JP2012127812A - Method and device for quality evaluation of billet - Google Patents

Method and device for quality evaluation of billet Download PDF

Info

Publication number
JP2012127812A
JP2012127812A JP2010279687A JP2010279687A JP2012127812A JP 2012127812 A JP2012127812 A JP 2012127812A JP 2010279687 A JP2010279687 A JP 2010279687A JP 2010279687 A JP2010279687 A JP 2010279687A JP 2012127812 A JP2012127812 A JP 2012127812A
Authority
JP
Japan
Prior art keywords
ultrasonic
steel
flaw detection
depth
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010279687A
Other languages
Japanese (ja)
Inventor
Minoru Matsui
穣 松井
Yukinori Iizuka
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010279687A priority Critical patent/JP2012127812A/en
Publication of JP2012127812A publication Critical patent/JP2012127812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform flaw detection of a wide range at one time by reducing a surface dead zone without heightening frequency and by widening a flaw detection range in a depth direction.SOLUTION: When flaw detection of a continuously casted billet is performed by ultrasonic waves and quality of the billet is evaluated based on the flaw detection result, a first piezoelectric vibrator 20 which can transmit a line focus ultrasonic beam for performing flaw detection of a surface layer part of a material 8 to be inspected through water, and a second piezoelectric vibrator 30 having a line focus field, are arranged facing each other across a sound isolation plate 40 so that focuses of an ultrasonic beam 21 transmitted from the first piezoelectric vibrator 20 and an ultrasonic beam range (a reception signal field 31) to be received by the second piezoelectric vibrator 30 intersect at a predetermined depth F in the billet, to perform the ultrasonic flaw detection.

Description

本発明は、連続鋳造された鋼片を超音波で探傷し、その探傷結果に基づいて鋼片の品質を評価するための鋼片の品質評価方法及び装置に関するものである。   The present invention relates to a steel piece quality evaluation method and apparatus for ultrasonically testing a continuously cast steel piece and evaluating the quality of the steel piece based on the flaw detection result.

薄板鋼材は連続鋳造、熱延、酸洗、冷延、亜鉛メッキといった各工程を経て製造される。最終製品で問題となる欠陥は、外観上問題となる表面欠陥や、プレスで顕在化する表層直下の欠陥である。欠陥の発生は前述の各工程のそれぞれで可能性があり、例えば、鋳造性の欠陥としては、アルミナ性介在物、パウダー性介在物がある。また、スラブ表層下の気泡が、熱延の加熱炉でスケールオフされる際に表面に現われ、その穴の中にスケールが詰まることも表面欠陥の原因の一つと言われている。通常、これら介在物や気泡は連続鋳造された鋼片の表面直下に多いため、連続鋳造での鋳型内での電磁攪拌・ブレーキ技術などで、できる限り連続鋳造された鋼片の表面直下に欠陥が発生しないような取り組みが実施されている。   A thin steel plate is manufactured through various processes such as continuous casting, hot rolling, pickling, cold rolling, and galvanization. Defects that are problematic in the final product are surface defects that are problematic in appearance and defects that are directly under the surface layer that are manifested by pressing. Defects may be generated in each of the above-described steps. For example, examples of castability defects include alumina inclusions and powder inclusions. It is also said that bubbles under the surface of the slab appear on the surface when the scale is turned off in a hot-rolling heating furnace, and the scale is clogged in the hole. Usually, these inclusions and bubbles are directly below the surface of the continuously cast steel slab, so defects can be found directly below the surface of the continuously cast steel slab as much as possible by electromagnetic stirring and braking techniques in the mold during continuous casting. Efforts are made to prevent the occurrence of

連続鋳造の鋳造条件が適切かどうか、連続鋳造された鋼片の品質を評価する手法の一つとして、連続鋳造された鋼片から被検査体を抜き取り、このサンプルの表面を数ミリ程度研削して平滑にして、これを超音波で探傷し、気泡や介在物の分布を統計的に調べて品質を評価する方法がある。   As one of the methods for evaluating the quality of continuously cast steel slabs to determine whether the casting conditions for continuous casting are appropriate, the specimen to be inspected is extracted from the continuously cast steel slab and the surface of this sample is ground for several millimeters. There is a method of evaluating the quality by smoothing the surface, flaw-detecting it with ultrasonic waves, and statistically examining the distribution of bubbles and inclusions.

超音波探傷方法は、鉄鋼製品(棒、板、管など)内部の欠陥の探傷に使われている。一般的に良く知られている超音波探傷方法は垂直パルスエコー法で、超音波探触子と被検査材とを油や水で音響結合して、超音波探触子から被検査材に垂直に超音波を送信し、内部に存在する欠陥で反射したエコーを超音波探触子で受信する方法である。この方法は被検査材の肉厚の中央部は十分に探傷することができるが、極表層部(表面下数ミリ)については送信パルスや表面エコーが不感帯(探傷不可能な領域)となって、探傷することができない。   The ultrasonic flaw detection method is used for flaw detection in steel products (bars, plates, pipes, etc.). A generally well-known ultrasonic flaw detection method is the vertical pulse echo method, in which the ultrasonic probe and the material to be inspected are acoustically coupled with oil or water, and the ultrasonic probe is perpendicular to the material to be inspected. In this method, an ultrasonic wave is transmitted to an echo and an echo reflected by a defect existing inside is received by an ultrasonic probe. This method can sufficiently detect the central part of the thickness of the material to be inspected, but in the extreme surface layer (several millimeters below the surface), the transmission pulse or surface echo becomes a dead zone (an area that cannot be detected). Can not be flawed.

そこで、被検査材表層部の欠陥を探傷する方法として、一般的には超音波の周波数を高周波化(例えば50MHz)する方法が実施されている。   Therefore, as a method for detecting defects on the surface layer portion of the material to be inspected, a method of increasing the frequency of ultrasonic waves (for example, 50 MHz) is generally performed.

(1)超音波を高周波化する方法
水を介して垂直パルスエコー法で探傷する方法において、図1(A)に示すように、圧電型振動子10から被検査材(鋼片)8に対して送信する超音波ビーム11の周波数を高周波化し、更に、振動径を大きくし、かつ、音響レンズなどにより超音波ビーム11を集束することで、焦点近傍にある欠陥8Fから強い反射波(Fエコー)が得られるようにし、かつ、図1(B)に示す如く、高周波化により受信される被検査材表面8Sからの反射波(Sエコー)の時間幅を短くして、できる限り不感帯を少なくする。表面エコーによる不感帯域が完全になくなるわけではないが、例えば、周波数が5MHzの場合には4〜6mm程度ある不感帯が、周波数を10倍の50MHzにすると1〜2mm程度にすることが可能である。
(1) A method of increasing the frequency of ultrasonic waves In a method of detecting flaws by water using a vertical pulse echo method, as shown in FIG. The frequency of the ultrasonic beam 11 to be transmitted is increased, the vibration diameter is increased, and the ultrasonic beam 11 is focused by an acoustic lens or the like, so that a strong reflected wave (F echo) is generated from the defect 8F near the focal point. 1), and as shown in FIG. 1B, the time width of the reflected wave (S echo) received from the surface 8S to be inspected by high frequency is shortened to reduce the dead zone as much as possible. To do. Although the dead band due to surface echo is not completely eliminated, for example, when the frequency is 5 MHz, the dead band of about 4 to 6 mm can be reduced to about 1 to 2 mm when the frequency is increased to 10 times 50 MHz. .

