JPS637846Y2 - - Google Patents

Info

Publication number
JPS637846Y2
JPS637846Y2 JP1980097799U JP9779980U JPS637846Y2 JP S637846 Y2 JPS637846 Y2 JP S637846Y2 JP 1980097799 U JP1980097799 U JP 1980097799U JP 9779980 U JP9779980 U JP 9779980U JP S637846 Y2 JPS637846 Y2 JP S637846Y2
Authority
JP
Japan
Prior art keywords
receiving
transducer
transmitting
ultrasonic waves
overlay layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980097799U
Other languages
Japanese (ja)
Other versions
JPS5720662U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980097799U priority Critical patent/JPS637846Y2/ja
Publication of JPS5720662U publication Critical patent/JPS5720662U/ja
Application granted granted Critical
Publication of JPS637846Y2 publication Critical patent/JPS637846Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 従来の金属材料の厚さを測定するには超音波厚
さ計により行つているものである。
[Detailed Description of the Invention] Conventionally, the thickness of metal materials is measured using an ultrasonic thickness gauge.

この装置は材料内に入射した超音波が反射面で
反射され再び戻つてくるまでの時間からその厚さ
を測定しているものである。
This device measures the thickness of a material based on the time it takes for an ultrasonic wave that enters the material to be reflected by a reflecting surface and return again.

然しながら原子力、化工機等の圧力容器の内面
にその耐腐食性を高めるために施工されているオ
ーステナイト系ステンレス鋼(以下オーバレイと
称す)の厚さを測定するには上記の厚さ計を適用
することができないものであつた。その理由は (1) 通常の金属材料等に比較して反射されてくる
超音波が約1/50〜1/100と極めて弱い。
However, the above thickness gage is used to measure the thickness of austenitic stainless steel (hereinafter referred to as overlay) that is applied to the inner surface of pressure vessels for nuclear power, chemical engineering, etc. to increase its corrosion resistance. It was something I couldn't do. The reason for this is (1) The reflected ultrasonic waves are extremely weak, approximately 1/50 to 1/100 compared to ordinary metal materials.

(2) 送信する超音波を強くすると一探型探触子で
は送信波に不感帯を生じ、二分割型探触子では
送信側から受信側への渡り込み現象のため不感
帯が生ずる。
(2) When the transmitted ultrasonic waves are strengthened, a dead zone occurs in the transmitted waves with a single-probe probe, and a dead zone occurs with a two-section probe due to the cross-over phenomenon from the transmitting side to the receiving side.

(3) 高い周波数を使用しているためオーバレイ層
からの林状エコーが生ずる。
(3) Forest-like echoes from the overlay layer occur due to the use of high frequencies.

而してオーバレイ層は通常4.5〜5.5mm以上の厚
さが必要であるがオーバレイ施工後表面をグライ
ンダーにより研削を行うため、その厚さを確認す
るための測定方法が必要であつた。
The overlay layer usually needs to have a thickness of 4.5 to 5.5 mm or more, but since the surface is ground with a grinder after the overlay is applied, a measuring method is required to confirm the thickness.

本考案はかかる要望に応じ鋭意研究を行つた結
果、反射されてくる超音波が極めて弱い材料例え
ばオーバレイ層の厚さを超音波による測定を検討
した結果、オーバレイ層の厚さ測定に適した超音
波探触子を見出したものである。即ち本考案は受
信用振動子と送信用振動子とを相対的位置に取付
けた超音波探触子において、送信用振動子の幅寸
法を受信用振動子の幅寸法より大きくし、かつ送
信点と受信点の間隔を送信用振動子の幅寸法と同
等以上に広くしたことを特徴とするものである。
The present invention was developed as a result of intensive research in response to such requests, and as a result of considering the use of ultrasonic waves to measure the thickness of materials that are extremely susceptible to reflected ultrasonic waves, such as overlay layers. This is the discovery of a sonic probe. That is, the present invention provides an ultrasonic probe in which a receiving transducer and a transmitting transducer are mounted at relative positions, in which the width of the transmitting transducer is larger than that of the receiving transducer, and the transmitting point is The spacing between the transmitting transducer and the receiving point is wider than the width of the transmitting transducer.

本考案の具体例としてオーバレイ層に適用した
場合を示すと次の如くである。
A specific example of the present invention when applied to an overlay layer is as follows.

(1) 不感帯(近距離分解能)を除去するため二分
割型にする。
(1) Use a two-part type to eliminate the dead zone (short-range resolution).

(2) 送信パワを強くするために送信側に大きな振
動子を使用する。
(2) Use a large oscillator on the transmitting side to increase the transmitting power.

(3) 分解能を低下させないために受信側に小さな
振動子を使用する。
(3) Use a small oscillator on the receiving side to avoid reducing resolution.

