JP2002071332A - Probe for measurement thickness of clad steel ply material - Google Patents

Probe for measurement thickness of clad steel ply material

Info

Publication number
JP2002071332A
JP2002071332A JP2000261569A JP2000261569A JP2002071332A JP 2002071332 A JP2002071332 A JP 2002071332A JP 2000261569 A JP2000261569 A JP 2000261569A JP 2000261569 A JP2000261569 A JP 2000261569A JP 2002071332 A JP2002071332 A JP 2002071332A
Authority
JP
Japan
Prior art keywords
probe
thickness
vibrator
flaw detection
clad steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000261569A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ikeda
和俊 池田
Masayuki Kato
政之 加藤
Yasuhiro Mabuchi
靖宏 馬渕
Saburo Yamazaki
三朗 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2000261569A priority Critical patent/JP2002071332A/en
Publication of JP2002071332A publication Critical patent/JP2002071332A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a probe for the measurement of the thickness of a clad steel ply material, with which the thickness of a multilayer piled ply material can be measured with satisfactory accuracy, by reducing the influence due to reflected echoes from a part between layers of the ply material. SOLUTION: A vibrator 2 for transmission and a vibrator 3 for reception are arranged on a wedge face 4, at an angle (i) at which the reflected echo is efficiently converted into transverse waves with on a flaw detection face 11. The interprobe distance L between the vibrator 2 and the vibrator 3 is set at a distance, which is smaller than interval L2 found geometrically.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クラッド鋼合せ材
の厚さを測定するクラッド鋼合わせ材厚さ測定用探触子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for measuring the thickness of a clad steel laminate, which measures the thickness of the clad steel laminate.

【0002】[0002]

【従来の技術】クラッド鋼は、JIS規格のG0601
(1989)に記載されているように、鋼材等の母材を
ステンレス鋼やニッケル合金等の合せ材で全面にわたり
被覆すると共に、その境界面を金属組織的に接合したも
ので、強度や耐食性に優れている。
2. Description of the Related Art Clad steel is made of G0601 according to JIS.
As described in (1989), a base material such as a steel material is coated over the entire surface with a bonding material such as stainless steel or a nickel alloy, and a boundary surface thereof is metallographically bonded. Are better.

【0003】従来のクラッド鋼合せ材の厚さを測定する
測定方法としては、特開平8−219750号公報に記
載されているように、送信及び受信を兼ねた一枚の振動
子を設けると共に、探傷面に対して垂直に縦波の超音波
を送受信する一探型縦波垂直探傷子を用いて行なうもの
や、送信用振動子及び受信用振動子を独立してそれぞれ
設けると共に、探傷面に対して垂直に縦波の超音波を送
受信する二分割型縦波垂直探傷子を用いて行なうものな
ど、縦波垂直探傷法が知られている。
As a conventional measuring method for measuring the thickness of a clad steel clad material, as described in Japanese Patent Application Laid-Open No. 8-219750, a single vibrator for transmitting and receiving is provided. A single-type vertical-wave vertical flaw detector that transmits and receives longitudinal ultrasonic waves perpendicular to the flaw detection surface, and a transmission transducer and a reception vibrator are provided independently and provided on the flaw detection surface. Longitudinal wave vertical flaw detection methods, such as those using a two-piece longitudinal wave vertical flaw detector that transmits and receives longitudinal ultrasonic waves vertically, are known.

【0004】これは、クラッド鋼の合せ材に使用されて
いるオーステナイト系ステンレス鋼の超音波探傷試験で
は、日本非破壊検査協会発行の各種成品及び溶接構造物
の超音波探傷試験(1989)に記載されているよう
に、柱状晶組織からの反射による林状エコーノイズや超
音波の音速異方性の影響を低減するため、縦波探傷子や
広帯域型探傷子による探傷が適しているとされており、
クラッド鋼合せ材の厚さを測定する場合も同様であろう
との考えに基づいて縦波探傷子等を用いた垂直探傷法が
行なわれていたからである。
[0004] This is an ultrasonic flaw detection test of austenitic stainless steel used as a cladding material for clad steel, which is described in an ultrasonic flaw detection test of various products and welded structures issued by the Japan Non-Destructive Inspection Association (1989). In order to reduce the effects of forest-like echo noise and ultrasonic sound velocity anisotropy due to reflection from the columnar crystal structure, flaw detection using a longitudinal wave detector or a broadband type flaw detector is considered to be suitable. Yes,
This is because the vertical flaw detection method using a longitudinal wave flaw detector or the like has been performed based on the idea that the same applies to the measurement of the thickness of the clad steel clad material.

【0005】図6は、従来の縦波垂直探傷法による二分
割型縦波垂直探触子を使用したクラッド鋼合わせ材の厚
さ測定装置を示すブロック図である。
FIG. 6 is a block diagram showing a conventional clad steel laminated material thickness measuring apparatus using a two-piece longitudinal wave vertical probe by a longitudinal wave vertical flaw detection method.

【0006】母材10に被覆した合わせ材9の探傷面1
1に、くさび4上に配置した送信用振動子2及び受信用
振動子3を備えて構成した探触子1を配置し、それぞれ
の振動子2,3に超音波の送受信制御を行なう探傷器2
2を接続している。探触子1は、接触媒質供給装置28
から探傷面11に超音波の接触媒質を供給しながら、ス
キャナコントローラ24によって制御されるスキャナ2
3により走査を行ない、探傷器22からの超音波データ
とスキャナ23からの位置信号データをデータ収録処理
装置25で収録し、厚さ測定データを求めるようにして
いる。データ収録処理装置25による結果は、モニタ2
6に表示すると共にプリンタ27で印字出力するように
している。ここで、振動子2,3を配置したくさび4の
表面角度は、探傷面11で縦波が横波にモード変換され
にくい小さな角度に設定されている。
The flaw detection surface 1 of the laminated material 9 coated on the base material 10
1, a probe 1 having a transmitting transducer 2 and a receiving transducer 3 disposed on a wedge 4 is disposed, and a flaw detector for controlling transmission and reception of ultrasonic waves to the respective transducers 2 and 3 2
2 are connected. The probe 1 includes a couplant supply device 28
The scanner 2 controlled by the scanner controller 24 while supplying ultrasonic couplant to the flaw detection surface 11 from the
3, scanning is performed, and ultrasonic data from the flaw detector 22 and position signal data from the scanner 23 are recorded by the data recording processing device 25 to obtain thickness measurement data. The result of the data recording processor 25 is displayed on the monitor 2
6 and printed out by the printer 27. Here, the surface angle of the wedge 4 on which the vibrators 2 and 3 are arranged is set to a small angle at which the longitudinal wave is hardly mode-converted into the transverse wave on the flaw detection surface 11.

