JPH01229925A - Ultrasonic applied stress measuring probe - Google Patents

Ultrasonic applied stress measuring probe

Info

Publication number
JPH01229925A
JPH01229925A JP63056904A JP5690488A JPH01229925A JP H01229925 A JPH01229925 A JP H01229925A JP 63056904 A JP63056904 A JP 63056904A JP 5690488 A JP5690488 A JP 5690488A JP H01229925 A JPH01229925 A JP H01229925A
Authority
JP
Japan
Prior art keywords
wave
measured
vibrator
transversal
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63056904A
Other languages
Japanese (ja)
Other versions
JP2563452B2 (en
Inventor
Teruaki Kasahara
笠原 晃明
Noritake Oguchi
憲武 小口
Tomonori Masuda
智紀 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP63056904A priority Critical patent/JP2563452B2/en
Publication of JPH01229925A publication Critical patent/JPH01229925A/en
Application granted granted Critical
Publication of JP2563452B2 publication Critical patent/JP2563452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enhance receiving sensitivity and to prevent the generation of a measuring error, by providing the first and second transversal wave vibrators, the first and second shield plates and a longitudinal wave vibrator and setting the thickness of each of the first and second shield plates to 1/4-1/10 the wavelength of a transversal wave. CONSTITUTION:A probe is fixed on an object to be measured and, at first, the first transversal wave vibrator 2 is excited and, subsequently, the second transversal wave vibrator 3 is excited to generate two kinds of transversal waves. Next, a longitudinal wave vibrator 5 is excited to generate a longitudinal wave and the respective propagation times of said waves are measured and, from the measured result, the stress of the object to be measured is measured. At this time, the first and second shield plates 4, 6 suppress the transmission of the mechanical vibrations generated in the vibrators 2, 3 to the rear. However, an ultrasonic wave is propagated. Further, the thickness of each of the first and second shield plates 4, 6 is set to a condition stopping vibration but propagating an ultrasonic wave and the practical thickness range satisfying this condition is 1/4-1/10 the wavelength of the transversal wave.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、超音波を利用し゛C鉄鋼構造部材の応力を測
定する際に使用される超音波応力測定用探触子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic stress measurement probe used when measuring stress in a C steel structural member using ultrasonic waves.

[従来の技術] 超音波応力測定の基本原理は第3図に示すように、測定
したい同一のスポットにおいて縦波及び主応力(被1!
11定休)方向に振動する2つの横波の伝播時間(’r
t、:縦波 ’r、、: σゎ方向に振動する横波)を
測定する。この時各々の伝播時間と主応力の間には次の
関係式が成立する。
[Prior Art] As shown in Fig. 3, the basic principle of ultrasonic stress measurement is to generate longitudinal waves and principal stress (1!) at the same spot to be measured.
The propagation time ('r
t,: Longitudinal wave 'r,: Transverse wave vibrating in the σ direction) is measured. At this time, the following relational expression holds between each propagation time and principal stress.

TS2   TSI σ1−σ:=i、□  −α電 T“ TSl”TS□ σ1+σ、=42− −α2 T−T。TS2 TSI σ1−σ:=i, □ −α electric T“ TSl”TS□ σ1+σ, =42−−α2 T-T.

ム2、β2、α1、α2:材料定数 そこで、従来はこの測定に縦波探触子で先ずTLを測定
し、次に横波探触子で振動方向なσ1、σ2方向に変え
てTSl、Tj2を測定している。
μ2, β2, α1, α2: Material constants Therefore, conventionally, for this measurement, TL was first measured using a longitudinal wave probe, and then TSL, Tj2 were measured using a shear wave probe, changing to the vibration directions σ1 and σ2. are being measured.

[従来技術の問題点] 通常、伝播時間を測定する際、試料と探触子の間に超音
波を効果的に伝播させるために接触媒質と呼ばれる液体
を挿入している。
[Problems with Prior Art] Normally, when measuring propagation time, a liquid called a couplant is inserted between the sample and the probe in order to effectively propagate the ultrasonic waves.

このため、従来の方法ては、毎回探触子を変えるだめに
、接触媒質の膜厚か変ってしまい、高精度な測定ができ
ず、例えばその誤差は応力換算でlΩ〜30kg/mm
2にも達するという問題かある。
For this reason, with conventional methods, the thickness of the couplant film changes as the probe needs to be changed each time, making highly accurate measurement impossible.
There is a problem with reaching 2.

本発明は斯かる点に鑑みて提案されるものて、従来例に
比較してその測定誤差の小さい超音波応力測定用探触子
を提案するのか目的である。
The present invention has been proposed in view of these points, and an object thereof is to propose an ultrasonic stress measuring probe whose measurement error is smaller than that of the conventional example.