(4) 送信側から受信側へ超音波が漏洩する所謂渡
り込み現象を防ぐため送信点と受信点(受信用
振動子及び送信用振動子からの超音波がオーバ
レイ層に達した位置)の間隔を受信用振動子と
送信用振動子との幅と同等以上とし、音軸の交
点をオーバレイ層の測定厚さの3〜4倍の深さ
位置とする。
(4) In order to prevent the so-called cross-over phenomenon in which ultrasonic waves leak from the transmitting side to the receiving side, the interval between the transmitting point and the receiving point (the position where the ultrasonic waves from the receiving transducer and the transmitting transducer reach the overlay layer) is equal to or larger than the width of the receiving transducer and the transmitting transducer, and the intersection of the acoustic axes is located at a depth 3 to 4 times the measured thickness of the overlay layer.

(5) 反射超音波の強度と林状エコー発生とのかね
合いから探傷周波数を約2MHzとする。
(5) The flaw detection frequency is set to approximately 2MHz due to the balance between the intensity of reflected ultrasonic waves and the occurrence of forest echoes.

本考案の1例を図面にもとづき詳細に説明す
る。
An example of the present invention will be explained in detail based on the drawings.

超音波探傷器で発生された電気パルスは送信側
接栓1を経て送信用振動子2に印加される。その
とき振動子の圧電効果により電気エネルギーは機
械的振動に変換され超音波を発生する。なお送信
用振動子2は大きいため強力な超音波を発生する
ことができる。
Electric pulses generated by the ultrasonic flaw detector are applied to the transmitting transducer 2 via the transmitting side plug 1. At this time, the electrical energy is converted into mechanical vibration by the piezoelectric effect of the vibrator, generating ultrasonic waves. Note that since the transmitting transducer 2 is large, it can generate powerful ultrasonic waves.

発生された超音波はアクリル樹脂にて構成され
ている送信用クサビ3を経て送信点4からオーバ
レイ層5に入射する。
The generated ultrasonic waves enter the overlay layer 5 from the transmission point 4 via the transmission wedge 3 made of acrylic resin.

この場合送信用クサビ3が小型化されているの
で超音波の減衰を小さくすることができる。又超
音波がオーバレイ層5へ入射する以外に直接受信
用振動子11に達することを防ぐために遮蔽板8
を設けているが、完全にこれを遮蔽することは極
めて困難であり、一部は漏洩する。即ち渡り込み
現象を生ずる。
In this case, since the transmitting wedge 3 is miniaturized, the attenuation of the ultrasonic waves can be reduced. In addition, a shielding plate 8 is provided to prevent ultrasonic waves from directly reaching the receiving transducer 11 in addition to being incident on the overlay layer 5.
However, it is extremely difficult to completely shield this, and some of it may leak. In other words, a cross-over phenomenon occurs.

この渡り込み現象を防止するため送信点4と受
信点9との間隔を送信振動子の幅Aより広くして
送信用及び受信用の振動子2及び11との音軸の
交点7の位置をオーバレイ層厚さの3〜4倍の深
さのところにする。
In order to prevent this crossover phenomenon, the distance between the transmitting point 4 and the receiving point 9 is made wider than the width A of the transmitting transducer, and the position of the intersection point 7 of the acoustic axis with the transmitting and receiving transducers 2 and 11 is adjusted. The depth should be 3 to 4 times the overlay layer thickness.

又超音波がベースメタル13とオーバレイ層5
との境界面に達したときオーバレイ層5とベース
メタル13の音響インピーダンスの違いから一部
は反射される。このとき周波数2MHzの超音波を
使用することによりオーバレイ層での減衰を小さ
くし林状エコーの発生を減少する。
In addition, ultrasonic waves are applied to the base metal 13 and overlay layer 5.
When reaching the interface between the overlay layer 5 and the base metal 13, a portion of the light is reflected due to the difference in acoustic impedance between the overlay layer 5 and the base metal 13. At this time, by using ultrasonic waves with a frequency of 2 MHz, attenuation in the overlay layer is reduced and the occurrence of forest echoes is reduced.

又境界面6にて反射された超音波は受信点9か
ら受信用クサビ10を経て受信用振動子11に達
する。このとき受信用クサビ10が小型化されて
いるので超音波の減衰を小さくすることができ
る。
Further, the ultrasonic waves reflected at the boundary surface 6 reach the receiving transducer 11 from the receiving point 9 via the receiving wedge 10 . At this time, since the receiving wedge 10 is miniaturized, the attenuation of the ultrasonic waves can be reduced.

ここで超音波は受信用振動子11で電気信号に
変換され、受信側接栓12を経て超音波探傷器に
入力される。
Here, the ultrasonic wave is converted into an electric signal by the receiving transducer 11, and is input to the ultrasonic flaw detector via the receiving plug 12.