【0007】今、探触子1内の送信用振動子2からは、
くさび4を経由して探傷器22からの励振信号29によ
り測定対象であるクラッド鋼合わせ材9に縦波を入射す
ると、この縦波は、母材10と合わせ材9との境界面1
2等で反射され、くさび4を経由して受信用振動子3で
受信され、探傷器22に受信信号30を出力する。この
とき、上述したように振動子2,3を配置したくさび4
の表面角度は、探傷面11で縦波が横波にモード変換さ
れにくい小さな角度に設定されているため、効率良く縦
波を合わせ材9に入射することができる。探傷器22で
は、受信信号30をもとに増幅及び検波等の処理が行わ
れ、出力33としてデータ収録処理装置25に出力す
る。このとき探触子1は、スキャナコントローラ24か
らの制御信号31により制御するスキャナ23により探
傷面11を前後左右方向に必要な測定範囲を走査するこ
とができる。さらに、スキャナ23に内蔵されたエンコ
ーダ等の位置検出器からの位置信号32を探傷器22か
らの出力信号33と共にデータ収録処理装置25に入力
して収録処理し、測定範囲の合わせ材9の厚さ分布を測
定結果としてモニタ26やプリンタ27等に出力してい
た。
Now, the transmitting transducer 2 in the probe 1
When a longitudinal wave is incident on the clad steel clad material 9 to be measured by the excitation signal 29 from the flaw detector 22 via the wedge 4, the longitudinal wave is generated at the boundary surface 1 between the base material 10 and the clad material 9.
The reflected light is received by the receiving vibrator 3 via the wedge 4, and a received signal 30 is output to the flaw detector 22. At this time, the wedge 4 on which the vibrators 2 and 3 are arranged as described above
Is set to a small angle at which the longitudinal wave is less likely to be mode-converted into the transverse wave on the flaw detection surface 11, so that the longitudinal wave can be efficiently incident on the bonding material 9. In the flaw detector 22, processes such as amplification and detection are performed based on the received signal 30, and output to the data recording processing device 25 as an output 33. At this time, the probe 1 can scan the flaw detection surface 11 in the required measurement range in the front, rear, left, and right directions by the scanner 23 controlled by the control signal 31 from the scanner controller 24. Further, a position signal 32 from a position detector such as an encoder built in the scanner 23 is input to the data recording processing device 25 together with an output signal 33 from the flaw detector 22 to perform a recording process, and the thickness of the material 9 in the measurement range is measured. The distribution is output as a measurement result to the monitor 26, the printer 27, or the like.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た従来のクラッド鋼合わせ材の厚さ測定装置は、合わせ
材9が単純な一層構造であれば容易に合わせ材9の厚さ
を測定することができるが、合わせ材9が多層構造とな
っている場合、多層盛り合わせ材の層間からの反射エコ
ーの影響が障害となり、厚さを精度良く測定することが
できない。
However, the above-mentioned conventional clad steel laminated material thickness measuring device can easily measure the thickness of the laminated material 9 if the laminated material 9 has a simple single-layer structure. However, when the composite material 9 has a multilayer structure, the influence of the reflected echo from between the layers of the multilayer composite material becomes an obstacle, and the thickness cannot be measured accurately.

【0009】つまり、従来の二分割型縦波垂直探触子を
用いたクラッド鋼合わせ材の厚さ測定装置のAスコープ
表示波形を図11に示すように、境界面12からの反射
エコー17の前に層間からの反射エコー18が現れる。
自動探傷による測定で合わせ材9の厚さを測定するに
は、反射超音波信号を評価するために探傷ゲート19を
図示のように設定し、この探傷ゲート19内に存在する
最大反射強度を有する反射エコーの伝播時間から合わせ
材9の厚さを求めている。従って、図7(a)に示すよ
うに母材10と合わせ材9の境界面12からの反射エコ
ー17が層間からの反射エコー18よりも反射強度が大
きければ正しい厚さ測定値となるが、図7(b)に示す
ように層間からの反射エコー18の反射強度の方が大き
ければ誤った厚さ測定値を示すことになる。特に、多層
盛りの合わせ材9は、組織が均一でないため、超音波の
伝播特性も不均一であり、部分によって母材10と合わ
せ材9の境界面からの反射エコー17の反射強度が大き
く変動し、層間からの反射エコー18の方が、母材10
と合わせ材9の境界面からの反射エコー17よりも大き
くなることが多々あり、その部分では誤った厚さ測定結
果を示すことになってしまう。
That is, as shown in FIG. 11, the A-scope display waveform of the clad steel laminated material thickness measuring apparatus using the conventional two-piece vertical wave vertical probe is shown by the reflection echo 17 from the boundary surface 12 as shown in FIG. A reflected echo 18 from between layers appears before.
In order to measure the thickness of the bonding material 9 by the automatic flaw detection, the flaw detection gate 19 is set as shown in the figure to evaluate the reflected ultrasonic signal, and the flaw detection gate 19 has the maximum reflection intensity existing in the flaw detection gate 19. The thickness of the bonding material 9 is determined from the propagation time of the reflected echo. Therefore, as shown in FIG. 7A, if the reflection intensity of the reflection echo 17 from the boundary surface 12 between the base material 10 and the composite material 9 is larger than the reflection echo 18 from the interlayer, a correct thickness measurement value is obtained. As shown in FIG. 7B, if the reflection intensity of the reflection echo 18 from between the layers is higher, an erroneous thickness measurement value is indicated. In particular, since the structure of the multi-layered composite material 9 is not uniform, the propagation characteristics of ultrasonic waves are also non-uniform, and the reflection intensity of the reflected echo 17 from the boundary surface between the base material 10 and the composite material 9 varies greatly depending on the portion. The reflected echo 18 from between the layers is
In many cases, the reflection echo 17 from the boundary surface of the bonding material 9 is larger than the reflection echo 17, and an erroneous thickness measurement result is shown in that portion.