[問題点を解決するための手段] 本発明は、上記問題点を解決する手段として、被測定体
側から順に保護板第1横波振動子、第1遮閉板、第2横
波振動子、第2遮閉板、縦波振動子、ダンパーを配置し
、かつ前記第1、第2g閉板の板厚を横波波長の1八〜
1/1oに設定して成る超音波応力測定用探触子を提案
する。
[Means for Solving the Problems] As a means for solving the above problems, the present invention provides a protection plate, a first shear wave vibrator, a first shielding plate, a second shear wave vibrator, a second shear wave vibrator, and a second shear wave vibrator. A shielding plate, a longitudinal wave oscillator, and a damper are arranged, and the thickness of the first and second g closing plates is set to 18 to 18 of the transverse wave wavelength.
We propose an ultrasonic stress measurement probe that is set at 1/1o.

[作用] 上記探触子においては、被計測体上に定置し。[Effect] In the above probe, it is placed on the object to be measured.

先り″第1横波振動子を励起し1次に第2横波振動子を
励起して2種類の横波を発生させ、次に縦波振動子を励
起して縦波を発生させ、夫々の伝播時間を計測し、この
結果から前記関係式を用いて波計i!11体の応力を計
測するもので、t51遮閉板及び第2遮閉板は第1横波
振動子及び第2横波振動子゛C発生した機械的な振動か
後方(]二方)に伝わるのを抑える。(11L、 、超
音波は伝播する。
First, the first transverse wave oscillator is excited, first the second transverse wave oscillator is excited to generate two types of transverse waves, and then the longitudinal wave oscillator is excited to generate longitudinal waves, and each propagation The time is measured, and the stress of the wave meter i!11 is measured using the above-mentioned relational expression based on the result.゛C Suppresses the generated mechanical vibrations from being transmitted to the rear (in both directions). (11L, , Ultrasonic waves propagate.

なお、第1.第2遮閉板の板厚は振動は止め、a’Lf
波は伝播することが条件であり、この条件を満足する値
としては横波波長の1/4〜1/10が実用範囲C1好
ましくは1ム程度が最適である。
In addition, 1. The thickness of the second shielding plate is set to stop vibration, a'Lf
The condition is that the waves propagate, and the optimum value that satisfies this condition is 1/4 to 1/10 of the transverse wave wavelength in the practical range C1, preferably about 1 μm.

このデータは第2図に示されている。This data is shown in FIG.

[実施例] 第1図は上記本発明に係る探触子の構造を示すもので、
0号の1は振動子を保護し、被測定体表面と直接接触す
る前面保護板である。
[Example] FIG. 1 shows the structure of the probe according to the present invention,
No. 0, 1 is a front protection plate that protects the vibrator and comes into direct contact with the surface of the object to be measured.

2は前記関係式のSI測定用の第1横波振動子。2 is a first transverse wave oscillator for measuring SI of the above relational expression.

3は前記関係式の82測定用の第2横波振動子、4は第
1、第2横波振動子2.3間にあって、第1横波振動子
2の振動の残響を抑え、かつ電気的な絶縁を保証する第
1遮閉板である。
3 is a second transverse wave oscillator for measuring 82 of the above relational expression; 4 is a transverse wave oscillator located between the first and second transverse wave oscillators 2.3, which suppresses the reverberation of the vibration of the first transverse wave oscillator 2 and provides electrical insulation. This is the first shielding plate that guarantees the following.

5は縦波振動子、6は第2横波振動子3と縦波振動子5
間にあって、第2横波振動子3の残響を抑え、かつ′電
気的な絶縁を保障する第2遮閉板にして、第1.第2遮
閉板4.6ともにその板厚はWJ波波長(Sl、S2)
の1/8である。
5 is a longitudinal wave oscillator, 6 is a second transverse wave oscillator 3 and a longitudinal wave oscillator 5
A second shielding plate is provided between the first and second transverse wave transducers 3 to suppress reverberation of the second transverse wave transducer 3 and to ensure electrical insulation. The thickness of the second shielding plate 4.6 is the WJ wave wavelength (Sl, S2)
It is 1/8 of that.

7は縦波振動子5の残響を抑えるダンパー。7 is a damper that suppresses the reverberation of the longitudinal wave oscillator 5;

8は第1、第2横波振動子2.3及び縦波振動子5の両
面に貼着された電極にして、この電極8から夫々の振動
子に電気信号か人力されると共に振動子の振動を電気信
号として取り出すことかできる。
Reference numeral 8 denotes an electrode attached to both sides of the first and second transverse wave vibrators 2.3 and the longitudinal wave vibrator 5, and an electric signal is transmitted from the electrode 8 to each vibrator, and the vibration of the vibrator is can be extracted as an electrical signal.