しかし、超音波の周波数を高周波化し、超音波ビームを集束すると、深さ方向に探傷可能な範囲も非常に限定された範囲となってしまうため、探傷可能な範囲を測定した後に、被検査体を深さ方向に削り込みながら探傷を繰り返す方法が実施されている。この方法では、例えば5mmの深さ範囲を測定するだけでも、探傷、被検査体の加工を繰り返す為、探傷結果が得られるまでに数日かかってしまう。不感帯を小さくする為に周波数を高くするほど、探傷可能な深さ範囲が狭くなるため、被検査体の加工回数と探傷回数が多く必要となり、時間を要することになる。   However, if the ultrasonic frequency is increased and the ultrasonic beam is focused, the flaw detection range in the depth direction is also very limited. Therefore, after measuring the flaw detection range, A method has been implemented in which flaw detection is repeated while cutting in the depth direction. In this method, for example, even if only a depth range of 5 mm is measured, flaw detection and processing of the object to be inspected are repeated. As the frequency is increased in order to reduce the dead zone, the depth range in which flaw detection can be performed becomes narrower. Therefore, it is necessary to increase the number of inspections and flaw detections, and time is required.

(2)特許文献1に記載の方法
そこで、特許文献1では、超音波の周波数を高周波化した手法において、極表層部にある欠陥から発生する多重反射エコーを検出することで、従来、不感帯に隠れてしまい検出できなかった欠陥を検出できるようにしている。
(2) Method described in Patent Document 1 Therefore, in Patent Document 1, in the technique in which the frequency of the ultrasonic wave is increased, a multiple reflection echo generated from a defect in the extreme surface layer portion is detected, so that it has conventionally been in the dead zone. It is possible to detect defects that are hidden and cannot be detected.

しかしながら、欠陥形状(斜めや三角に尖った物等)の影響で、多重反射エコーが起きにくく、未検出となる欠陥が生じやすい。更に多重反射エコーを使うために、欠陥の深さを正確に知ることができないといった問題や、正確な深さがわからないため、DGS特性(距離−信号振幅特性)をもとに信号振幅から欠陥サイズをより正確に推定できないといった問題がある。更にこの方法も、高周波の超音波を送受信するために、(1)で記載した問題もある。   However, due to the influence of the defect shape (such as a slanted or triangular pointed object), multiple reflection echoes are less likely to occur, and undetected defects are likely to occur. Furthermore, since multiple reflection echoes are used, the depth of the defect cannot be accurately known, and the exact depth is not known. Therefore, the defect size is determined from the signal amplitude based on the DGS characteristic (distance-signal amplitude characteristic). There is a problem that cannot be estimated more accurately. Furthermore, this method also has the problem described in (1) because it transmits and receives high-frequency ultrasonic waves.

特開平1−237449号公報JP-A-1-237449

従来実施されている、連続鋳造された鋼片を超音波で探傷し、その探傷結果に基づいて鋼片の品質を評価する方法では、深さ方向の探傷範囲が狭いため、深さ方向の探傷領域が広いほど、欠陥の品質を評価するのに探傷回数とサンプルの加工回数が多く必要となり、結果が得られるまでに時間がかかるといった問題があった。   The conventional method of ultrasonically testing continuously cast steel slabs and evaluating the quality of the steel slabs based on the results of the flaw detection results in a depth direction flaw detection because the depth direction flaw detection range is narrow. The larger the area, the greater the number of flaw detections and sample processings required to evaluate the quality of the defect, and there was a problem that it took longer to obtain the result.

本発明では、前記問題を解決するべくなされたもので、連続鋳造された鋼片の、超音波を用いた評価を迅速に行えるようにすることを課題とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to enable quick evaluation of continuously cast steel pieces using ultrasonic waves.

本発明は、連続鋳造された鋼片を超音波で探傷し、その探傷結果に基づいて鋼片の品質を評価する際に、水を介して被検査材の表層部の探傷を行うラインフォーカス状の超音波ビームを送信可能な第一の圧電型振動子と、ラインフォーカス状の視野を持つ第二の圧電型振動子とを、前記第一の圧電型振動子から送信される超音波ビームと前記第二の圧電型振動子で受信するための超音波ビーム範囲の焦点が所定の鋼中深さで交差するように、音響隔離板を挟んで対向させて配置して、超音波探傷を行うことにより、前記課題を解決したものである。   The present invention is a line focus type in which a continuous cast steel slab is flaw-detected with ultrasonic waves and the surface layer portion of a material to be inspected is detected through water when the quality of the steel slab is evaluated based on the flaw detection result. An ultrasonic beam transmitted from the first piezoelectric transducer, and a first piezoelectric transducer capable of transmitting the ultrasonic beam and a second piezoelectric transducer having a line-focused field of view. Ultrasonic flaw detection is performed by placing the acoustic separators facing each other so that the focal points of the ultrasonic beam range for reception by the second piezoelectric transducer intersect at a predetermined depth in the steel. This solves the problem.

ここで、前記第一、第二の圧電型振動子の長辺方向に超音波を集束させ、かつ、短辺方向に超音波を拡散させることができる。   Here, the ultrasonic waves can be focused in the long side direction of the first and second piezoelectric vibrators, and the ultrasonic waves can be diffused in the short side direction.

又、欠陥の深さと前記第一の圧電型振動子および前記第二の圧電型振動子との配置から超音波の伝播経路を計算し、該計算した伝播経路に基づいて欠陥の深さ位置を補正することができる。   Further, the propagation path of the ultrasonic wave is calculated from the depth of the defect and the arrangement of the first piezoelectric vibrator and the second piezoelectric vibrator, and the depth position of the defect is calculated based on the calculated propagation path. It can be corrected.

又、前記所定の鋼中深さを複数とし、各鋼中深さに対して、それぞれ前記第一及び第二の圧電型振動子を配設することができる。   Further, a plurality of the predetermined steel intermediate depths can be provided, and the first and second piezoelectric vibrators can be arranged for each of the steel intermediate depths.