【0010】本発明の目的は、多層盛りの合わせ材の層
間からの反射エコーによる影響を低減し、合わせ材の厚
さを精度良く測定できるようにしたクラッド鋼合わせ材
厚さ測定用探触子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the influence of reflection echoes between layers of a multi-layered laminated material and to accurately measure the thickness of the laminated material. Is to provide.

【0011】[0011]

【課題を解決するための手段】本発明は前記目的を達成
するために、母材に被覆した合わせ材の探傷面上にくさ
びを配置し、このくさび上に送信用振動子及び受信用振
動子を配置し、前記送信用振動子からの超音波を前記受
信用振動子によって受信して前記合わせ材の厚さを測定
するクラッド鋼合せ材厚さ測定用探触子において、前記
送信用振動子と前記受信用振動子を前記探傷面で横波に
効率良く変換する角度を有して配置すると共に、前記送
信用振動子と前記受信用振動子間の探触子間距離を、幾
何学的に求めた間隔よりも小さな距離としたことを特徴
とする。
According to the present invention, in order to achieve the above object, a wedge is arranged on a flaw detection surface of a laminated material coated on a base material, and a transmitting oscillator and a receiving oscillator are placed on the wedge. In the clad steel composite material thickness measuring probe for measuring the thickness of the composite material by receiving the ultrasonic waves from the transmitting transducer by the receiving transducer, the transmitting transducer And the receiving transducer are arranged at an angle for efficiently converting to a shear wave on the flaw detection surface, and the inter-probe distance between the transmitting transducer and the receiving transducer is geometrically changed. The distance is smaller than the calculated interval.

【0012】本発明によるクラッド鋼合わせ材厚さ測定
用探触子は、送信用振動子と受信用振動子を探傷面で横
波に効率良く変換する角度を有して配置すると共に、送
信用振動子と受信用振動子間の探触子間距離を、幾何学
的に求めた間隔より小さな距離としたため、多層盛り合
わせ材の層間からの反射エコーの影響を低減して良好な
S/N比で探傷を行なうことができるので、クラッド鋼
合わせ材の厚さを精度良く自動測定することできる。
A probe for measuring the thickness of a clad steel laminated material according to the present invention has a transmitting oscillator and a receiving oscillator arranged at an angle for efficiently converting to a shear wave on a flaw detection surface, and a transmitting oscillator. The distance between the transducers between the transducer and the receiving transducer is made smaller than the geometrically determined distance, so that the effect of the reflected echo from the layers of the multi-layered assortment is reduced and the S / N ratio is improved. Since flaw detection can be performed, the thickness of the clad steel laminated material can be automatically measured with high accuracy.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明によるクラッド鋼合わせ材
厚さ測定用探触子を示す側面図である。
FIG. 1 is a side view showing a probe for measuring the thickness of a clad steel laminated material according to the present invention.

【0015】母材10には測定対象の合わせ材9が施さ
れ、この合わせ材9の探傷面11に探触子1が配置され
ている。この探触子1は、合わせ材9の探傷面11に配
置したくさび4を介して送信用振動子2及び受信用振動
子3がそれぞれ配置され、両振動子2,3間には直接の
信号伝播を防止するための遮音板5が設けられている。
送信用振動子2と受信用振動子3は、詳細を後述するよ
うに探傷面11で横波に効率良く変換する角度iを有し
てくさび4上に固定されている。振動を抑制するダンパ
ー材6を介して、後述する探傷器からの励振信号を入力
するように送信用振動子2に接続した送信コネクタ7
と、探傷器に受信信号を出力するように受信用振動子3
に接続した受信コネクタ8が接続されている。
A base material 10 is provided with a bonding material 9 to be measured, and the probe 1 is arranged on a flaw detection surface 11 of the bonding material 9. In this probe 1, a transmitting vibrator 2 and a receiving vibrator 3 are disposed via a wedge 4 disposed on a flaw detection surface 11 of a bonding material 9, and a direct signal is applied between the two vibrators 2, 3. A sound insulating plate 5 for preventing propagation is provided.
The transmitting vibrator 2 and the receiving vibrator 3 are fixed on the wedge 4 at an angle i at which the flaw detection surface 11 efficiently converts them into transverse waves, as will be described in detail later. A transmitting connector 7 connected to the transmitting vibrator 2 via a damper member 6 for suppressing vibration so as to input an excitation signal from a flaw detector described later.
And a receiving vibrator 3 for outputting a received signal to the flaw detector.
Is connected to the receiving connector 8.

【0016】詳細な図示を省略した探傷器側は、例えば
前述した図6と同様に構成されており、合わせ材9の探
傷面11に探触子1を接触させた状態で、送信用振動子
2から超音波を送信し、母材10と合わせ村9の境界面
12からの反射エコーを受信用振動子3で受信するよう
にし、探傷器側での演算処理によって合わせ材9の厚さ
を算出するように構成している。合わせ材9の厚さは、
受信信号から超音波が探傷面11に入射してから境界面
12で反射されて探傷面11に戻ってくるまでの伝播時
間を測定することにより求めることができる。
The flaw detector side, which is not shown in detail, has the same configuration as that of FIG. 6 described above, for example, and the transmitting transducer is brought into contact with the flaw detection surface 11 of the mating member 9 while the probe 1 is in contact therewith. The ultrasonic wave is transmitted from the base material 10 and the reflected echo from the boundary surface 12 of the combined village 9 with the base material 10 is received by the receiving vibrator 3. The thickness of the combined material 9 is reduced by arithmetic processing on the flaw detector. It is configured to calculate. The thickness of the composite material 9 is
From the received signal, it can be obtained by measuring the propagation time from when the ultrasonic wave enters the flaw detection surface 11 until it is reflected by the boundary surface 12 and returns to the flaw detection surface 11.

【0017】図2は、探触子1からの受信信号をもとに
信号処理した探傷器の表示波形、つまりAスコープ波形
を示している。
FIG. 2 shows a display waveform of the flaw detector, that is, an A-scope waveform, which has been subjected to signal processing based on a signal received from the probe 1.

【0018】送信エコー15に対して、合わせ材9の探
傷面11からの表面エコー16、境界面12からの反射
エコー17、合わせ材9の層間からの反射エコー18が
それぞれ示されている。伝播時間の測定は、探傷器のA
スコープ上に探傷ゲート19を設定し、この探傷ゲート
19内に存在する境界面12からの反射エコー17の伝
播時間をカウンタ等により測定することにより行われ
る。合わせ材9の厚さPは、境界面12からの反射エコ
ー17の伝播時間20をもとに次の式(1)により求め
ることができる。
For the transmission echo 15, a surface echo 16 from the flaw detection surface 11 of the composite material 9, a reflected echo 17 from the boundary surface 12, and a reflected echo 18 between layers of the composite material 9 are shown. The measurement of the propagation time is based on the flaw detector A
The inspection is performed by setting a flaw detection gate 19 on the scope and measuring the propagation time of the reflected echo 17 from the boundary surface 12 existing in the flaw detection gate 19 using a counter or the like. The thickness P of the composite material 9 can be obtained by the following equation (1) based on the propagation time 20 of the reflected echo 17 from the boundary surface 12.

【0019】 D=(Tb−Tw)×Cs/2 ・・・(1) ここで、Tbは境界面12からの反射エコー17の伝播
時間20、Twはくさび4内の伝播時間21、Csは合
わせ材9の横波音速を表している。
D = (Tb−Tw) × Cs / 2 (1) where Tb is the propagation time 20 of the reflected echo 17 from the boundary surface 12, Tw is the propagation time 21 in the wedge 4, and Cs is This represents the shear wave velocity of the composite material 9.

【0020】次に、送信用振動子2及び受信用振動子3
の具体的な構成について要部拡大図である図3を用いて
説明する。
Next, the transmitting oscillator 2 and the receiving oscillator 3
Will be described with reference to FIG. 3 which is an enlarged view of a main part.

【0021】送信用振動子2及び受信用振動子3は、送
受信波が探傷面11で横波に効率良く変換する角度iで
くさび4上に固定されるが、後述する理由により合わせ
材9に入射した横波は垂直方向に曲げられるため、送信
用振動子2と受信用振動子3は、式(2)により幾何学
的に求めた間隔L2より短い振動子間距離Lだけ離れた
位置に配置している。
The transmitting vibrator 2 and the receiving vibrator 3 are fixed on the wedge 4 at an angle i at which the transmitted / received wave is efficiently converted into a transverse wave on the flaw detection surface 11. Since the transverse wave is bent in the vertical direction, the transmitting oscillator 2 and the receiving oscillator 3 are arranged at positions separated by an inter-oscillator distance L shorter than the interval L2 geometrically obtained by the equation (2). ing.

【0022】 L<L2=2×(L1×tani+d×tanθ) ・・・(2) ここで、L1は振動子2,3と探傷面11との距離、d
は合わせ材9の厚さ、θは合わせ材9中の屈折角を表し
ている。
L <L2 = 2 × (L1 × tani + d × tanθ) (2) where L1 is the distance between the vibrators 2 and 3 and the flaw detection surface 11, and d
Represents the thickness of the composite material 9 and θ represents the refraction angle in the composite material 9.

【0023】送信用振動子2から送信された超音波は、
伝播方向と同じ方向に振動する縦波であるが、くさび4
内を伝播した後、合わせ材9に入射する際、その角度i
によって探傷面11で伝播方向と垂直な方向に振動する
横波に変換される。異なる材料の境界における超音波の
モード変換、つまり縦波から横波への変換現象について
は、例えば、日本非破壊検査協会発行の超音波探傷試験
2(1989)に記載されており、くさび4の材質をア
クリルとし、また被検査体を鋼とした場合、角度iを約
27〜57度の範囲に設定することにより効率良く横波
に変換される。このときの合わせ材9に入射する屈折角
θは、次に示す式(3)で表すことができる。
The ultrasonic wave transmitted from the transmitting transducer 2 is
It is a longitudinal wave that oscillates in the same direction as the propagation direction.
After propagating through the inside, when entering the composite material 9, the angle i
Thereby, it is converted into a transverse wave oscillating on the flaw detection surface 11 in a direction perpendicular to the propagation direction. The mode conversion of ultrasonic waves at the boundary between different materials, that is, the phenomenon of conversion from longitudinal waves to shear waves, is described in, for example, Ultrasonic Testing 2 (1989) issued by the Japan Non-Destructive Testing Association. Is acrylic and the test object is steel, the angle i is set in the range of about 27 to 57 degrees, so that it can be efficiently converted into a transverse wave. At this time, the refraction angle θ incident on the bonding material 9 can be expressed by the following equation (3).

【0024】 θ=sin−1(Cs/Cw×sini) ・・・(3) ここで、Csは合わせ材の横波音速、Cwはくさび4の
縦波音速である。
Θ = sin −1 (Cs / Cw × sini) (3) where Cs is the transverse sound velocity of the composite material, and Cw is the longitudinal sound velocity of the wedge 4.

【0025】合わせ材9に屈折角θで入射された入射波
13は、柱状晶組織の成長方向に沿って曲げられる結
果、結局、探傷面11に垂直な方向に伝播する。従っ
て、入射された超音波は、合わせ材9内では見かけ上、
垂直探傷と同等の特性を持つことになる。この現象は、
柱状晶による横波の導波管的効果として前述した文献1
にも記載されている。この入射波13は母材10との境
界面12に達し反射されて反射波14となり、入射時と
対称な経路で合わせ材9を伝播して受信用波振動子3で
受信される。
The incident wave 13 incident on the bonding material 9 at a refraction angle θ is bent along the growth direction of the columnar crystal structure, and eventually propagates in a direction perpendicular to the flaw detection surface 11. Therefore, the incident ultrasonic wave appears apparently in the bonding material 9.
It has the same characteristics as vertical inspection. This phenomenon is
Document 1 mentioned above as a waveguide effect of transverse waves due to columnar crystals
It is also described in The incident wave 13 reaches the boundary surface 12 with the base material 10 and is reflected to become a reflected wave 14. The reflected wave 14 propagates through the matching member 9 along a path symmetrical to that at the time of incidence, and is received by the receiving wave oscillator 3.

【0026】文献1によれば、縦波超音波の減衰は柱状
晶の成長方向に対して45度方向に入射するときが最も
少なく、0度及び90度方向の時が良いとされている。
これに対して、横波は、柱状晶の成長方向と平行に伝播
するときに減衰が少ないとされている。このことから、
横波斜角探触子を用いてクラッド鋼合わせ材9の厚さの
測定を行なえば、反射波の強度の変動が小さく、かつ均
一な探傷感度での測定が期待できる。
According to Document 1, attenuation of longitudinal ultrasonic waves is the least when incident in the direction of 45 degrees with respect to the growth direction of the columnar crystal, and is good when the directions are 0 and 90 degrees.
On the other hand, it is said that the transverse wave is less attenuated when propagating in parallel to the growth direction of the columnar crystal. From this,
If the thickness of the clad steel laminated material 9 is measured using the shear wave oblique probe, it is expected that the fluctuation of the intensity of the reflected wave is small and the measurement is performed with uniform flaw detection sensitivity.

【0027】図4は、クラッド鋼合わせ材試験片を用い
て一対の振動子を相対向配置とし、横波斜角で超音波を
送受信したときの探触子間距離Lと検出波高値の関係を
実験的に求めた特性図である。
FIG. 4 shows the relationship between the inter-probe distance L and the detected peak value when a pair of transducers are arranged opposite to each other using a clad steel laminated material test piece and ultrasonic waves are transmitted and received at a shear wave oblique angle. FIG. 9 is a characteristic diagram obtained experimentally.

【0028】同図から分かるように探触子間距離Lは、
なるべく短くした方が検出性が良くなる。この結果は、
前述の柱状晶による横波の導波管的効果による超音波送
受信原理と一致する。従って、前述した図3の送信用振
動子2と受信用振動子3の間の探触子間距離Lは、幾何
学的に求めた間隔L2より小さく設定すると良い。実際
には、送信用振動子2及び受信用振動子3によって送受
信される超音波ビームの一部が送信用振動子2及び受信
用振動子3間に配置した遮音板5により遮られない接近
限界よりも大きくしなければならないので、ここでの探
触子間距離Lは10mm〜25mmとなる。
As can be seen from the figure, the distance L between the probes is
The shorter the distance, the better the detectability. The result is
This is consistent with the principle of ultrasonic transmission and reception due to the waveguide effect of the transverse wave by the columnar crystal. Therefore, the inter-probe distance L between the transmitting transducer 2 and the receiving transducer 3 in FIG. 3 described above is preferably set to be smaller than the geometrically obtained distance L2. In practice, a part of the ultrasonic beam transmitted and received by the transmitting transducer 2 and the receiving transducer 3 is not restricted by the sound insulating plate 5 arranged between the transmitting transducer 2 and the receiving transducer 3 so that the approach limit is not reached. In this case, the distance L between the probes is 10 mm to 25 mm.

【0029】図5は、クラッド鋼合わせ材厚さ測定用探
触子として従来の二振動子型縦波垂直探触子を用いた場
合と、図1に示した二振動子型横波斜角探触子を用いた
場合の、境界面エコーと層間からの反射エコーの強度比
を比較測定した特性図である。
FIG. 5 shows the case where a conventional dual element vertical wave vertical probe is used as a probe for measuring the thickness of clad steel clad material, and the dual element type shear wave oblique angle probe shown in FIG. FIG. 9 is a characteristic diagram obtained by comparing and measuring the intensity ratio between a boundary echo and a reflected echo from between layers when a stylus is used.

【0030】同図は、境界面エコーが正常に検出される
部分でのエコー強度比較を示しており、従来の二振動子
型縦波垂直探触子よりも、図1に示した二振動子型横波
斜角探触子の方が境界面エコーのレベル低下に対する余
裕が大きいことがわかる。従って、二振動子型横波斜角
探触子を用いることによって、図6(b)に示すように
層間からの反射エコー18の方が、境界面12からの反
射エコー17よりも反射強度が大きくなる個所を低減す
ることができ、母材10と合わせ材9の境界面12から
の反射エコー17を検出して、正確に合わせ材の厚さ測
定を行なうことができる。
FIG. 3 shows a comparison of the echo intensity at a portion where the boundary echo is normally detected, and is different from the conventional two-element vertical-wave vertical probe in the two-element transducer shown in FIG. It can be seen that the shear wave oblique angle probe has a larger margin for lowering the level of the boundary surface echo. Accordingly, by using the two-transducer type shear wave oblique probe, as shown in FIG. 6B, the reflected echo 18 between the layers has a higher reflection intensity than the reflected echo 17 from the boundary surface 12. It is possible to reduce the number of places, and to detect the reflection echo 17 from the boundary surface 12 between the base material 10 and the composite material 9 to accurately measure the thickness of the composite material.

【0031】[0031]

【発明の効果】以上説明したように本発明によるクラッ
ド鋼合わせ材厚さ測定用探触子は、送信用振動子と受信
用振動子を探傷面で横波に効率良く変換する角度iを有
して配置すると共に、送信用振動子と受信用振動子間の
探触子間距離Lは、幾何学的に求めた間隔L2より小さ
な距離としたため、多層盛り合わせ材の層間からの反射
エコーの影響を低減して良好なS/N比で探傷を行なう
ことができるので、クラッド鋼合わせ材の厚さを精度良
く自動測定することできる。
As described above, the probe for measuring the thickness of clad steel clad material according to the present invention has an angle i at which the transmitting oscillator and the receiving oscillator are efficiently converted into a transverse wave on the flaw detection surface. And the distance L between the transducers between the transmitting transducer and the receiving transducer is smaller than the geometrically determined distance L2. Since the flaw detection can be performed with a good S / N ratio by reducing the thickness, it is possible to automatically and accurately measure the thickness of the clad steel composite material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態によるクラッド鋼合わせ
材厚さ測定用探触子を示す正面図である。
FIG. 1 is a front view showing a probe for measuring the thickness of a clad steel composite material according to an embodiment of the present invention.

【図2】図1に示したクラッド鋼合わせ材厚さ測定用探
触子を用いて得た波形図である。
FIG. 2 is a waveform diagram obtained by using the probe for measuring a thickness of a clad steel composite material shown in FIG. 1;

【図3】図1に示したクラッド鋼合わせ材厚さ測定用探
触子の原理を示す要部拡大図である
FIG. 3 is an enlarged view of a main part showing the principle of the probe for measuring the thickness of a clad steel composite material shown in FIG. 1;

【図4】図1に示したクラッド鋼合わせ材厚さ測定用探
触子による送受信用探触子間距離と検出波高値の関係を
示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a distance between a transmitting and receiving probe and a detected peak value by the probe for measuring a thickness of a clad steel composite material shown in FIG. 1;

【図5】境界面エコーと層間からの反射エコーの強度比
を比較して示す特性図である。
FIG. 5 is a characteristic diagram showing a comparison between intensity ratios of boundary echoes and reflection echoes between layers.

【図6】従来のクラッド鋼合わせ材厚さ測定用探触子を
用いたクラッド鋼合わせ材厚さ測定装置のブロック構成
図である。
FIG. 6 is a block diagram of a conventional clad steel laminated material thickness measuring apparatus using a clad steel laminated material thickness measuring probe.

【図7】図6に示したクラッド鋼合わせ材厚さ測定用探
触子を用いて得た波形図である。
FIG. 7 is a waveform chart obtained by using the probe for measuring a thickness of a clad steel composite material shown in FIG. 6;

【符号の説明】[Explanation of symbols]

1 探触子 2 送信用振動子 3 受信用振動子 4 くさび 5 遮音板 9 合わせ材 10 母材 11 探傷面 12 境界面 L 探触子間距離 i 角度 DESCRIPTION OF SYMBOLS 1 Probe 2 Transmitting transducer 3 Receiving transducer 4 Wedge 5 Sound insulation board 9 Laminated material 10 Base material 11 Flaw detection surface 12 Boundary surface L Distance between probes i Angle

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月23日(2000.10.
23)
[Submission date] October 23, 2000 (2000.10.
23)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】今、探触子1内の送信用振動子2から、
さび4を経由して探傷器22からの励振信号29により
測定対象であるクラッド鋼合わせ材9に縦波を入射する
と、この縦波は、母材10と合わせ材9との境界面12
等で反射され、くさび4を経由して受信用振動子3で受
信され、探傷器22に受信信号30を出力する。このと
き、上述したように振動子2,3を配置したくさび4の
表面角度は、探傷面11で縦波が横波にモード変換され
にくい小さな角度に設定されているため、効率良く縦波
を合わせ材9に入射することができる。探傷器22で
は、受信信号30をもとに増幅及び検波等の処理が行わ
れ、出力33としてデータ収録処理装置25に出力す
る。このとき探触子1は、スキャナコントローラ24か
らの制御信号31により制御するスキャナ23により探
傷面11を前後左右方向に必要な測定範囲を走査するこ
とができる。さらに、スキャナ23に内蔵されたエンコ
ーダ等の位置検出器からの位置信号32を探傷器22か
らの出力信号33と共にデータ収録処理装置25に入力
して収録処理し、測定範囲の合わせ材9の厚さ分布を測
定結果としてモニタ26やプリンタ27等に出力してい
た。
[0007] Now, a transmission transducer 2 or we in the probe 1, the incident longitudinal waves in clad steel alignment member 9 is measured by the excitation signal 29 from the wound 22 probe via a wedge 4, This longitudinal wave is generated at the interface 12 between the base material 10 and the composite material 9.
And is received by the receiving transducer 3 via the wedge 4, and outputs a reception signal 30 to the flaw detector 22. At this time, as described above, the surface angle of the wedge 4 on which the oscillators 2 and 3 are arranged is set to a small angle at which the longitudinal wave is hardly mode-converted into the transverse wave on the flaw detection surface 11, so that the longitudinal wave can be efficiently combined. It can be incident on the material 9. In the flaw detector 22, processes such as amplification and detection are performed based on the received signal 30, and output to the data recording processing device 25 as an output 33. At this time, the probe 1 can scan the flaw detection surface 11 in the required measurement range in the front, rear, left, and right directions by the scanner 23 controlled by the control signal 31 from the scanner controller 24. Further, a position signal 32 from a position detector such as an encoder built in the scanner 23 is input to the data recording processing device 25 together with an output signal 33 from the flaw detector 22 to perform a recording process, and the thickness of the material 9 in the measurement range is measured. The distribution is output as a measurement result to the monitor 26, the printer 27, or the like.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】つまり、従来の二分割型縦波垂直探触子を
用いたクラッド鋼合わせ材の厚さ測定装置のAスコープ
表示波形は図7に示すように、境界面12からの反射エ
コー17の前に層間からの反射エコー18が現れる。自
動探傷による測定で合わせ材9の厚さを測定するには、
反射超音波信号を評価するために探傷ゲート19を図示
のように設定し、この探傷ゲート19内に存在する最大
反射強度を有する反射エコーの伝播時間から合わせ材9
の厚さを求めている。従って、図7(a)に示すように
母材10と合わせ材9の境界面12からの反射エコー1
7が層間からの反射エコー18よりも反射強度が大きけ
れば正しい厚さ測定値となるが、図7(b)に示すよう
に層間からの反射エコー18の反射強度の方が大きけれ
ば誤った厚さ測定値を示すことになる。特に、多層盛り
の合わせ材9は、組織が均一でないため、超音波の伝播
特性も不均一であり、部分によって母材10と合わせ材
9の境界面からの反射エコー17の反射強度が大きく変
動し、層間からの反射エコー18の方が、母材10と合
わせ材9の境界面からの反射エコー17よりも大きくな
ることが多々あり、その部分では誤った厚さ測定結果を
示すことになってしまう。
That is, as shown in FIG. 7 , an A-scope display waveform of a clad steel laminated material thickness measuring apparatus using a conventional two-piece vertical wave vertical probe has a reflection echo 17 from a boundary surface 12 as shown in FIG. A reflected echo 18 from between layers appears before. In order to measure the thickness of the laminated material 9 by measurement by automatic flaw detection,
The flaw detection gate 19 is set as shown to evaluate the reflected ultrasonic signal, and the bonding material 9 is determined from the propagation time of the reflected echo having the maximum reflection intensity existing in the flaw detection gate 19.
Seeking thickness. Therefore, as shown in FIG. 7A, the reflected echo 1 from the boundary surface 12 between the base material 10 and the composite material 9
7 is a correct thickness measurement value if the reflection intensity is higher than the reflection echo 18 from the interlayer, but if the reflection intensity of the reflection echo 18 from the interlayer is higher as shown in FIG. Will show the measured values. In particular, since the structure of the multi-layered composite material 9 is not uniform, the propagation characteristics of ultrasonic waves are also non-uniform, and the reflection intensity of the reflected echo 17 from the boundary surface between the base material 10 and the composite material 9 varies greatly depending on the portion. However, the reflected echo 18 between the layers is often larger than the reflected echo 17 from the boundary surface between the base material 10 and the composite material 9, and this portion shows an erroneous thickness measurement result. Would.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】合わせ材9に屈折角θで入射された入射波
13は、柱状晶組織の成長方向に沿って曲げられる結
果、結局、探傷面11に垂直な方向に伝播する。従っ
て、入射された超音波は、合わせ材9内では見かけ上、
垂直探傷と同等の特性を持つことになる。この現象は、
柱状晶による横波の導波管的効果として前述した文献1
にも記載されている。この入射波13は母材10との境
界面12に達し反射されて反射波14となり、入射時と
対称な経路で合わせ材9を伝播して受信用振動子3で受
信される。
The incident wave 13 incident on the bonding material 9 at a refraction angle θ is bent along the growth direction of the columnar crystal structure, and eventually propagates in a direction perpendicular to the flaw detection surface 11. Therefore, the incident ultrasonic wave appears apparently in the bonding material 9.
It has the same characteristics as vertical inspection. This phenomenon is
Document 1 mentioned above as a waveguide effect of transverse waves due to columnar crystals
It is also described in The incident wave 13 is received by the interface 12 to reach reflected in next reflected waves 14, Doko 3 oscillation for receiving propagated combined material 9 by incident upon symmetrical path with the base material 10.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】同図は、境界面エコーが正常に検出される
部分でのエコー強度比較を示しており、従来の二振動子
型縦波垂直探触子よりも、図1に示した二振動子型横波
斜角探触子の方が境界面エコーのレベル低下に対する余
裕が大きいことがわかる。従って、二振動子型横波斜角
探触子を用いることによって、図(b)に示すように
層間からの反射エコー18の方が、境界面12からの反
射エコー17よりも反射強度が大きくなる個所を低減す
ることができ、母材10と合わせ材9の境界面12から
の反射エコー17を検出して、正確に合わせ材の厚さ測
定を行なうことができる。
FIG. 3 shows a comparison of the echo intensity at a portion where the boundary echo is normally detected, and is different from the conventional two-element vertical-wave vertical probe in the two-element transducer shown in FIG. It can be seen that the shear wave oblique angle probe has a larger margin for lowering the level of the boundary surface echo. Thus, by using a dual element type shear angle probe, towards the return echo 18 from the interlayer, as shown in FIG. 7 (b), larger reflection intensity than the reflective echo 17 from the interface 12 It is possible to reduce the number of places, and to detect the reflection echo 17 from the boundary surface 12 between the base material 10 and the composite material 9 to accurately measure the thickness of the composite material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 政之 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 馬渕 靖宏 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 山崎 三朗 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 Fターム(参考) 2F068 AA28 BB01 BB14 BB23 CC15 DD10 FF12 FF15 FF16 FF25 HH02 KK14 LL24 QQ01 2G047 AA07 AB05 AB07 BB02 BC18 CB02 CB06 DA01 EA10 GB03 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Kato 3-2-1 Sachicho, Hitachi-shi, Ibaraki Hitachi Engineering Co., Ltd. (72) Inventor Yasuhiro Mabuchi 3-1-1 Sachicho, Hitachi-shi, Ibaraki 1 Nuclear Power Division, Hitachi, Ltd. (72) Inventor Saburo Yamazaki 3-2-1 Kochicho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Engineering Co., Ltd. (reference) 2F068 AA28 BB01 BB14 BB23 CC15 DD10 FF12 FF15 FF16 FF25 HH02 KK14 LL24 QQ01 2G047 AA07 AB05 AB07 BB02 BC18 CB02 CB06 DA01 EA10 GB03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 母材に被覆した合わせ材の探傷面上にく
さびを配置し、このくさび上に送信用振動子及び受信用
振動子を配置し、前記送信用振動子からの超音波を前記
受信用振動子によって受信して前記合わせ材の厚さを測
定するクラッド鋼合せ材厚さ測定用探触子において、 前記送信用振動子と前記受信用振動子を前記探傷面で横
波に効率良く変換する角度に設定して配置すると共に、
前記送信用振動子と前記受信用振動子間の探触子間距離
を、幾何学的に求めた間隔よりも小さな距離としたこと
を特徴とするクラッド鋼合わせ材厚さ測定用探触子。
1. A wedge is arranged on a flaw detection surface of a laminated material coated on a base material, a transmitting oscillator and a receiving oscillator are arranged on the wedge, and ultrasonic waves from the transmitting oscillator are transmitted by the transmitting oscillator. In a clad steel bonding material thickness measuring probe that receives by a receiving vibrator and measures the thickness of the bonding material, the transmitting vibrator and the receiving vibrator are efficiently subjected to a transverse wave on the flaw detection surface. While setting and arranging at the angle to be converted,
A probe for measuring the thickness of a clad steel laminated material, wherein a distance between the transducers for transmission and the transducer for reception is smaller than a geometrically obtained interval.
【請求項2】 前記送信用振動子と前記受信用振動子間
に遮音板を設け、前記送信用振動子と前記受信用振動子
間の探触子間距離は、前記遮音板によって超音波が遮ら
れない接近限界より大きく、かつ幾何学的に求めた間隔
よりも小さな距離としたことを特徴とする請求項1記載
のクラッド鋼合わせ材厚さ測定用探触子。
2. A sound insulating plate is provided between the transmitting vibrator and the receiving vibrator, and a distance between probes between the transmitting vibrator and the receiving vibrator is determined by the sound insulating plate. 2. The probe according to claim 1, wherein the distance is larger than an unobstructed approach limit and smaller than a geometrically obtained interval.
JP2000261569A 2000-08-30 2000-08-30 Probe for measurement thickness of clad steel ply material Pending JP2002071332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261569A JP2002071332A (en) 2000-08-30 2000-08-30 Probe for measurement thickness of clad steel ply material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261569A JP2002071332A (en) 2000-08-30 2000-08-30 Probe for measurement thickness of clad steel ply material

Publications (1)

Publication Number Publication Date
JP2002071332A true JP2002071332A (en) 2002-03-08

Family

ID=18749386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261569A Pending JP2002071332A (en) 2000-08-30 2000-08-30 Probe for measurement thickness of clad steel ply material

Country Status (1)

Country Link
JP (1) JP2002071332A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126068A (en) * 2004-10-29 2006-05-18 Kawasaki Heavy Ind Ltd Method and device for inspecting laser welded joint
CN105865380A (en) * 2016-03-30 2016-08-17 宁波艾克威特智能科技有限公司 Ultrasonic coating thickness measurement device and use method thereof
JP2017219354A (en) * 2016-06-03 2017-12-14 日立Geニュークリア・エナジー株式会社 Multi-vibrator vertical probe
JP2018204971A (en) * 2017-05-30 2018-12-27 株式会社Ihiエアロスペース Liquid level shape measuring device of propellant tank and method
WO2019008956A1 (en) * 2017-07-07 2019-01-10 東京電力ホールディングス株式会社 Two-transducer probe, measurement detection system, and measurement detection method
CN110308204A (en) * 2019-07-05 2019-10-08 北京理工大学 A kind of three-decker thin intermediate physical characteristic measurement method of parameters

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126068A (en) * 2004-10-29 2006-05-18 Kawasaki Heavy Ind Ltd Method and device for inspecting laser welded joint
JP4614219B2 (en) * 2004-10-29 2011-01-19 川崎重工業株式会社 Inspection method and inspection apparatus for laser welded joint
CN105865380A (en) * 2016-03-30 2016-08-17 宁波艾克威特智能科技有限公司 Ultrasonic coating thickness measurement device and use method thereof
JP2017219354A (en) * 2016-06-03 2017-12-14 日立Geニュークリア・エナジー株式会社 Multi-vibrator vertical probe
JP2018204971A (en) * 2017-05-30 2018-12-27 株式会社Ihiエアロスペース Liquid level shape measuring device of propellant tank and method
WO2019008956A1 (en) * 2017-07-07 2019-01-10 東京電力ホールディングス株式会社 Two-transducer probe, measurement detection system, and measurement detection method
JP2019015634A (en) * 2017-07-07 2019-01-31 東京電力ホールディングス株式会社 Double crystal probe, measurement detection system, and method for measurement and detection
CN110308204A (en) * 2019-07-05 2019-10-08 北京理工大学 A kind of three-decker thin intermediate physical characteristic measurement method of parameters

Similar Documents

Publication Publication Date Title
Cawley et al. The use of Lamb waves for the long range inspection of large structures
US3512400A (en) Ultrasonic testing method
EP0878691A1 (en) A device for ultrasonic inspection of a multi-layer metal workpiece
EP0826148A1 (en) Ultrasonic inspection
WO1999034204A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
GB2153531A (en) Ultrasonic inspection of tube to tube plate welds
JP5311766B2 (en) Interface inspection apparatus and interface inspection method
JP2002062281A (en) Flaw depth measuring method and its device
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
JPH0210261A (en) Measurement of intercrystalline corrosion
JPWO2020039850A1 (en) Bonding interface evaluation method and bonding interface evaluation device
JP3241519B2 (en) Ultrasonic flaw detection method and apparatus
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP3023642B2 (en) Insertion depth measurement method for welded pipe joints
JPS6326344B2 (en)
JP2978708B2 (en) Composite angle beam probe
Jagadeeshwar et al. Wave visualization of ultrasonic guided waves in a metallic structure using fiber bragg gratings
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
JPS63186143A (en) Ultrasonic wave probe
JPS61210947A (en) Ultrasonic defectscope
JPS637846Y2 (en)
JPH08201352A (en) Ultrasonic probe for oblique flaw detection
SU989472A1 (en) Article welded joint ultrasonic checking method
JPH10267903A (en) Ultrasonic probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704