝搬速度が速く、伝搬経路にある変化を最
短時間で検出できることから縦波が適している。
A longitudinal wave is usually used as a propagating wave used at this time. The longitudinal wave is suitable for the longitudinal wave because it has the highest propagation velocity among the sound waves propagating through the subject and can detect the change in the propagation path in the shortest time.

【0005】図3中、欠陥のないとき、送信探触子21
で発信した超音波は被検体11の表面を伝搬した音波2
3と底面で反射する経路の音波24が表面信号31と底
面信号32として、図4の探傷信号例27のように受信
される。表面信号31および底面信号32の時間的受信
位置は被検体の板厚Tと探触子間隔Lおよび被検体11
の超音波伝搬速度の関係で決まる位置に受信される。
In FIG. 3, when there is no defect, the transmitting probe 21
The ultrasonic wave transmitted in 2 is the sound wave 2 propagating on the surface of the subject 11.
The sound wave 24 of the path reflected by 3 and the bottom surface is received as the surface signal 31 and the bottom surface signal 32 as in the flaw detection signal example 27 of FIG. The temporal reception positions of the surface signal 31 and the bottom signal 32 are the plate thickness T of the subject, the probe interval L, and the subject 11.
Is received at a position determined by the relationship of the ultrasonic wave propagation velocity.

【0006】一方、被検体に内在する欠陥12があると
き、上記の表面信号31と底面信号32に加え、欠陥上
端部で散乱した音波が信号33、および下端部で散乱し
た音波が信号34として、探傷信号例29のように受信
される。
On the other hand, when there is a defect 12 existing in the subject, in addition to the surface signal 31 and the bottom surface signal 32, the sound wave scattered at the upper end of the defect is a signal 33 and the sound wave scattered at the lower end is a signal 34. , A flaw detection signal example 29 is received.

【0007】また、被検体表面側に欠陥があるとき、表
面信号は受信されず、底面信号32と下端部で散乱した
信号34が探傷信号例28のように受信される。被検体
裏面表側に欠陥があるとき、底面信号は受信されず、表
面信号31と欠陥上端部で散乱した信号33が探傷信号
例30のように受信される。
When there is a defect on the surface side of the subject, the surface signal is not received, and the bottom surface signal 32 and the signal 34 scattered at the lower end are received as in the flaw detection signal example 28. When there is a defect on the front surface of the back surface of the object, the bottom surface signal is not received, and the surface signal 31 and the signal 33 scattered at the upper end of the defect are received as in the flaw detection signal example 30.

【0008】欠陥信号は、欠陥の端部で散乱して伝搬す
ることから、被検体の表面を伝搬する音波より長い路
程、かつ底面信号より短い路程を伝搬することになり、
欠陥の深さに応じ、表面信号から底面信号の間に受信さ
れる。
Since the defect signal is scattered and propagated at the end of the defect, it propagates along a path longer than the sound wave propagating on the surface of the object and shorter than the bottom signal.
Depending on the depth of the defect, it is received between the surface signal and the bottom signal.

【0009】欠陥の大きさを知るには、別に接続した超
音波探傷器で、表面信号の位置を基準に、上,下端等の
欠陥信号までの伝搬時間の遅れを読取る。そして探触子
間隔Lと被検体11の超音波伝搬速度に基づき、演算で
求めている。
In order to know the size of the defect, an ultrasonic flaw detector connected separately reads the delay of the propagation time to the defect signal such as the upper and lower ends with reference to the position of the surface signal. Then, it is calculated based on the probe interval L and the ultrasonic wave propagation velocity of the subject 11.