本発明は、又、連続鋳造された鋼片を超音波で探傷し、その探傷結果に基づいて鋼片の品質を評価するための鋼片の品質評価装置において、水を介して被検査材の表層部の探傷を行うラインフォーカス状の超音波ビームを送信可能な第一の圧電型振動子と、ラインフォーカス状の視野を持つ第二の圧電型振動子とを、前記第一の圧電型振動子から送信される超音波ビームと前記第二の圧電型振動子で受信するための超音波ビーム範囲の焦点が所定の鋼中深さで交差するように、音響隔離板を挟んで対向されて配置してなる超音波探傷手段を備えたことにより、同様に前記課題を解決したものである。   The present invention also provides a steel piece quality evaluation apparatus for ultrasonically testing a continuously cast steel piece with ultrasonic waves and evaluating the quality of the steel piece based on the flaw detection result. A first piezoelectric vibrator capable of transmitting a line-focused ultrasonic beam for flaw detection on a surface layer portion and a second piezoelectric vibrator having a line-focus-like field of view are connected to the first piezoelectric vibrator. The ultrasonic beam transmitted from the child and the focal point of the ultrasonic beam range for reception by the second piezoelectric transducer are opposed to each other with the acoustic separator interposed therebetween so as to intersect at a predetermined depth in the steel. By providing the ultrasonic flaw detection means arranged, the above-mentioned problem is solved in the same manner.

ここで、前記第一、第二の圧電型振動子は、その長辺方向に超音波を集束し、かつ、短辺方向に超音波を拡散するようにすることができる。   Here, the first and second piezoelectric vibrators can focus ultrasonic waves in the long side direction and diffuse ultrasonic waves in the short side direction.

又、欠陥の深さと前記第一の圧電型振動子および前記第二の圧電型振動子との配置から超音波の伝播経路を計算し、該計算した伝播経路に基づいて欠陥の深さ位置を補正する手段を備えることができる。   Further, the propagation path of the ultrasonic wave is calculated from the depth of the defect and the arrangement of the first piezoelectric vibrator and the second piezoelectric vibrator, and the depth position of the defect is calculated based on the calculated propagation path. Means for correcting can be provided.

又、前記所定の鋼中深さを複数とし、各鋼中深さに対して、それぞれ前記第一及び第二の圧電型振動子を配設することができる。   Further, a plurality of the predetermined steel intermediate depths can be provided, and the first and second piezoelectric vibrators can be arranged for each of the steel intermediate depths.

連続鋳造された鋼片から抜き取った被検査体を、従来技術よりも不感帯を少なく、深さ方向の探傷範囲を大にして一度に広い範囲を探傷することができるようになったので、被検査体の品質評価に要する時間が大幅に短縮され、連続鋳造鋼片の製造条件への迅速なフィードバックが可能となり、より高い品質の鋼片を製造することが可能となる。   The inspection object extracted from the continuously cast steel pieces has less dead zone than the conventional technology, and the inspection range in the depth direction can be increased to detect a wide range at a time. The time required for body quality evaluation is greatly shortened, and quick feedback to the production conditions for continuously cast steel slabs becomes possible, making it possible to produce steel slabs of higher quality.

従来の問題点を説明するための断面図及び波形イメージ図Cross-sectional view and waveform image diagram for explaining conventional problems 本発明の実施形態の基本的な構成を示す(A)断面図及び(B)上面図1A is a cross-sectional view and FIG. 1B is a top view illustrating a basic configuration of an embodiment of the present invention. 本発明で使用可能な圧電型振動子の一例を示す斜視図A perspective view showing an example of a piezoelectric vibrator usable in the present invention 前記実施形態における配置を示す断面図Sectional drawing which shows arrangement | positioning in the said embodiment 同じく欠陥の鋼中深さ毎の入射位置P1−P2間距離(入射角度)とS/Nの関係の例を示す図The figure which similarly shows the example of the relationship between the distance (incident angle) between incident position P1-P2 for every depth in steel of a defect, and S / N 本発明の原理を説明する断面図Sectional view illustrating the principle of the present invention 本発明の第1実施例の全体構成を示すブロック図The block diagram which shows the whole structure of 1st Example of this invention. 同じく探傷状況を示す斜視図A perspective view showing the flaw detection situation 同じくセンサヘッドの断面図Sectional view of the sensor head 同じく処理手順を示す流れ図Flow chart showing the processing procedure 同じく計算方法を示す(A)断面図及び(B)相関図(A) Cross-sectional view and (B) Correlation diagram showing the same calculation method (A)従来法と(B)本発明法による相関を示す図The figure which shows the correlation by (A) conventional method and (B) this invention method 従来法と第1実施例による探傷範囲を比較して示す図The figure which compares and shows the flaw detection range by a conventional method and 1st Example 本発明の第2実施例の要部構成を示す断面図Sectional drawing which shows the principal part structure of 2nd Example of this invention. 従来法と第2実施例による探傷範囲を比較して示す図The figure which compares and shows the flaw detection range by a conventional method and 2nd Example

以下、図面を参照して、本発明に係る実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図2(A)は、本実施形態の基本的な構成を示す断面図、図2(B)は同じく上面図である。図中20は第一の圧電型振動子、21は該第一の圧電型振動子20から送信される超音波ビーム、30は第二の圧電型振動子、31は該第二の圧電型振動子30の受信信号視野、40は音響隔離板、φ1は第一の圧電型振動子20の被検査材表面8Sの法線に対する角度、φ2は第二の圧電型振動子30の被検査材表面8Sの法線に対する角度、Dcは測定深さ範囲、Fは鋼中焦点深さである。   FIG. 2A is a cross-sectional view showing the basic configuration of the present embodiment, and FIG. 2B is a top view of the same. In the figure, 20 is a first piezoelectric transducer, 21 is an ultrasonic beam transmitted from the first piezoelectric transducer 20, 30 is a second piezoelectric transducer, and 31 is the second piezoelectric transducer. Received signal field of the child 30, 40 is an acoustic separator, φ1 is an angle with respect to the normal of the surface 8S of the first piezoelectric vibrator 20, and φ2 is a surface of the second piezoelectric vibrator 30 being inspected An angle with respect to the normal line of 8S, Dc is a measurement depth range, and F is a focal depth in steel.

本実施形態では音響結合方法を水浸法として、超音波の送信と受信を第一の圧電型振動子20と第二の圧電型振動子30とに分割して行う。第一の圧電型振動子20と第二の圧電型振動子30は、図2(A)に示す断面図、図2(B)に示す上面図に示したように、ラインフォーカス状に超音波を送受信可能な形状とし、第一の圧電型振動子20と第二の圧電型振動子30が対向する面に対して垂直な方向については超音波が非集束となり拡散し、平行な面については超音波が集束するように振動子の形状を決定する。例えば、長方形の圧電型振動子を用意して、図3に示すように長辺側には集束するように曲率をつけ、短辺側は集束しないように平坦なままにする。または、平坦な圧電型振動子にラインフォーカス状のビームが得られるように音響レンズを取り付けても良い。ここで長辺側で集束させるのは、超音波が拡散しすぎて、小欠陥が検出できなくなるのを防ぐためである。   In this embodiment, the acoustic coupling method is a water immersion method, and transmission and reception of ultrasonic waves are performed by dividing the first piezoelectric transducer 20 and the second piezoelectric transducer 30. As shown in the cross-sectional view shown in FIG. 2A and the top view shown in FIG. 2B, the first piezoelectric vibrator 20 and the second piezoelectric vibrator 30 are line-focused ultrasonic waves. The ultrasonic wave is unfocused and diffuses in the direction perpendicular to the surface where the first piezoelectric transducer 20 and the second piezoelectric transducer 30 face each other, and the parallel plane is The shape of the vibrator is determined so that the ultrasonic wave is focused. For example, a rectangular piezoelectric vibrator is prepared, and a curvature is given to converge on the long side as shown in FIG. 3, and the flat side is kept flat so as not to converge on the short side. Alternatively, an acoustic lens may be attached so that a line-focused beam can be obtained on a flat piezoelectric transducer. The reason for focusing on the long side here is to prevent the ultrasonic waves from diffusing too much and detecting small defects.

前記第一の圧電型振動子20と第二の圧電型振動子30、音響隔離板40の配置について図4を用いて詳細に説明する。図4中、P1は第一の圧電型振動子20の音圧中心軸と被検査材表面8Sとの交差位置、P2は第二の圧電型振動子30の音圧中心軸と被検査材表面8Sとの交差位置、Wdは位置P1とP2間の距離、Pcは被検査材(鋼)8中における焦点位置、d1は位置PcとP1間の距離、d2は位置PcとP2間の距離である。   The arrangement of the first piezoelectric vibrator 20, the second piezoelectric vibrator 30, and the acoustic separator 40 will be described in detail with reference to FIG. In FIG. 4, P <b> 1 is a crossing position between the sound pressure central axis of the first piezoelectric vibrator 20 and the surface 8 </ b> S to be inspected, and P <b> 2 is the sound pressure central axis of the second piezoelectric vibrator 30 and the surface of the material to be inspected. Crossing position with 8S, Wd is the distance between positions P1 and P2, Pc is the focal position in the specimen (steel) 8, d1 is the distance between positions Pc and P1, and d2 is the distance between positions Pc and P2. is there.

前記距離d1とd2、角度φ1とφ2は、異なる値としてもかまわないが、焦点位置Pcで理想的な超音波の反射がおきると仮定すると、距離d1とd2、角度φ1とφ2は各々同じ値にして、線対称に第一の圧電型振動子20と第二の圧電型振動子30を配置することが好ましい。線対称となるように第一の圧電型振動子20と第二の圧電型振動子30を配置したときは、線対称の中心軸に音響隔離板40を配置する。   The distances d1 and d2 and the angles φ1 and φ2 may be different values. However, assuming that ideal ultrasonic reflection occurs at the focal position Pc, the distances d1 and d2 and the angles φ1 and φ2 are the same value. Thus, the first piezoelectric vibrator 20 and the second piezoelectric vibrator 30 are preferably arranged in line symmetry. When the first piezoelectric vibrator 20 and the second piezoelectric vibrator 30 are arranged so as to be line symmetric, the acoustic separator 40 is arranged on the center axis of line symmetry.

探傷作業前に探傷したい鋼中深さFを予め設定すれば、位置P1とP2から位置Pcに対して超音波が最短で伝播する経路が求まり、角度θ1および角度θ2が計算できる。角度θ1とθ2から、次式で示されるスネルの法則を用いて、各位置P1、P2毎に角度φ1と角度φ2を計算させることになる。   If the depth F in steel to be flawed is set in advance before the flaw detection work, a path through which the ultrasonic wave propagates from the positions P1 and P2 to the position Pc in the shortest is obtained, and the angles θ1 and θ2 can be calculated. From the angles θ1 and θ2, the angle φ1 and the angle φ2 are calculated for each position P1 and P2 using Snell's law expressed by the following equation.

ここで、φ:入射角度
θ:屈折角度
Vw:水中音速
Vs:鋼中音速
Where φ: incident angle θ: refraction angle Vw: underwater sound velocity Vs: steel sound velocity

ある鋼中深さFに対して、最もS/Nが取れる位置P1と位置P2を図表にして整理しておくことが好ましい。図表の作成は、深さF毎に横穴人工疵や平底穴人工疵を加工し、これをもとに最適な条件を調査して、たとえば図5に示すように整理しておく。整理した結果をもとに、深さF毎に最適な条件を選択して探傷を行う。   It is preferable to arrange the position P1 and the position P2 where the S / N can be taken most with respect to a certain steel depth F in a chart. For the creation of the chart, a horizontal hole artificial barb and a flat bottom hole artificial bark are processed for each depth F, and the optimum conditions are investigated based on this, for example, as shown in FIG. Based on the arranged results, the flaw detection is performed by selecting the optimum condition for each depth F.

なお、位置P1とP2、Pcは同一直線状とすることが配置を容易にする上で適当であるが、これに限定されない。   In addition, although it is suitable for making arrangement | positioning easy that position P1, P2, and Pc are the same straight line form, it is not limited to this.

図4の配置とすることで、第一の圧電型振動子20と第二の圧電型振動子30は、正反射方向とは異なる方向を向くことになる。従って、図6に示すように、第一の圧電型振動子20から送信され、被検査材8の表面8Sで反射された信号が、第二の圧電型振動子30で受信されにくくなり、表面反射波(Sエコー)の振幅が小さくなる。更に音響隔離板40を設けて、被検査材表面8Sで反射し、第二の圧電型振動子30に漏れこんでくる散乱波を遮ることで、表面反射波の振幅を更に小さくし、表面不感帯を限りなく低減させることが可能となる。   With the arrangement shown in FIG. 4, the first piezoelectric vibrator 20 and the second piezoelectric vibrator 30 face in a direction different from the regular reflection direction. Therefore, as shown in FIG. 6, the signal transmitted from the first piezoelectric transducer 20 and reflected by the surface 8S of the material 8 to be inspected becomes difficult to be received by the second piezoelectric transducer 30, and the surface The amplitude of the reflected wave (S echo) is reduced. In addition, an acoustic separator 40 is provided to reflect the reflected wave on the surface 8S to be inspected and to block the scattered wave leaking into the second piezoelectric transducer 30, thereby further reducing the amplitude of the surface reflected wave and the surface dead zone. Can be reduced as much as possible.

また、ラインフォーカス状のビームの拡散する側が深さ方向に対して交差するように配置することで、交差範囲、すなわち図2の測定深さ範囲Dcに在る欠陥からの反射波を受信することができる。   Also, by arranging the line-focused beam diffusing side to intersect the depth direction, the reflected wave from the defect in the intersecting range, that is, the measured depth range Dc in FIG. 2 is received. Can do.

従来の技術では、Sエコーの不感帯域を狭めるために、高周波化し、かつ欠陥からの反射波をS/N良く受信できるようにするために、超音波を集束させている。不感帯を短くしようとするほど、高周波化と超音波の集束化が必要となる一方で探傷可能な深さ範囲が狭くなるという相反関係の課題があった。   In the conventional technique, in order to narrow the dead zone of the S echo, the ultrasonic waves are focused in order to increase the frequency and receive the reflected wave from the defect with good S / N. As the dead zone is shortened, there is a conflicting problem that the frequency range capable of flaw detection becomes narrower while higher frequency and focusing of ultrasonic waves are required.

本発明により、この相反関係にある課題を解決し、高周波化せずとも、表面不感帯を小さくし、かつ深さ方向の広い範囲を探傷することが可能となった。   According to the present invention, it is possible to solve the problems in the reciprocal relationship, to reduce the surface dead zone and to detect a wide range in the depth direction without increasing the frequency.

[第一の実施例]
本発明の第一の実施例を図7乃至図13を用いて説明する。
[First embodiment]
A first embodiment of the present invention will be described with reference to FIGS.

図7中において、50はセンサヘッド、52は超音波送信部、54は超音波受信部、56はA/D変換部、60は、信号処理部64、超音波送受信制御部66及びスキャナー制御部68を含む超音波探傷制御ソフト62を備えた計算機、70はスキャナー機構部、72は出力部である。   In FIG. 7, 50 is a sensor head, 52 is an ultrasonic transmission unit, 54 is an ultrasonic reception unit, 56 is an A / D conversion unit, 60 is a signal processing unit 64, an ultrasonic transmission / reception control unit 66, and a scanner control unit. A computer including ultrasonic flaw detection control software 62 including 68, 70 a scanner mechanism unit, and 72 an output unit.

連続鋳造された鋼片(幅Sc[m]×長さSl[m]×厚みSt[mm])から切り出した被検査材8(幅Sc/2[m]×長さSl[m]×厚みSt[mm])を、図8に示すように、大型の水槽80に設置し、センサヘッド50を、図7に示したスキャナー機構部70によりXY方向にスキャンして超音波探傷を行う。   Inspected material 8 (width Sc / 2 [m] × length Sl [m] × thickness) cut out from a continuously cast steel piece (width Sc [m] × length Sl [m] × thickness St [mm]) As shown in FIG. 8, St [mm]) is installed in a large water tank 80, and the sensor head 50 is scanned in the XY directions by the scanner mechanism 70 shown in FIG.

前記センサヘッド50について図9および図4を用いて説明する。図9中、52は被検査材8と接触するシューである。センサヘッド50は図9に示すように外部から給水し局部水浸法で音響結合できる構造としている。被検査材が大型である為、全没水浸法は背の高い大きな水槽に被検査材を沈めることになる。従って、リフティングマグネット(リフマグ)やクレーンで被検査材の設置、取り出しを行う度に水槽内の水の入れ替えも必要となり作業効率が悪くなる。本実施例では図9に示す局部水浸可能なセンサヘッド50とし、図8に示した如く、音響結合に使用した水を水槽80で受けて、ポンプPで循環させることで最小限の水で探傷できるようにした。全没水浸法で水の入れ替えに要する時間が、ほぼゼロとなり全没水浸法と比べて探傷作業の効率が改善する。なお、ポンプPによる循環を行わず、垂れ流しとすることも可能である。   The sensor head 50 will be described with reference to FIGS. In FIG. 9, 52 is a shoe that contacts the material 8 to be inspected. As shown in FIG. 9, the sensor head 50 has a structure in which water is supplied from the outside and can be acoustically coupled by a local water immersion method. Since the material to be inspected is large, the all-immersion method sinks the material to be inspected in a tall and large water tank. Therefore, it is necessary to change the water in the water tank every time the inspection material is installed and taken out with a lifting magnet (lifting magnet) or a crane, and the working efficiency is deteriorated. In this embodiment, the sensor head 50 capable of local water immersion shown in FIG. 9 is used. As shown in FIG. 8, the water used for acoustic coupling is received by the water tank 80 and circulated by the pump P. I was able to detect flaws. The time required for water replacement by the all-immersion method is almost zero, and the efficiency of the flaw detection work is improved compared to the all-immersion method. In addition, it is also possible to make it spill without circulating by the pump P.

前記センサヘッド50には第一の圧電型振動子20と第二の圧電型振動子30が図4に示したように深さF[mm]で焦点が合うように設置している。第一の圧電型振動子20と第二の圧電型振動子30の入射角度φ1、φ2、および入射点の位置P1、P2は、事前に深さF[mm]にあけた直径2mmの横穴人工疵を用いてS/Nを調査し、その調査結果から求めた最適値(最もS/Nが良かった条件)を採用した。   In the sensor head 50, the first piezoelectric vibrator 20 and the second piezoelectric vibrator 30 are installed so as to be focused at a depth F [mm] as shown in FIG. The incident angles φ1 and φ2 and the positions P1 and P2 of the incident points of the first piezoelectric transducer 20 and the second piezoelectric transducer 30 are a horizontal hole artificial with a diameter of 2 mm that is previously drilled at a depth F [mm]. The S / N was investigated using scissors, and the optimum value (the condition with the best S / N) obtained from the survey results was adopted.

前記超音波送信部52は、超音波送受信制御部66で事前に任意に設定された周波数f[MHz]と波数K[波数]、送信電圧Vt[V]で、センサヘッド50にある第一の圧電型振動子20を駆動して超音波を送信する。被検査材8からの反射波は、センサヘッド50内にある第二の圧電型振動子30で受信して、超音波受信部54でフィルター処理、信号増幅され、A/D変換部56でA/D変換されて、計算機60に取り込まれる。   The ultrasonic transmission unit 52 has a frequency f [MHz], a wave number K [wave number], and a transmission voltage Vt [V], which are arbitrarily set in advance by the ultrasonic transmission / reception control unit 66, in the sensor head 50. The piezoelectric vibrator 20 is driven to transmit ultrasonic waves. The reflected wave from the material to be inspected 8 is received by the second piezoelectric transducer 30 in the sensor head 50, filtered and signal amplified by the ultrasonic receiver 54, and A / D converter 56 performs A / D converted and taken into the computer 60.

本実施例では、周波数を5[MHz]、波数を1[波数]とし、送信電圧は100[V]として、超音波受信部54では3MHz〜5MHzのアナログバンドパスフィルタを用いた。   In this embodiment, the frequency is 5 [MHz], the wave number is 1 [wave number], the transmission voltage is 100 [V], and the ultrasonic receiving unit 54 uses an analog bandpass filter of 3 MHz to 5 MHz.

前記スキャナー制御部68は、スキャナー機構部70を制御して、XY走査を行う。このとき、スキャナー機構部70に設置されているエンコーダーや、駆動パルス信号を基に、設定された任意の探傷密度毎にタイミング信号を出力する。このタイミング信号を同期信号として、超音波送信部52は第一の圧電型振動子20を駆動させ、超音波受信部54は第二の圧電型振動子30で被検査材8からの反射波を受信して、超音波受信部54でフィルター処理、増幅処理を実施し、A/D変換部56でA/D変換を行う。   The scanner control unit 68 controls the scanner mechanism unit 70 to perform XY scanning. At this time, a timing signal is output for each set flaw detection density based on an encoder installed in the scanner mechanism unit 70 and a driving pulse signal. Using this timing signal as a synchronization signal, the ultrasonic transmitter 52 drives the first piezoelectric transducer 20, and the ultrasonic receiver 54 transmits the reflected wave from the material 8 to be inspected by the second piezoelectric transducer 30. Then, the ultrasonic reception unit 54 performs filtering and amplification processing, and the A / D conversion unit 56 performs A / D conversion.