表1は各振動子の配置例に基づく超音波の受信感度を示
すもので、第1.第2横波振動子、そしてこの次に縦波
振動子が配置される例が最も良好である。
Table 1 shows the ultrasonic reception sensitivity based on the arrangement example of each transducer. The best example is where the second transverse wave vibrator is placed, followed by the longitudinal wave vibrator.

〈以下余白〉 表 ■ 上記探触子を用いて鉄鋼構造部材に作用する応力を測定
する例を次に説明する。
<Margin below> Table ■ An example of measuring stress acting on a steel structural member using the above probe will be described next.

まず、鉄鋼構造部材の表面に探触子を置く。この際は、
探触子の前面保護板1との間に挟雑物がないように注意
することが必要である。次に、第1横波振動子2に対し
て電気信号を送り、この振動子2を励起させて超音波を
発生し、鉄鋼構造部材底面から反射して来た振動を電極
8から電気信リとし”C取り込む。
First, a probe is placed on the surface of a steel structural member. In this case,
Care must be taken to ensure that there are no objects between the probe and the front protection plate 1. Next, an electrical signal is sent to the first transverse wave transducer 2 to excite the transducer 2 to generate ultrasonic waves, and the vibration reflected from the bottom surface of the steel structural member is sent as an electrical signal from the electrode 8. “Take in C.

回しように第2横波振動子3を励起するとJJ:に鉄!
t1構造部旧からの反射振動を電気信号とじ一〇取り込
む。
When the second transverse wave oscillator 3 is excited to rotate, JJ: iron!
The reflected vibration from the t1 structure is captured as an electrical signal.

次に、縦波振動子5に対しても電極8から−i[気信号
を入力し・、これを振起させて超音波を発生させ、鉄鋼
構造部材からの反射振動を電極8にて電気信号として取
り込み、これらのデータを基に前記関係式を用いて鉄鋼
構造部材に作用する応力を求める。
Next, the -i signal is input from the electrode 8 to the longitudinal wave transducer 5, and this is excited to generate an ultrasonic wave. The stress acting on the steel structural member is determined using the above-mentioned relational expression based on this data.

[本発明の効果] 本発明は以」二のように、探触子において、第1横波振
動子の次に第2横波振動子を、更にその次に縦波振動子
を配置し、更にこれらの振動子の間に振動の残響を抑え
、超音波は通ず構造の第1゜第2遮閉板を配置した。
[Effects of the present invention] As described below, the present invention provides a probe in which a second transverse transducer is disposed next to the first transverse transducer, and a longitudinal transducer is disposed next to the first transverse transducer. A first and second shielding plate was placed between the transducers to suppress vibration reverberation and prevent ultrasonic waves from passing through.

この結果、夫々の振動子の励起時に他の振動子が影響を
受けて励起され、2種類或いは3種類の波か発生すると
いうことかないのて、探触子を三層構造となし、同一ポ
イントてのAt11定か可能であるから、受信感度か高
くなり、測定誤差の発生かXiとない。
As a result, when each oscillator is excited, other oscillators are affected and excited, and two or three types of waves are generated. Therefore, the probe has a three-layer structure, and the same point Since At11 can be determined at all times, the reception sensitivity will be high and there will be no measurement error Xi.

又、同一ポイントにおいて311定かてきるため。Also, 311 can be determined at the same point.

従来のように接触媒質のIIり厚か変ってこの点からJ
ll+定誤差か生し・てし・まうという虞れもない。
From this point, J
There is no risk of incurring a constant error.

4、[り1面の筒中な説明 第1図は本発明に係る探触子の説明図、第213はe閉
板の板厚と波長比に対する受信感度の説明図、第3図は
超音波応力測定の原理説明図である。
4. Explanation of inside of the cylinder on page 1. Figure 1 is an explanatory diagram of the probe according to the present invention. Figure 213 is an explanatory diagram of the reception sensitivity with respect to the plate thickness and wavelength ratio of the e-closing plate. Figure 3 is an illustration of the ultrasonic wave. It is a diagram explaining the principle of stress measurement.

■・・・・・・前面保護板 2・・・・・・第1横波振動子 3・・・・・・第2横波振動子 4・・・・・・第1遮閉板 5・・・・・・縦波振動子 6・・・・・・第2遮閉板 7・・・・・・タンパ− 8・・・・・パIL極 第1図 す 第2図 ン、1/、。′/81/6′、/4′、72板厚と波長
の比
■...Front protection plate 2...First shear wave vibrator 3...Second shear wave vibrator 4...First shielding plate 5... . . . Longitudinal wave oscillator 6 . . . Second shielding plate 7 . . . Tamper 8 . . . '/81/6', /4', 72 plate thickness and wavelength ratio

Claims (1)