而して超音波探傷器の較正された表示器(ブラ
ウン管)により送信点4から受信点9までに超音
波が伝播に要した時間からオーバレイ層5の厚さ
を測定することが出来るものである。
Therefore, the thickness of the overlay layer 5 can be measured from the time required for the ultrasonic wave to propagate from the transmitting point 4 to the receiving point 9 using a calibrated display (braun tube) of the ultrasonic flaw detector. .

以上詳述した如く本考案によれば反射されてく
る超音波が極めて弱い金属材料の層厚を容易に且
つ正確に測定しうる等顕著な効果を有する。
As detailed above, the present invention has remarkable effects such as being able to easily and accurately measure the layer thickness of a metal material whose reflected ultrasonic waves are extremely weak.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案超音波探触子の1例を示す概略説
明図である。 1…送信側接栓、2…送信用振動子、3…送信
用クサビ、4…送信点、5…オーバレイ層、6…
境界面、7…交点、8…遮蔽板、9…受信点、1
0…受信用クサビ、11…受信用振動子、12…
受信用接栓、13…ベースメタル。
The drawing is a schematic explanatory diagram showing one example of the ultrasonic probe of the present invention. DESCRIPTION OF SYMBOLS 1... Transmission side plug, 2... Transmission transducer, 3... Transmission wedge, 4... Transmission point, 5... Overlay layer, 6...
Boundary surface, 7... Intersection, 8... Shielding plate, 9... Receiving point, 1
0... Wedge for reception, 11... Vibrator for reception, 12...
Receiving plug, 13...Base metal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 受信用振動子と送信用振動子とを相対的位置に
取付けた超音波探触子において、送信用振動子の
幅寸法を受信用振動子の幅寸法より大きくし、か
つ送信点と受信点の間隔を送信用振動子の幅寸法
と同等以上に広くしたことを特徴とする超音波探
触子。
In an ultrasonic probe in which a receiving transducer and a transmitting transducer are mounted in relative positions, the width of the transmitting transducer is larger than that of the receiving transducer, and the width of the transmitting transducer and the receiving transducer are An ultrasonic probe characterized in that the interval is equal to or wider than the width of a transmitting transducer.
JP1980097799U 1980-07-11 1980-07-11 Expired JPS637846Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980097799U JPS637846Y2 (en) 1980-07-11 1980-07-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980097799U JPS637846Y2 (en) 1980-07-11 1980-07-11

Publications (2)

Publication Number Publication Date
JPS5720662U JPS5720662U (en) 1982-02-02
JPS637846Y2 true JPS637846Y2 (en) 1988-03-08

Family

ID=29459557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980097799U Expired JPS637846Y2 (en) 1980-07-11 1980-07-11

Country Status (1)

Country Link
JP (1) JPS637846Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180935U (en) * 1982-05-28 1983-12-02 住友重機械工業株式会社 Extendable pile driver leader
JPS62161006A (en) * 1986-01-09 1987-07-17 Kawasaki Steel Corp Method for measuring thickness of cooling water film of belt caster

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138693U (en) * 1978-03-20 1979-09-26

Also Published As

Publication number Publication date
JPS5720662U (en) 1982-02-02

Similar Documents

Publication Publication Date Title
Schindel et al. Applications of micromachined capacitance transducers in air-coupled ultrasonics and nondestructive evaluation
JPH0525045B2 (en)
US3616682A (en) Ultrasonic nondestructive thickness gauge
TW201001440A (en) Nuclear reactor vibration surveillance system and its method
Muir Nonlinear effects in acoustic imaging
US3922907A (en) In-bore turbine inspection device
Royer et al. Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer
JPS637846Y2 (en)
US4995260A (en) Nondestructive material characterization
US4492117A (en) Ultrasonic nondestructive test apparatus
Bindal Transducers for ultrasonic flaw detection
Hallermeier et al. Simple technique for exciting and probing elastic surface waves
JPS6326344B2 (en)
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
Felix et al. 1D ultrasound array: Performance evaluation and characterization by laser interferometry
JPS63186143A (en) Ultrasonic wave probe
JPH08285938A (en) Ultrasonic distance measuring apparatus using wave-guiding rod
JP2978708B2 (en) Composite angle beam probe
Djelouah et al. Pulsed calibration technique of miniature ultrasonic receivers using a wideband laser interferometer
JPS6128301B2 (en)
Lockett Lamb and torsional waves and their use in flaw detection in tubes
Li et al. Frequency Shift-Based Debonding Localization of Steel Concrete Composite Structures
JP3023642B2 (en) Insertion depth measurement method for welded pipe joints
JPH01229925A (en) Ultrasonic applied stress measuring probe
Good et al. Phase mapping of ultrasonic fields passed through centrifugally cast stainless steel