該A/D変換部56でA/D変換され計算機60に取り込まれた反射波に、信号処理部64で図10に示す処理を施す。   The signal processing unit 64 performs the processing shown in FIG. 10 on the reflected wave A / D converted by the A / D conversion unit 56 and taken into the computer 60.

まず、スキャン探傷(ステップ100)で、座標(x,y)ごとに波形がメモリ(図示省略)に記憶され、各座標における波形に対して、同期加算信号処理(開口合成計算)およびデジタルフィルター処理、全波整流を施し、任意に設定したゲート内における最大値Pxyを算出し、最大値Pxyを輝度変換し、二次元にマッピングしてCスコープ像を作成する(ステップ110)。このCスコープ像に対して一次判定処理(ステップ120)を行い、任意に設定した閾値θ1より大きな振幅を箇所における、最大振幅Pxy、疵エコーの伝播時間Txyを算出する。本実施例では疵エコーの最大値振幅位置の−9dBレベルの位置を読み取るようにした。伝播時間の読み取り方法は、本実施例における方法にのみ限定されるものではない。   First, in scanning flaw detection (step 100), a waveform is stored in a memory (not shown) for each coordinate (x, y), and a synchronous addition signal process (aperture synthesis calculation) and a digital filter process are performed on the waveform at each coordinate. Then, full-wave rectification is performed, the maximum value Pxy in an arbitrarily set gate is calculated, the luminance of the maximum value Pxy is converted, and two-dimensional mapping is performed to create a C scope image (step 110). A primary determination process (step 120) is performed on the C scope image, and the maximum amplitude Pxy and the propagation time Txy of the soot echo are calculated at locations where the amplitude is larger than the arbitrarily set threshold value θ1. In this embodiment, the position of the -9 dB level of the maximum amplitude position of the soot echo is read. The method for reading the propagation time is not limited to the method in this embodiment.

一次処理で判定された座標(x,y)における最大振幅Pxy、伝播時間Ptを基に、推定深さの算出と、推定径の算出を行う(ステップ130)。   Based on the maximum amplitude Pxy and the propagation time Pt at the coordinates (x, y) determined in the primary processing, the estimated depth and the estimated diameter are calculated (step 130).

深さDxy[mm]を計算するとき、単純には超音波が屈折せずに直進すると仮定し、鋼中音速をVs[m/sec]として、伝播時間Txyから次式で算出する方法がある。
Dxy=Txy×Vs/2 (2)
When calculating the depth Dxy [mm], it is simply assumed that the ultrasonic wave travels straight without being refracted, and the velocity of sound in steel is Vs [m / sec]. .
Dxy = Txy × Vs / 2 (2)

しかし、本実施例では屈折を考慮して、図11に示すように深さ毎のスネル法則を満たすように実伝播経路(伝播時間)との関係式を予め作成しておき、この関係式をもとに伝播時間から深さを計算する。   However, in this embodiment, in consideration of refraction, a relational expression with an actual propagation path (propagation time) is prepared in advance so as to satisfy Snell's law for each depth as shown in FIG. Based on the propagation time, the depth is calculated.

図12(A)は超音波の実伝播経路を考慮せずに(2)式で算出したときの推定深さと実際の深さの比較であり、図12(B)は超音波の実伝播経路を考慮した本実施例による推定深さと実際の深さの比較である。図12(A)では浅い位置にある欠陥ほど実深さよりも深い位置に在るように推定される。しかし、本実施例では、図12(B)に示したように、(2)式で算出した場合よりも精度良く深さを推定することができていることがわかる。   FIG. 12A is a comparison between the estimated depth and the actual depth calculated by the equation (2) without considering the actual propagation path of the ultrasonic wave, and FIG. 12B is the actual propagation path of the ultrasonic wave. This is a comparison between the estimated depth and the actual depth according to this embodiment in consideration of the above. In FIG. 12A, it is estimated that the defect at the shallow position is located at a position deeper than the actual depth. However, in the present embodiment, as shown in FIG. 12B, it can be seen that the depth can be estimated with higher accuracy than the case where the calculation is performed by the equation (2).

深さDxyを算出した後、深さDxyをもとに振幅Pxyの値に補正を行う。本実施例の場合、焦点深さF近傍以外では探傷感度が落ちてくることから、予め人工疵を用いて、振幅の距離伝播特性を算出しておき、この特性をもとに振幅Pxyに補正を行い、事前に調査しておいた振幅と欠陥径の換算式を用いて、推定欠陥径Fxyを算出する。   After calculating the depth Dxy, the amplitude Pxy is corrected based on the depth Dxy. In the case of the present embodiment, since the flaw detection sensitivity decreases except in the vicinity of the focal depth F, an amplitude distance propagation characteristic is calculated in advance using an artificial scissors, and the amplitude Pxy is corrected based on this characteristic. And the estimated defect diameter Fxy is calculated using the conversion formula of amplitude and defect diameter investigated in advance.

超音波指示の二次判定処理(ステップ140)で、予め任意に設定しておいた閾値S[mm]以上を欠陥指示として抽出し、その欠陥個数および、各欠陥指示の座標(X,Y)、推定欠陥径Fxy、推定深さDxyを出力する(ステップ150)。   In the secondary determination process (step 140) of the ultrasonic instruction, a threshold S [mm] or more that is arbitrarily set in advance is extracted as a defect instruction, and the number of defects and the coordinates (X, Y) of each defect instruction. The estimated defect diameter Fxy and the estimated depth Dxy are output (step 150).

図13は推定径φ0.5mm以上の欠陥を探傷したときの本発明の効果を示す。図13中、探傷範囲の例は50MHzで探傷したときの探傷可能な深さ範囲の一例を示している。本実施例を用いることで、従来法よりもより浅い側から、そしてより広い側まで探傷可能であることがわかる。   FIG. 13 shows the effect of the present invention when a defect having an estimated diameter of φ0.5 mm or more is detected. In FIG. 13, the example of the flaw detection range shows an example of a depth range in which flaw detection is possible when flaw detection is performed at 50 MHz. By using the present embodiment, it can be seen that flaw detection can be performed from a shallower side than the conventional method to a wider side.

[第二の実施例]
第二の実施例を図14を用いて説明する。第一の実施例では、センサヘッド一つで実施したが、探傷したい範囲ごとに最適化したセンサヘッドを複合して、探傷範囲をさらに拡張することも可能である。
[Second Example]
A second embodiment will be described with reference to FIG. In the first embodiment, a single sensor head is used. However, it is possible to further expand the flaw detection range by combining sensor heads optimized for each flaw detection range.

第二の実施例は図14に示すように、焦点深さF1[mm]で焦点が交わるように第一の圧電型振動子20と第二の圧電型振動子30を配置し、焦点深さF2[mm](F1<F2)で焦点が交わるように第三の圧電型振動子22と第四の圧電型振動子32を配置した。焦点深さF1[mm]に対して配置した第一の圧電型振動子20と第二の圧電型振動子30を第一のセンサヘッドとし、焦点深さF2[mm]に対して配置した第三の圧電型振動子22と第四の圧電型振動子32を第二のセンサヘッドとして、同時に二つのセンサヘッドで被検査材8を走査して探傷を行う。   In the second embodiment, as shown in FIG. 14, the first piezoelectric vibrator 20 and the second piezoelectric vibrator 30 are arranged so that the focal point intersects at the focal depth F1 [mm], and the focal depth is obtained. The third piezoelectric transducer 22 and the fourth piezoelectric transducer 32 were arranged so that the focal points intersect at F2 [mm] (F1 <F2). The first piezoelectric vibrator 20 and the second piezoelectric vibrator 30 arranged with respect to the focal depth F1 [mm] are used as the first sensor head, and the first piezoelectric vibrator 20 arranged with respect to the focal depth F2 [mm]. The three piezoelectric transducers 22 and the fourth piezoelectric transducer 32 are used as second sensor heads, and flaw detection is performed by simultaneously scanning the inspection object 8 with the two sensor heads.

図15に第二の実施例による推定径φ0.5mm以上の探傷範囲の実績を示す。図15から、本実施例により第一の実施例よりもさらに広範囲の探傷が可能であることがわかる。   FIG. 15 shows the results of the flaw detection range with an estimated diameter of 0.5 mm or more according to the second embodiment. FIG. 15 shows that a wider range of flaw detection is possible with this embodiment than with the first embodiment.

なお、センサヘッドを三つ以上設けることも可能である。   It is possible to provide three or more sensor heads.

8…被検査材
8F…欠陥
20、22、30、32…圧電型振動子
21…超音波ビーム
31…受信信号視野
40…音響隔離板
50…センサヘッド
F、F1、F2…焦点深さ
DESCRIPTION OF SYMBOLS 8 ... Test object 8F ... Defect 20, 22, 30, 32 ... Piezoelectric vibrator 21 ... Ultrasonic beam 31 ... Received signal visual field 40 ... Acoustic separator 50 ... Sensor head F, F1, F2 ... Depth of focus

Claims (8)

連続鋳造された鋼片を超音波で探傷し、その探傷結果に基づいて鋼片の品質を評価する際に、
水を介して被検査材の表層部の探傷を行うラインフォーカス状の超音波ビームを送信可能な第一の圧電型振動子と、ラインフォーカス状の視野を持つ第二の圧電型振動子とを、前記第一の圧電型振動子から送信される超音波ビームと前記第二の圧電型振動子で受信するための超音波ビーム範囲の焦点が所定の鋼中深さで交差するように、音響隔離板を挟んで対向させて配置して、超音波探傷を行うことを特徴とする鋼片の品質評価方法。
When a continuously cast steel slab is flaw-detected with ultrasonic waves and the quality of the steel slab is evaluated based on the flaw detection result,
A first piezoelectric transducer capable of transmitting a line-focused ultrasonic beam for flaw detection on the surface layer of the material to be inspected through water, and a second piezoelectric transducer having a line-focused visual field The acoustic beam is transmitted so that the ultrasonic beam transmitted from the first piezoelectric transducer and the focal point of the ultrasonic beam range for reception by the second piezoelectric transducer intersect at a predetermined depth in steel. A method for evaluating the quality of a steel slab, characterized in that ultrasonic flaw detection is performed by placing the separators facing each other across the separator.
請求項1において、前記第一、第二の圧電型振動子の長辺方向に超音波を集束させ、かつ、短辺方向に超音波を拡散させることを特徴とする鋼片の品質評価方法。   The method for evaluating the quality of a steel slab according to claim 1, wherein the ultrasonic wave is focused in the long side direction of the first and second piezoelectric vibrators and the ultrasonic wave is diffused in the short side direction. 請求項1又は2において、欠陥の深さと前記第一の圧電型振動子および前記第二の圧電型振動子との配置から超音波の伝播経路を計算し、該計算した伝播経路に基づいて欠陥の深さ位置を補正することを特徴とする鋼片の品質評価方法。   3. The ultrasonic propagation path according to claim 1 or 2, wherein an ultrasonic propagation path is calculated from the depth of the defect and the arrangement of the first piezoelectric vibrator and the second piezoelectric vibrator, and the defect is based on the calculated propagation path. A method for evaluating the quality of a steel slab characterized by correcting the depth position of the steel. 請求項1乃至3のいずれかにおいて、前記所定の鋼中深さを複数とし、各鋼中深さに対して、それぞれ前記第一及び第二の圧電型振動子を配設することを特徴とする特徴とする鋼片の品質評価方法。   4. The method according to claim 1, wherein a plurality of the predetermined steel intermediate depths are provided, and the first and second piezoelectric vibrators are disposed for each of the steel intermediate depths. A method for evaluating the quality of steel slabs. 連続鋳造された鋼片を超音波で探傷し、その探傷結果に基づいて鋼片の品質を評価するための鋼片の品質評価装置において、
水を介して被検査材の表層部の探傷を行うラインフォーカス状の超音波ビームを送信可能な第一の圧電型振動子と、ラインフォーカス状の視野を持つ第二の圧電型振動子とを、前記第一の圧電型振動子から送信される超音波ビームと前記第二の圧電型振動子で受信するための超音波ビーム範囲の焦点が所定の鋼中深さで交差するように、音響隔離板を挟んで対向されて配置してなる超音波探傷手段を備えたことを特徴とする鋼片の品質評価装置。
In the steel piece quality evaluation apparatus for detecting the continuously cast steel piece with ultrasonic waves and evaluating the quality of the steel piece based on the flaw detection result,
A first piezoelectric transducer capable of transmitting a line-focused ultrasonic beam for flaw detection on the surface layer of the material to be inspected through water, and a second piezoelectric transducer having a line-focused visual field The acoustic beam is transmitted so that the ultrasonic beam transmitted from the first piezoelectric transducer and the focal point of the ultrasonic beam range for reception by the second piezoelectric transducer intersect at a predetermined depth in steel. An apparatus for evaluating the quality of a steel slab, comprising ultrasonic flaw detection means arranged opposite to each other with a separator interposed therebetween.
請求項5において、前記第一、第二の圧電型振動子が、その長辺方向に超音波を集束し、かつ、短辺方向に超音波を拡散するようにされていることを特徴とする鋼片の品質評価装置。   6. The first and second piezoelectric vibrators according to claim 5, wherein ultrasonic waves are focused in the long side direction and ultrasonic waves are diffused in the short side direction. Billet quality evaluation equipment. 請求項5又は6において、欠陥の深さと前記第一の圧電型振動子および前記第二の圧電型振動子との配置から超音波の伝播経路を計算し、該計算した伝播経路に基づいて欠陥の深さ位置を補正する手段を備えたことを特徴とする鋼片の品質評価装置。   7. The ultrasonic propagation path according to claim 5 or 6, wherein an ultrasonic propagation path is calculated from a defect depth and the arrangement of the first piezoelectric vibrator and the second piezoelectric vibrator, and the defect is determined based on the calculated propagation path. An apparatus for evaluating the quality of a steel slab comprising means for correcting the depth position of the steel slab. 請求項5乃至7のいずれかにおいて、前記所定の鋼中深さを複数とし、各鋼中深さに対して、それぞれ前記第一及び第二の圧電型振動子を配設したことを特徴とする鋼片の品質評価装置。   In any one of Claims 5 thru | or 7, The said predetermined steel intermediate depth was made into multiple, and said 1st and 2nd piezoelectric vibrator was each arrange | positioned with respect to each steel intermediate depth, Steel bill quality evaluation device.
JP2010279687A 2010-12-15 2010-12-15 Method and device for quality evaluation of billet Pending JP2012127812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279687A JP2012127812A (en) 2010-12-15 2010-12-15 Method and device for quality evaluation of billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279687A JP2012127812A (en) 2010-12-15 2010-12-15 Method and device for quality evaluation of billet

Publications (1)

Publication Number Publication Date
JP2012127812A true JP2012127812A (en) 2012-07-05

Family

ID=46645020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279687A Pending JP2012127812A (en) 2010-12-15 2010-12-15 Method and device for quality evaluation of billet

Country Status (1)

Country Link
JP (1) JP2012127812A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007111A1 (en) * 2012-07-03 2014-01-09 Jfeスチール株式会社 Steel material quality evaluation method and quality evaluation device
WO2014126023A1 (en) * 2013-02-14 2014-08-21 株式会社神戸製鋼所 Ultrasonic probe
JP2018036280A (en) * 2017-11-13 2018-03-08 東北特殊鋼株式会社 Ultrasonic flaw inspection device for round bar material
CN110220977A (en) * 2019-06-11 2019-09-10 大连理工大学 Pipeline configuration TOFD based on mode converted wave detects near surface blind region suppressing method
CN111638313A (en) * 2020-06-10 2020-09-08 重庆齿轮箱有限责任公司 Method for detecting quality of steel ingot
JP7435322B2 (en) 2020-07-03 2024-02-21 コニカミノルタ株式会社 Ultrasonic flaw detection equipment, ultrasonic flaw detection method, and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4418637Y1 (en) * 1966-11-30 1969-08-11
JPS5036595B1 (en) * 1970-07-10 1975-11-26
JPH02269962A (en) * 1989-04-12 1990-11-05 Hitachi Constr Mach Co Ltd Ultrasonic inspection device
JPH0658908A (en) * 1992-08-06 1994-03-04 Kawasaki Steel Corp Ultrasonic flaw-detection method and device therefor
JPH08220079A (en) * 1995-02-10 1996-08-30 Mitsubishi Heavy Ind Ltd Ultrasonic probe
JPH1078416A (en) * 1996-09-02 1998-03-24 Kawasaki Steel Corp Method and device for multi-channel automatic ultrasonic flaw detection of metal plate
JP2004117137A (en) * 2002-09-26 2004-04-15 Shoryo Denshi Kk Ultrasonic inspection device
JP2005233874A (en) * 2004-02-23 2005-09-02 Jfe Steel Kk Ultrasonic flaw detection method
JP2009058238A (en) * 2007-08-30 2009-03-19 Jfe Steel Kk Method and device for defect inspection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4418637Y1 (en) * 1966-11-30 1969-08-11
JPS5036595B1 (en) * 1970-07-10 1975-11-26
JPH02269962A (en) * 1989-04-12 1990-11-05 Hitachi Constr Mach Co Ltd Ultrasonic inspection device
JPH0658908A (en) * 1992-08-06 1994-03-04 Kawasaki Steel Corp Ultrasonic flaw-detection method and device therefor
JPH08220079A (en) * 1995-02-10 1996-08-30 Mitsubishi Heavy Ind Ltd Ultrasonic probe
JPH1078416A (en) * 1996-09-02 1998-03-24 Kawasaki Steel Corp Method and device for multi-channel automatic ultrasonic flaw detection of metal plate
JP2004117137A (en) * 2002-09-26 2004-04-15 Shoryo Denshi Kk Ultrasonic inspection device
JP2005233874A (en) * 2004-02-23 2005-09-02 Jfe Steel Kk Ultrasonic flaw detection method
JP2009058238A (en) * 2007-08-30 2009-03-19 Jfe Steel Kk Method and device for defect inspection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007111A1 (en) * 2012-07-03 2014-01-09 Jfeスチール株式会社 Steel material quality evaluation method and quality evaluation device
CN104412106A (en) * 2012-07-03 2015-03-11 杰富意钢铁株式会社 Steel material quality evaluation method and quality evaluation device
JPWO2014007111A1 (en) * 2012-07-03 2016-06-02 Jfeスチール株式会社 Steel quality evaluation method and quality evaluation apparatus
WO2014126023A1 (en) * 2013-02-14 2014-08-21 株式会社神戸製鋼所 Ultrasonic probe
JP2014178302A (en) * 2013-02-14 2014-09-25 Kobe Steel Ltd Ultrasonic probe
JP2018036280A (en) * 2017-11-13 2018-03-08 東北特殊鋼株式会社 Ultrasonic flaw inspection device for round bar material
CN110220977A (en) * 2019-06-11 2019-09-10 大连理工大学 Pipeline configuration TOFD based on mode converted wave detects near surface blind region suppressing method
CN111638313A (en) * 2020-06-10 2020-09-08 重庆齿轮箱有限责任公司 Method for detecting quality of steel ingot
JP7435322B2 (en) 2020-07-03 2024-02-21 コニカミノルタ株式会社 Ultrasonic flaw detection equipment, ultrasonic flaw detection method, and program

Similar Documents

Publication Publication Date Title
Thring et al. Focused Rayleigh wave EMAT for characterisation of surface-breaking defects
JP2012127812A (en) Method and device for quality evaluation of billet
WO2008105112A1 (en) Method for managing quality of tubular body and tubular body manufacturing method
KR20150021530A (en) Defect detection device, defect detection method, program, and storage medium
JP2010276465A (en) Ultrasonic flaw detector and method therefor
JP4770386B2 (en) Ultrasonic probe of ultrasonic flaw detector
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
KR101698746B1 (en) Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JP5730644B2 (en) Ultrasonic measurement method and apparatus for surface crack depth
CN111458415B (en) Method for detecting coupling state of ultrasonic phased array transducer and workpiece to be detected
JP2009058238A (en) Method and device for defect inspection
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
KR101942792B1 (en) Steel material quality evaluation method and quality evaluation device
Han et al. Combination of direct, half-skip and full-skip TFM to characterize defect (II)
JP6460136B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR20220004195A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment heat, steel manufacturing method, and steel quality assurance method
KR100970948B1 (en) 2-dimensional virtual array probe for 3-dimensional ultrasonic imaging
JP5402894B2 (en) Ultrasonic probe of ultrasonic flaw detector
JP2002243703A (en) Ultrasonic flaw detector
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
JP2009139225A (en) Method of detecting end of defect or the like and detection device for detecting end of defect or the like
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
Takatsubo et al. Generation laser scanning method for visualizing ultrasonic waves propagating on 3-D objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805