【0010】[0010]

【発明が解決しようとする課題】上記従来の探触子は次
のような問題点があった。 (1)探触子の発する超音波ビームには、図5に示す様
な指向性35があり、板厚方向の音波の分布が異なるた
め、欠陥位置によって欠陥信号レベルが異なる。すなわ
ち、底面近傍に音波が到達するように屈折角を設定する
と、ビーム中心軸上の欠陥に対しては大きな信号レベル
が期待できるが、その他の部分では、音波の強度は小さ
く欠陥信号レベルのも小さくなり、これに伴い欠陥の検
出能力も低下する。 (2)欠陥信号レベルの低い領域を補い、検出能を改善
する目的で、大きな増幅度で探傷を行なうと、同図に示
す表面波信号36を検出するようになり、探傷の障害と
なる。
The conventional probe described above has the following problems. (1) The ultrasonic beam emitted by the probe has directivity 35 as shown in FIG. 5, and the distribution of sound waves in the plate thickness direction is different, so that the defect signal level differs depending on the defect position. That is, if the refraction angle is set so that the sound wave reaches the vicinity of the bottom surface, a large signal level can be expected for a defect on the central axis of the beam, but in other parts, the intensity of the sound wave is small and the defect signal level is small. As the size becomes smaller, the defect detection capability also decreases. (2) If the flaw detection is performed with a large amplification degree in order to supplement the region having a low defect signal level and improve the detectability, the surface wave signal 36 shown in the figure is detected, which becomes an obstacle to the flaw detection.

【0011】表面波は、送信探触子で超音波を被検体へ
入射するに際し、送信探触子により僅かながら縦波以外
の表面波が生じており、増幅したがために表面波信号も
増幅されるもので、表面波の音速は縦波音速より遅く、
探触子の配置によっては、表面波の伝搬信号が表面信号
と底面信号との間に、欠陥がない場合においても受信さ
れることから探傷の障害になる。特に底面側の欠陥高さ
を検出するに際し、欠陥信号と重複して識別ができず、
探傷の障害となる。また、管材の内面から探傷を行なう
時等、必然的に送信探触子と受信探触子の距離が接近さ
せざるを得ない場合に受信され、障害となる。 (3)板厚方向を幾つかの領域に分け、それぞれ専用の
屈折角の探触子を複数個使用する方法が考えられるが、
表面近傍の欠陥信号レベルを向上する為に、大きな屈折
角を使用すると、より大きな表面波信号を検出するよう
になり、より大きな障害となる。また、複数の探触子の
使用は、作業に多くの時間を必要とすることになる。
The surface wave is slightly amplified by the transmission probe when the ultrasonic wave is incident on the subject, and the surface wave signal other than the longitudinal wave is also amplified. Therefore, the surface wave signal is also amplified. The speed of sound of surface waves is slower than the speed of sound of longitudinal waves.
Depending on the arrangement of the probe, the propagation signal of the surface wave is received between the surface signal and the bottom surface signal even if there is no defect, which is an obstacle to flaw detection. Especially when detecting the height of the defect on the bottom side, it cannot be identified because it overlaps with the defect signal.
It becomes an obstacle to flaw detection. In addition, when flaw detection is performed from the inner surface of the pipe material, it is inevitable that the transmission probe and the reception probe are inevitably brought close to each other, which causes an obstacle. (3) A method of dividing the plate thickness direction into several regions and using a plurality of probes each having a dedicated refraction angle is conceivable.
The use of a large refraction angle to improve the defect signal level near the surface results in the detection of a larger surface wave signal, which is a greater obstacle. Also, the use of multiple probes requires a lot of time for work.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0013】すなわち、超音波探触子として、集束部を
被検体のほぼ表面におき軸を傾けて配置された集束型発
信振動子と、同集束型発信振動子と所定の間隔をあけ集
束部および軸が向きあうようにほぼ対称に配置された集
束型受信振動子と、これらの振動子間の上記被検体上に
配置された吸着材とを設ける。
That is, as an ultrasonic probe, a focusing type oscillator having a focusing part placed on almost the surface of a subject and having its axis inclined, and a focusing part with a predetermined distance from the focusing oscillator. Further, there are provided a focusing type reception vibrator arranged substantially symmetrically so that the axes thereof face each other, and an adsorbent arranged on the subject between the vibrators.

【0014】[0014]

【作用】上記発明において、集束型発信振動子から超音
波が発信されると、被検体表面の集束部から入射し、集
束型受信振動子の方向に屈折し、かつ広がった指向性の
超音波となって伝播する。すなわち被検体の中を一様に
分散して伝播する。また同時に生じる表面波は吸音材で
減衰される。集束型受信振動子は、集束型発信振動子の
指向性とほぼ同じ指向性の広がった受信特性を持つ、す
なわち、被検体の探傷域に対して一様な受信感度を持
つ。一方、吸音材で表面波は大幅に減衰される。従って
欠陥部からの信号が高S/Nで受信できる。
In the above invention, when an ultrasonic wave is transmitted from the focusing oscillator, it is incident from the focusing portion on the surface of the subject, is refracted in the direction of the focusing receiver oscillator, and has a wide directivity. And propagate. That is, it is uniformly dispersed and propagated in the subject. Further, the surface waves generated at the same time are attenuated by the sound absorbing material. The focused reception oscillator has a reception characteristic in which the directivity is substantially the same as that of the focused transmission oscillator, that is, the reception sensitivity is uniform with respect to the flaw detection area of the subject. On the other hand, the surface wave is greatly attenuated by the sound absorbing material. Therefore, the signal from the defective portion can be received with high S / N.

【0015】このようにして、高感度、高精度の探触子
がえられる。
In this way, a highly sensitive and highly accurate probe can be obtained.

【0016】[0016]

【実施例】上記本発明の一実施例を図1及び図2により
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS.

【0017】図1にて、集束型発信振動子5は集束部
(入射点)7が被検体11の表面近くにき、軸が集束型
受信振動子6の方に所定角傾けて配置される。また集束
型受信振動子6も集束型発信振動子5と所定の間隔をあ
け、軸を発信振動子5の方向に傾け、集束部8と軸が発
信振動子5とほぼ対称になるよう配置される。
In FIG. 1, the focusing oscillator 5 has a focusing portion (incident point) 7 near the surface of the subject 11, and its axis is inclined toward the focusing receiving oscillator 6 by a predetermined angle. . Further, the focusing type receiving oscillator 6 is also arranged with a predetermined distance from the focusing type transmitting oscillator 5, its axis is tilted in the direction of the transmitting oscillator 5, and the focusing part 8 and the axis are arranged substantially symmetrical to the transmitting oscillator 5. It

【0018】さらに両者間の被検体11の表面上に吸音
材4の多孔性ポリウレタンが配置される。そしてその上
にカプラント供給管10が設けられる。図中1は超音波
探触子、2は送信探触子、3は受信探触子である。
Further, the porous polyurethane of the sound absorbing material 4 is arranged on the surface of the subject 11 between them. Then, a couplant supply pipe 10 is provided on the couplant. In the figure, 1 is an ultrasonic probe, 2 is a transmitting probe, and 3 is a receiving probe.

【0019】以上において、集束型発信振動子5から超
音波が発信されると、被検体11表面の集束部7から入
射し、集束型受信振動子6の方向に屈折し、かつ広がっ
た指向性9の超音波となって伝播する。すなわち被検体
の中を一様に分散して伝播する。集束型受信振動子6は
集束型発信振動子1の指向性とほぼ同じ指向性の広がっ
た受信特性を持つ、すなわち、被検体11の探傷域に対
して一様な受信感度を持つ。一方、吸音材4で表面波は
減衰される。従って欠陥部から信号が高S/Nで受信で
きる。
In the above, when an ultrasonic wave is transmitted from the focusing oscillator 5, the ultrasonic wave is incident from the focusing portion 7 on the surface of the subject 11, refracted in the direction of the focusing receiving oscillator 6, and has a wide directivity. The ultrasonic wave of 9 propagates. That is, it is uniformly dispersed and propagated in the subject. The focused reception oscillator 6 has a reception characteristic in which the directivity is substantially the same as that of the focused transmission oscillator 1, that is, the reception sensitivity is uniform with respect to the flaw detection area of the subject 11. On the other hand, the surface wave is attenuated by the sound absorbing material 4. Therefore, a signal can be received from the defective portion with high S / N.

【0020】図2はその様相を探傷信号例で示したもの
で、本実施例の超音波探触子で形成される被検体中の音
波の指向性は上述のように、従来のものと比較して板厚
方向に広く分散しているため、板厚方向の分布すなわち
表面近傍と底面近傍の信号レベルの変化が少なくなる。
同図は、従来の探触子で得られる図4の探傷信号例と同
条件の探傷信号例である。従来のそれと比較すると、被
検体表面近傍領域に相当する表面欠陥の探傷信号例28
の欠陥下端部信号34と、内部欠陥の探傷信号例29の
欠陥上端部信号33の信号レベルの低下が改善されてい
ることがわかる。
FIG. 2 shows an example of such an aspect with a flaw detection signal. The directivity of the sound wave in the subject formed by the ultrasonic probe of this embodiment is, as described above, compared with the conventional one. Since it is widely dispersed in the plate thickness direction, the distribution in the plate thickness direction, that is, the change in the signal level near the surface and near the bottom is reduced.
This figure shows an example of a flaw detection signal under the same conditions as the flaw detection signal example of FIG. 4 obtained with a conventional probe. Compared with the conventional one, the flaw detection signal example 28 of the surface defect corresponding to the area near the surface of the subject is detected.
It can be seen that the signal levels of the defect lower end signal 34 and the defect upper end signal 33 of the internal defect flaw detection signal example 29 are improved.

【0021】なお、カプラント供給管10からは、探傷
に必要な水などのカプラントが供給され、作業性が向上
する。
The couplant supply pipe 10 supplies couplant such as water necessary for flaw detection to improve workability.

【0022】上記の吸音材4としては、他に例えばニト
リルゴム、シリコンゴム、ウレタンゴム、コルク材、発
泡金属等がある。
Other examples of the sound absorbing material 4 include nitrile rubber, silicon rubber, urethane rubber, cork material, and foam metal.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
広い指向性の送受信特性がえられるので、欠陥信号を高
感度で検出できる。また障害となる表面波信号の受信を
防止するので、欠陥の有無および欠陥深さを正確に検知
できる等、精度の向上した探傷が実現できる。
As described above, according to the present invention,
Since a wide directivity transmission / reception characteristic can be obtained, a defect signal can be detected with high sensitivity. Further, since the reception of the surface wave signal which becomes an obstacle is prevented, the flaw detection with improved accuracy can be realized such that the presence or absence of the defect and the defect depth can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成断面図である。FIG. 1 is a configuration cross-sectional view of an embodiment of the present invention.

【図2】同実施例の作用、効果説明図である。FIG. 2 is a diagram for explaining the operation and effect of the same embodiment.

【図3】従来例の構成断面図である。FIG. 3 is a configuration cross-sectional view of a conventional example.

【図4】同従来例の作用、効果説明図である。FIG. 4 is a diagram illustrating the operation and effect of the conventional example.

【図5】同従来例の作用説明図である。FIG. 5 is an operation explanatory view of the conventional example.

【符号の説明】[Explanation of symbols]

1 超音波探触子 2 送信探触子 3 受信探触子 4 吸音材 5 集束型発信振動子 6 集束型受信振動子 7 入射点(集束部) 8 受信点(集束部) 9 指向性 10 カプラント供給管 11 被検体 12 内在欠陥 21 送信探触子 22 受信探触子 23 表面を伝搬した音波 24 底面で反射した音波 27 欠陥なしの探傷信号例 28 表面欠陥の探傷信号例 29 内部欠陥の探傷信号例 30 底面欠陥の探傷信号例 31 表面信号 32 底面信号 33 欠陥上端部信号 34 欠陥下端部信号 35 指向性 36 表面波信号 1 Ultrasonic probe 2 Transmitting probe 3 Receiving probe 4 Sound absorbing material 5 Focusing type transmitting oscillator 6 Focusing type receiving oscillator 7 Incident point (focusing part) 8 Reception point (focusing part) 9 Directivity 10 couplant Supply pipe 11 Subject 12 Internal defect 21 Transmitting probe 22 Receiving probe 23 Sound wave propagating on the surface 24 Sound wave reflected on the bottom surface 27 Example of flaw detection signal without defect 28 Example of flaw detection signal of surface defect 29 Internal flaw detection signal Example 30 Example of flaw detection signal of bottom surface defect 31 Surface signal 32 Bottom surface signal 33 Defect upper end signal 34 Defect lower end signal 35 Directivity 36 Surface wave signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 集束部を被検体のほぼ表面におき軸を傾
けて配置された集束型発信振動子と、同集束型発信振動
子と所定の間隔をあけ集束部および軸が向きあうように
ほぼ対称に配置された集束型受信振動子と、これらの振
動子間の上記被検体上に配置された吸着材とを備えてな
ることを特徴とする超音波探触子。
1. A focusing type oscillator having a focusing unit placed on substantially the surface of a subject and having its axis inclined, and a focusing unit and an axis facing each other with a predetermined distance from the focusing oscillator. An ultrasonic probe, comprising: focusing type receiving transducers arranged substantially symmetrically and an adsorbent disposed on the subject between the transducers.
JP2270995A 1995-02-10 1995-02-10 Ultrasonic probe Pending JPH08220079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270995A JPH08220079A (en) 1995-02-10 1995-02-10 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270995A JPH08220079A (en) 1995-02-10 1995-02-10 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH08220079A true JPH08220079A (en) 1996-08-30

Family

ID=12090372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270995A Pending JPH08220079A (en) 1995-02-10 1995-02-10 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH08220079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127812A (en) * 2010-12-15 2012-07-05 Jfe Steel Corp Method and device for quality evaluation of billet
CN111474300A (en) * 2020-04-15 2020-07-31 同济大学 Structure local defect detection method based on space-time regression model

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127812A (en) * 2010-12-15 2012-07-05 Jfe Steel Corp Method and device for quality evaluation of billet
CN111474300A (en) * 2020-04-15 2020-07-31 同济大学 Structure local defect detection method based on space-time regression model
CN111474300B (en) * 2020-04-15 2021-04-30 同济大学 Structure local defect detection method based on space-time regression model

Similar Documents

Publication Publication Date Title
US5431054A (en) Ultrasonic flaw detection device
US4712428A (en) Ultrasonic flaw detector probe
JP2002062281A (en) Flaw depth measuring method and its device
JP2001208729A (en) Defect detector
CN103512953A (en) Ultrasonic testing method adopting multiple probes
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
JPH08220079A (en) Ultrasonic probe
JP3140157B2 (en) Ultrasonic flaw detection method for planar defects
JP2001305111A (en) Ultrasonic rail flaw detector
JPH04157360A (en) Supersonic probe
WO2018135242A1 (en) Inspection method
JPH07253414A (en) Method and apparatus for ultrasonic flaw detection
JPH0545346A (en) Ultrasonic probe
JPH04194745A (en) Ultrasonic inspection
JP2630392B2 (en) Ultrasonic flaw detector
JPS63186143A (en) Ultrasonic wave probe
JPS61245055A (en) Ultrasonic flaw inspecting device
JP3298085B2 (en) Ultrasonic flaw detection method and device
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JP2922508B1 (en) Automatic ultrasonic flaw detector
JP2978708B2 (en) Composite angle beam probe
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JPH11316216A (en) Ultrasonic probe
JPH0521011Y2 (en)
JP2001004602A (en) Ultrasonic flaw detecting method and apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010313