【特許請求の範囲】 1、被測定体側から順に保護板、第1横波振動子、第1
遮閉板、第2横波振動子、第2遮閉板、縦波振動子、ダ
ンパーを配置し、かつ前記第1、第2遮閉板の板厚を横
波波長の1/4〜1/10に設定して成る超音波応力測
定用探触子。 2、第1、第2遮閉板は振動の残響を抑え、電気的な絶
縁を保障する材質で作られていることを特徴とする請求
項1記載の超音波応力測定用探触子。
[Claims] 1. In order from the side of the object to be measured: a protection plate, a first transverse wave vibrator, a first
A shielding plate, a second transverse wave vibrator, a second shielding plate, a longitudinal wave vibrator, and a damper are arranged, and the thickness of the first and second shielding plates is set to 1/4 to 1/10 of the transverse wave wavelength. Ultrasonic stress measurement probe consisting of 2. The ultrasonic stress measurement probe according to claim 1, wherein the first and second shielding plates are made of a material that suppresses vibration reverberation and ensures electrical insulation.
JP63056904A 1988-03-09 1988-03-09 Ultrasonic stress measurement probe Expired - Fee Related JP2563452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056904A JP2563452B2 (en) 1988-03-09 1988-03-09 Ultrasonic stress measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056904A JP2563452B2 (en) 1988-03-09 1988-03-09 Ultrasonic stress measurement probe

Publications (2)

Publication Number Publication Date
JPH01229925A true JPH01229925A (en) 1989-09-13
JP2563452B2 JP2563452B2 (en) 1996-12-11

Family

ID=13040437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056904A Expired - Fee Related JP2563452B2 (en) 1988-03-09 1988-03-09 Ultrasonic stress measurement probe

Country Status (1)

Country Link
JP (1) JP2563452B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489564A (en) * 1990-08-01 1992-03-23 Mitsubishi Electric Corp Vertical ultrasonic probe
JP2015206782A (en) * 2013-12-24 2015-11-19 株式会社神戸製鋼所 Residual stress evaluation method and residual stress evaluation device
CN106370731A (en) * 2016-09-09 2017-02-01 中国石油大学(华东) Ultrasonic longitudinal and shear wave-resistivity integrated type probe for rock physical experiment
JP2017075849A (en) * 2015-10-15 2017-04-20 株式会社日立製作所 Ultrasonic checkup apparatus, and ultrasonic checkup method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489564A (en) * 1990-08-01 1992-03-23 Mitsubishi Electric Corp Vertical ultrasonic probe
JP2015206782A (en) * 2013-12-24 2015-11-19 株式会社神戸製鋼所 Residual stress evaluation method and residual stress evaluation device
JP2017075849A (en) * 2015-10-15 2017-04-20 株式会社日立製作所 Ultrasonic checkup apparatus, and ultrasonic checkup method
CN106370731A (en) * 2016-09-09 2017-02-01 中国石油大学(华东) Ultrasonic longitudinal and shear wave-resistivity integrated type probe for rock physical experiment

Also Published As

Publication number Publication date
JP2563452B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
Papadakis The measurement of ultrasonic velocity
JPH0525045B2 (en)
JPS61110050A (en) Ultrasonic probe
JPS6156450B2 (en)
JPH01229925A (en) Ultrasonic applied stress measuring probe
US3946256A (en) System for generating or sensing transverse elastic bulk waves in solids
Friedrich et al. Simulations of piezoelectric Lamb wave delay lines using a finite element method
JPH045290B2 (en)
US3943755A (en) Method and apparatus for measuring the magnitude of a clamping load applied to a laminated iron core of an electric machine
Yew et al. A study of wave motion in fiber-reinforced medium
JPS637846Y2 (en)
JPS6133514B2 (en)
JPH0545339A (en) Elastic wave element and measuring apparatus of physical property of solution using the element
JPH06148148A (en) Ultrasonic attenuation measuring method, and material characteristic evaluating method
JP2978708B2 (en) Composite angle beam probe
Eklund Acoustooptical method of measuring sound velocity in solids
Chretien Stress wave propagation from electrical discharge on cylindrical aluminum rod
JPS58198998A (en) Ultrasonic wave probe
JP3023642B2 (en) Insertion depth measurement method for welded pipe joints
SU1719979A1 (en) Method of determining physico-mechanical properties of planar objects
SU1158928A1 (en) Device for measuring poisson&#39;s ratio of material
Marshall ACOUSTIC EMISSION ASSOCIATED WITH EMBEDDED METAL CORROSION IN A CONCRETE SLAB.
SU1265597A2 (en) Method for visualization of acoustic fields in solid-state acoustic lines
Schloss Inherent Limitations of Piezoelectric Transducers
Lawrie et al. Electronic imaging of ultrasonic fields

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees