JPH045290B2 - - Google Patents

Info

Publication number
JPH045290B2
JPH045290B2 JP56121361A JP12136181A JPH045290B2 JP H045290 B2 JPH045290 B2 JP H045290B2 JP 56121361 A JP56121361 A JP 56121361A JP 12136181 A JP12136181 A JP 12136181A JP H045290 B2 JPH045290 B2 JP H045290B2
Authority
JP
Japan
Prior art keywords
electrode
reflected
wave
ultrasonic
interdigital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56121361A
Other languages
Japanese (ja)
Other versions
JPS5822978A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56121361A priority Critical patent/JPS5822978A/en
Publication of JPS5822978A publication Critical patent/JPS5822978A/en
Publication of JPH045290B2 publication Critical patent/JPH045290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波により物体の表面若しくは内部
を観察する超音波装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic device for observing the surface or interior of an object using ultrasonic waves.

超音波による撮像は医療診断、非破壊検査域は
超音波による物体内部の観察装置などの分野で最
近大きな注目を集めている。このような目的の装
置に用いられる超音波の発生及び受波の手段とし
ては従来、音響位相板を用いるもの、環状アレイ
を用いるもの、音響レンズを用いるものなど種々
のものがあるが、特に液体中の超音波の放射及び
受波用としては所謂すだれ状トランスデユーサに
よるものが優れた特性を有している。
Ultrasonic imaging has recently attracted a lot of attention in fields such as medical diagnosis and non-destructive testing, such as ultrasonic observation devices for the inside of objects. Conventionally, there are various methods of generating and receiving ultrasonic waves used in devices for this purpose, including those using acoustic phase plates, annular arrays, and acoustic lenses. A so-called interdigital transducer has excellent characteristics for emitting and receiving ultrasonic waves.

すだれ状トランスデユーサは圧電表面に1対の
くしの歯状電極をインターデジタルに組合せた電
極を設けて構成したもので、電極面を液体に接し
た状態で、該電極に交流信号を印加することによ
り液体中に超音波を放射し、或は液体中の伝搬音
波を受波して電気信号に変換する。
A transducer has an interdigital combination of a pair of comb-shaped electrodes on a piezoelectric surface, and an alternating current signal is applied to the electrode while the electrode surface is in contact with a liquid. As a result, ultrasonic waves are emitted into the liquid, or acoustic waves propagating in the liquid are received and converted into electrical signals.

ここで、IDT(すだれ状トランスデユーサ)か
らの水中超音波の励振を、簡単な波源モデルと
ASPW(ngular pectrum of lane
aves)法を用い、考察してみる。
Here, we will explain the excitation of underwater ultrasound from an IDT (interdigital transducer) using a simple wave source model.
ASPW ( Angular Spectrum of P lane W
aves) method.

簡単にするために、IDTの一周期をδ関数状の
線波源と考える。第3図のように座標軸をとり、
N対の正規形IDTを、x軸上のxo(n=1〜N、
xo+1−xo=d)に配置された線波源列とする。以
後、z方向には均一な現象を扱う、各線波源から
は、基板表面に沿つて漏れ表面波が励振され、そ
のスカラー成分の振幅を次式で表わす。
For simplicity, consider one period of the IDT as a line wave source with a δ function. Take the coordinate axes as shown in Figure 3,
N pairs of normal form IDTs are expressed as x o (n=1 to N,
x o +1 − x o = d). Hereinafter, a phenomenon that is uniform in the z direction will be treated.Each line wave source excites a leaky surface wave along the substrate surface, and the amplitude of the scalar component is expressed by the following equation.

upo(x)=U(x−xo) ・exp{−jkxs(x−xo)} (1) ここで、U(x)は、単位段階関数、kxsは表面
波の波数で、Vsを表面波速度とするとkxs=ω/
Vsで与えられる。表面波は、x軸の正負両方向
へ放射されるが、簡単にするため、正方向のみと
した。水中には、式(1)に従つて、縦波が放射され
る。水中の(x、y)点における振幅u(x、y)
は、upo(x)のフーリエ変換Ao(kx)を用い、n
=1〜Nの波源の寄与を足し合わせた求められ
る。すなわち、 u(x、y)Nn=1 -∞Ao(kx) ・exp{−j(kxx+kyy)}dkx (2) Ao(k)=1/2π・[πδ(kx−kxs) +1/j(kx−kxs)] ・exp(jkxxo) (3) ただし、 kx 2+ky2=kp 2、 kp=ω/VL (4) VLは水中での縦波速度である。
u po (x)=U(x-x o ) ・exp{-jk xs (x-x o )} (1) Here, U(x) is the unit step function, and k xs is the wave number of the surface wave. , where V s is the surface wave velocity, k xs = ω/
given by V s . Surface waves are radiated in both the positive and negative directions of the x-axis, but for simplicity, only the positive direction is assumed. Longitudinal waves are radiated into the water according to equation (1). Amplitude u(x,y) at point (x,y) in water
uses the Fourier transform A o (k x ) of u po (x), and n
= calculated by adding up the contributions of 1 to N wave sources. That is, u(x, y) Nn=1 -∞ A o (k x ) ・exp{−j(k x x + k y y)}dk x (2) A o (k) = 1/2π・[πδ(k x −k xs ) +1/j(k x −k xs )] ・exp(jk x x o ) (3) However, k x 2 + ky 2 = k p 2 , k p = ω/V L (4) V L is the longitudinal wave velocity in water.

式(2)におけるuは、スカラー量で、界面の境界
条件を考慮すれば、粒子速度のy成分、又は音圧
などと考えるのが適当である。しかしIDTが励起
する諸量の関係が不明のため、ここでは境界条件
を正確に扱わず、式(1)のスカリー量がそのまま水
中に伝わるとした。
u in equation (2) is a scalar quantity, and considering the boundary conditions at the interface, it is appropriate to consider it as the y component of particle velocity, sound pressure, etc. However, since the relationship between the quantities excited by IDT is unknown, we did not treat the boundary conditions accurately here, and assumed that the Scully quantity in equation (1) is transmitted directly into the water.

式(3)を式(2)に代入し計算すれば、式(5)が得られ
る。
By substituting equation (3) into equation (2) and calculating, equation (5) is obtained.

u(x、y)∫ -∞As(ks)Ar(kx)exp {−j(kxx+kyy)} (5) As(kx・1/2・δ(ks−kxs) +1/j2π(kx−kxs) (6) Ar(kx) =exp{j・kxd/2・(N−1)} ・sin(kxd/2・N )/sin(kxd/2) (7) である。式(5)は、u(x、y)がkxスペクトル
As・Arを振幅とする種々の平面波の合成で表わ
されることを示している。As(kx)は、一個の線
波源より、段階的に励振された表面波によるスペ
クトルであり、kxsで線スペクトルを持ち、それ
以外のkxでも、1/(kx−kxs)の大きさを持つ
ている。Ar(kx)は、N個の波源を等間隔で配列
した効果を表す因子であり、kx=2mπ/d(mは
整数)で極大となる。なお、dはインターデイジ
タル電極の電極周期である。すなわち、u(x、
y)にはkxがkxs、および2mπ/dに等しい平面
波の寄与が大きい。今、kxsと2mπ/dが十分離
れていれば、IDTから二種のkxの方向に超音波ビ
ームが放射される。
u (x, y)∫ -∞ A s (k s ) A r (k x ) exp {−j (k x x + k y y)} (5) A s (k x・1/2・δ(k s −k xs ) +1/j2π(k x −k xs ) (6) A r (k x ) =exp{j・k x d/2・(N−1)} ・sin(k x d/2・N)/sin(k x d/2) (7) Equation (5) shows that u(x, y) is k x spectrum
This shows that it is expressed as a composite of various plane waves with amplitudes A s and A r . A s (k x ) is a spectrum caused by a surface wave excited stepwise from a single line wave source, and has a line spectrum at k ) has a size of A r (k x ) is a factor representing the effect of arranging N wave sources at equal intervals, and reaches a maximum at k x =2mπ/d (m is an integer). Note that d is the electrode period of the interdigital electrode. That is, u(x,
y) has a large contribution of plane waves with k x equal to k xs and 2mπ/d. Now, if k xs and 2mπ/d are sufficiently far apart, ultrasonic beams will be emitted from the IDT in the two directions of k x .

二種の超音波ビームの放射角は、式(4)の波数軌
跡とx方向の波数整合より求められる。波数軌跡
は、第4図のように、半径ω/VLを半円である。
kx=kxs、kx=2π/dの点から垂線を下ろし、軌
跡と交わつた方向に超音波ビームが放射され、音
波ビームが放射される。その方向を、第4図のよ
うにθd、θsとすれば、次のようになる(θd=90°−
θ1、θs=90°−θ2)。なお、fは圧電体上のインタ
ーデイジタル電極に与えられる交流信号のキヤリ
ア周波数である。
The radiation angles of the two types of ultrasonic beams are determined from the wave number locus of equation (4) and wave number matching in the x direction. As shown in FIG. 4, the wave number locus is a semicircle with radius ω/V L.
A perpendicular line is drawn from the point k x = k xs and k x = 2π/d, and an ultrasonic beam is emitted in a direction that intersects the locus. If we define the directions as θ d and θ s as shown in Figure 4, we get the following (θ d = 90°−
θ 1 , θ s = 90°−θ 2 ). Note that f is the carrier frequency of the AC signal applied to the interdigital electrodes on the piezoelectric body.

θd=cos-1(ω/Vs/ω/VL) =cos-1(VL/Vs) (8) θs=cos-1(2π/d/ω/VL) =cos-1(VL/f・d) (9) 式(8)、(9)にVL=1500m/s、Vs=2350m/s、
及び正規形IDTのdの値87μmを代入し、その周
波数依存性をプロツトしたのが、第5図の実線で
ある。式(8)、(9)は、規制された二種の放射角によ
く対応していることがわかる。
θ d = cos -1 (ω/V s / ω/V L ) = cos -1 (V L /V s ) (8) θ s = cos -1 (2π/d/ω/V L ) = cos - 1 (V L /f・d) (9) In equations (8) and (9), V L = 1500 m/s, V s = 2350 m/s,
The solid line in FIG. 5 plots the frequency dependence by substituting the value 87 μm for d of the normal form IDT. It can be seen that equations (8) and (9) correspond well to the two regulated radiation angles.

以上のように、すだれ状にトランスデユーサの
液体中への超音波ビームの放射及び受波方向θ
(θは圧電体表面への法線とのなす角度)は2方
向があり、次式の関係を満足する。
As described above, the ultrasonic beam is radiated into the liquid of the transducer in a blind-like manner, and the receiving direction θ
(θ is the angle formed with the normal to the surface of the piezoelectric material) has two directions, and satisfies the following relationship.

θ1=sin-1VL/Vs (10) θ2=sin-1VL/fd (11) (10)式及び(11)式から明らかなように、θ1は周
波数に関係なく一定で、θ2は周波数と共に変化す
る。そしてVs=fdでθ1=θ2となるが、それ以外で
は2つの超音波ビームの放射方向が存在する。
θ 1 = sin -1 V L /V s (10) θ 2 = sin -1 V L / fd (11) As is clear from equations (10) and (11), θ 1 is constant regardless of frequency. and θ 2 changes with frequency. Then, when V s = fd, θ 1 = θ 2 , but otherwise there are two radiation directions of the ultrasonic beam.

本発明はこのような2方向に放射される超音波
ビームを利用することによつて物体の状態を観察
するうえで有効な手段を提供することを目的とす
る。
An object of the present invention is to provide an effective means for observing the state of an object by using such ultrasonic beams emitted in two directions.

この目的を達成するための本発明の特徴は、一
面にインターデイジタル電極を有する板状圧電体
の、該インターデイジタル電極を有する面を液体
に接して配置し、前記電極へf≠Vs/d(fは励
振周波数、Vsは圧電体上の表面波速度、dはイ
ンターデイジタル電極の電極周期)の交流信号の
印加で液体中の2方向に超音波ビームを発生さ
せ、当該2方向のうち一方向の超音波ビームを観
察物体の表面に、他方向の超音波ビームを観察物
体の内部にそれぞれ集束させ、観察物体の表面か
ら反射してくる第1の反射波、及び観察物体の内
部から反射してくる第2の反射波を共に前記イン
ターデイジタル電極で受波し、前記第1の反射波
を基準として前記第1と第2の反射波の位相差を
検出することにより、前記位相差に基づき前記観
察物体の内部の弾性的性質の変化分としての前記
観察物体の音響像を得るごとき超音波装置にあ
る。
A feature of the present invention for achieving this object is that a plate-shaped piezoelectric body having interdigital electrodes on one surface is arranged so that the surface having the interdigital electrodes is in contact with a liquid, and f≠V s /d is applied to the electrodes. (where f is the excitation frequency, V s is the surface wave velocity on the piezoelectric material, and d is the electrode period of the interdigital electrode), an ultrasonic beam is generated in two directions in the liquid by applying an AC signal, and one of the two directions is The ultrasonic beam in one direction is focused on the surface of the observed object, and the ultrasonic beam in the other direction is focused on the inside of the observed object, and the first reflected wave reflected from the surface of the observed object and from the inside of the observed object are The second reflected waves are both received by the interdigital electrode, and the phase difference between the first and second reflected waves is detected using the first reflected wave as a reference. The ultrasonic device obtains an acoustic image of the object to be observed based on changes in elastic properties inside the object.

以下図面により実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明による超音波装置の一実施例、
第2図は電極構造の具体例を示す。図中の参照番
号1は板状圧電体で、その厚さは表面波が励起さ
れる厚さ、具体的には表面波の波長の数倍、望ま
しくは5倍以上のものとする。圧電体1の一面に
は、第2図のごときインターデイジタル電極2,
3がもうけられる。各電極は円弧状の1対のくし
の歯状電極2aと2b,3aと3bをインターデ
イジタルに組合わせて構成したもので、一方の電
極2は入力用、他方の電極3は出力用として機能
する。電極構成が円弧状であるので、超音波ビー
ムの集束点は円弧の中心を通る垂直線上に来るこ
とは明らかである。
FIG. 1 shows an embodiment of an ultrasonic device according to the present invention.
FIG. 2 shows a specific example of the electrode structure. Reference numeral 1 in the figure is a plate-shaped piezoelectric material whose thickness is the thickness at which surface waves are excited, specifically several times, preferably five times or more, the wavelength of the surface waves. On one surface of the piezoelectric body 1, interdigital electrodes 2, as shown in FIG.
3 can be made. Each electrode is constructed by interdigitally combining a pair of arc-shaped comb-tooth electrodes 2a and 2b, 3a and 3b, and one electrode 2 functions as an input, and the other electrode 3 functions as an output. do. It is clear that since the electrode configuration is arc-shaped, the focal point of the ultrasound beam will be on a vertical line passing through the center of the arc.

上記構成のトランスデユーサは電極2,3を液
体4に接して配置される。この状態で入力電極2
に中心周波数f1(中心周波数ではVs=fdを満足し
超音波ビームの放射方向は単一となる)以外の周
波数f2の交流信号を印加すれば、第1図に示すよ
うにθ1とθ2方向に超音波ビームが放射される。図
中の破線の伝播路は前記(10)式を示し、実線が前記
(11)式を示す。従つて交流信号のキヤリア周波
数をf1にすれば破線に従う単一方向にビームが放
射されることは明らかである。
The transducer having the above configuration is arranged with the electrodes 2 and 3 in contact with the liquid 4. In this state, input electrode 2
If an AC signal with a frequency f 2 other than the center frequency f 1 (at the center frequency satisfies V s = fd and the radiation direction of the ultrasonic beam is single) is applied to θ 1 as shown in Figure 1, An ultrasonic beam is emitted in the θ2 direction. The broken line propagation path in the figure indicates the above equation (10), and the solid line indicates the above equation (11). Therefore, it is clear that if the carrier frequency of the AC signal is set to f1 , the beam will be radiated in a single direction along the broken line.

各方向(θ1、θ2)の超音波ビームは点P1と点P2
で各々集束する。
The ultrasonic beam in each direction (θ 1 , θ 2 ) is at point P 1 and point P 2
They each converge.

点P1とP2に超音波ビームを集束させている状
態で、観測物体5を第1図に示すように配置すれ
ば放射方向θ1の超音波ビームは物体5の表面(点
P1)で反射波を生ずる。一方、放射方向θ2のビー
ムは屈折して物体内部に入り点P2で集束し、反
射波を生ずる。なおその他の点からの反射波も存
在するわけであるが本実施例では点P2からの反
射波のみに着目するものとする。
If the observation object 5 is arranged as shown in Fig. 1 while the ultrasonic beam is focused on points P 1 and P 2 , the ultrasonic beam in the radiation direction θ 1 will be focused on the surface of the object 5 (point
P 1 ) produces a reflected wave. On the other hand, the beam in the radiation direction θ 2 is refracted, enters the interior of the object, and is focused at point P 2 , producing a reflected wave. Although reflected waves from other points also exist, in this embodiment, attention is focused only on the reflected waves from point P2 .

これらの反射波は第6図bに示すような出力電
極3で受波され電気信号として取り出される。こ
の際出力電極3で受波される反射波は、θ1とθ2
2方向のズレからの行路差が存在するために遅延
時間差が生ずる。つまり第4図に示すように、そ
れぞれ第1図に示したP1点とP2点で反射した角
度方向θ1とθ2の2つの反射波はインターデイジタ
ル電極3で受波され、この2つの反射波による遅
延出力信号には時間的な伝搬時間差が存在する。
インターデイジタル電極3から出力される信号を
オシロスコープ等でモニタすると、この2つの反
射波の時間的な伝播時間差の存在がよくわかる。
These reflected waves are received by the output electrode 3 as shown in FIG. 6b and extracted as electrical signals. At this time, the reflected wave received by the output electrode 3 has a delay time difference because there is a path difference due to the deviation in two directions of θ 1 and θ 2 . In other words, as shown in FIG. 4, two reflected waves in angular directions θ 1 and θ 2 reflected at points P 1 and P 2 shown in FIG. There is a temporal propagation time difference between the delayed output signals due to the two reflected waves.
When the signal output from the interdigital electrode 3 is monitored using an oscilloscope or the like, it is clearly seen that there is a temporal propagation time difference between the two reflected waves.

そこで、インターデイジタル電極3から出力さ
れる信号を増幅させてオシロスコープ等にモニタ
させ、それぞれ2つの反射信号を表示させるよう
にし、第6図cに示すように各信号に合わせてゲ
ート動作をするような例えばサンプルアンドホー
ルド回路をインターデイジタル電極3の出力端に
接続する。よつて、上記時間的な伝搬時間差をも
つ2つの反射波はこのような例えばサンプルアン
ドホールド回路を介して各々区別された形で取り
出すことができる。
Therefore, the signal output from the interdigital electrode 3 is amplified and monitored by an oscilloscope, etc., so that two reflected signals are displayed, and the gate operation is performed according to each signal as shown in Figure 6c. For example, a sample and hold circuit is connected to the output terminal of the interdigital electrode 3. Therefore, the two reflected waves having the above-mentioned temporal propagation time difference can be extracted separately through such a sample-and-hold circuit, for example.

従つて、物体5内部の状態を、一方の反射波を
基準として他方のビームの位相を測定することに
より、2方向の各ビーム反射波間の位相差を利用
して弾性的性質の変化分として取り出すことが可
能となる。即ち伝搬音波は固体内部のクラツクや
組成成分の差異によつて音響インピーダンスの変
化の影響を受け、従つてθ1とθ2方向の各反射波間
の位相差にもこれに対応する変化が生ずる。従つ
て電極3の出力信号で物体5の音響像を得ること
が可能であり、例えば当該出力信号をCRT表示
するように構成すれば肉眼で物体内部を観察する
ことができる。
Therefore, by measuring the phase of the other beam using one reflected wave as a reference, the state inside the object 5 can be extracted as a change in elastic properties using the phase difference between the reflected waves of each beam in the two directions. becomes possible. That is, the propagating sound waves are affected by changes in acoustic impedance due to cracks inside the solid or differences in composition, and accordingly, a corresponding change occurs in the phase difference between the reflected waves in the θ 1 and θ 2 directions. Therefore, it is possible to obtain an acoustic image of the object 5 using the output signal of the electrode 3. For example, if the output signal is configured to be displayed on a CRT, the inside of the object can be observed with the naked eye.

本実施例では、第1図から明らかなように、ト
ランスデユーサからの超音波ビームが観察物体に
斜入射するので、垂直入射より物体内部に音波の
透過し得る割合が極めて大となる。従つて観察物
体の表面だけでなく内部の状況を知るのにも好都
合である。また、入出力を別個の電極で行なうの
で、入出力信号を分離するための方向性結合器を
必要とせず、しかもトランスデユーサが平面構造
であるので電極設計の自由度も大きい。
In this embodiment, as is clear from FIG. 1, since the ultrasonic beam from the transducer is obliquely incident on the object to be observed, the proportion of the acoustic wave that can be transmitted into the object is much greater than when the ultrasonic beam is incident perpendicularly. Therefore, it is convenient to know not only the surface of the observed object but also the internal situation. Furthermore, since input and output are performed using separate electrodes, there is no need for a directional coupler for separating input and output signals, and since the transducer has a planar structure, there is a large degree of freedom in electrode design.

また、本実施例では表面波励起用のトランスデ
ユーサを用いているが、ラム波を用いることもも
とより可能である。ラム波の場合には圧電体の厚
さをほぼλ(λは圧電体上の音波の波長)以下に
すればよく、前述の表面波速度Vsをラム波速度
に代えれば(10)式及び(11)式が同様に成立する。
この構成はインターデイジタル電極を液体に接す
ることなく使用できる利点があるが、高周波化に
難点があり従つて比較的低い周波数域での非破壊
検査に適している。
Further, although a transducer for surface wave excitation is used in this embodiment, it is of course possible to use a Lamb wave. In the case of Lamb waves, the thickness of the piezoelectric body should be approximately λ (λ is the wavelength of the sound wave on the piezoelectric body) or less, and if the surface wave velocity V s mentioned above is replaced by the Lamb wave velocity, Equation (10) and Equation (11) also holds true.
Although this configuration has the advantage that the interdigital electrode can be used without coming into contact with liquid, it has a difficulty in increasing the frequency, and is therefore suitable for non-destructive testing in a relatively low frequency range.

なお、本実施例の構成ではインターデイジタル
電極が液体に直接接して振動するのでその機械的
及び化学的保護が必要であるが、これは例えばホ
トレジスト膜等で電極面に保護膜を作ることによ
り容易になすことができる。また、単体の圧電体
の使用に代えてZnOなどの圧電薄膜と非圧電基板
との組合せを用いる場合には、インターデイジタ
ル電極を薄膜と基板との間にもうけることが可能
であり、従つて別途保護手段を構ずる必要がない
という利点がある。
In the configuration of this example, the interdigital electrode vibrates in direct contact with the liquid, so mechanical and chemical protection is required, but this can be easily done by creating a protective film on the electrode surface using, for example, a photoresist film. can be done. Furthermore, when using a combination of a piezoelectric thin film such as ZnO and a non-piezoelectric substrate instead of using a single piezoelectric material, it is possible to provide interdigital electrodes between the thin film and the substrate, and therefore it is possible to separately This has the advantage that there is no need to take any protective measures.

以上述べた本発明の有効性を確めるため、
TDK製の圧電磁器91A材(長さ20mm、幅20mm、
厚さ5mm)の厚さと垂直な面上に円弧状のインタ
ーデイジタル電極をもうけてトランスデユーサを
構成した。ここで分極軸は厚さと平行な方向で、
電極周期は210μm、電極対数は5、2組の円弧
状インターデイジタル電極の離間距離は10mm、開
口長は70°である。この場合θ1は45°、表面波速度
VRは2146m/secで、これは温度25℃での水中の
音速1497m/secを(10)式に代入した値と一致する。
観察物体としては表面付近に穴をもうけたアクリ
ル板を用い、実際の観察時ではこの観察物体を3
次元に走査する。上記仕様のもとでトランスデユ
ーサとアクリル板を第1図のように水中に配置
し、キヤリア周波数を変化させた。その結果、ア
クリル板の内部の穴の存在に対応する出力信号の
変化を観察することができた。
In order to confirm the effectiveness of the present invention described above,
TDK piezoelectric ceramic 91A material (length 20mm, width 20mm,
A transducer was constructed by providing arc-shaped interdigital electrodes on a plane perpendicular to the thickness of 5 mm. Here, the polarization axis is parallel to the thickness,
The electrode period is 210 μm, the number of electrode pairs is 5, the distance between the two sets of arcuate interdigital electrodes is 10 mm, and the aperture length is 70°. In this case θ 1 is 45°, surface wave velocity
V R is 2146 m/sec, which agrees with the value obtained by substituting the sound velocity in water of 1497 m/sec at a temperature of 25°C into equation (10).
An acrylic plate with holes near the surface was used as the observation object, and during actual observation, this observation object was
Scan in dimension. Based on the above specifications, the transducer and acrylic plate were placed underwater as shown in Figure 1, and the carrier frequency was varied. As a result, it was possible to observe changes in the output signal corresponding to the presence of holes inside the acrylic plate.

以上説明したように本発明によれば、2方向に
放射される超音波ビームを利用することによつ
て、光学的に不透明な物体の内部状態を観察する
ことができ、非破壊検査等に好適な超音波装置を
提供することができる。なお、本発明では、周波
数を変化させることにより、θ1を一定としながら
θ2を調節し、第1図の点P2を移動させることがで
きるので、単に物体内部の一点の観察のみでな
く、物体内部を広い範囲にわたつて観察すること
ができる。
As explained above, according to the present invention, by using ultrasonic beams emitted in two directions, it is possible to observe the internal state of an optically opaque object, which is suitable for non-destructive inspection, etc. It is possible to provide an ultrasonic device. In addition, in the present invention, by changing the frequency, it is possible to adjust θ 2 while keeping θ 1 constant and move point P 2 in Fig. 1, so it is not only possible to observe a single point inside an object. , it is possible to observe the inside of an object over a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波装置の一実施例を
示す図、第2図はインターデイジタル電極の具体
例を示す図、第3図は線波源からの漏れ表面波−
水中超音波励極モデルを示す図、第4図は固液界
面における波数整合を示す図、第5図は水中超音
波放射角の周波数依存性を示す図、第6図は本発
明による超音波装置における送受波用のインター
デイジタル電極で変換された送受信号波形とゲー
ト回路を介した2つの信号波形を示す図である。 1……圧電体、2,3……インターデイジタル
電極、4……液体、5……観察物体。
FIG. 1 is a diagram showing an embodiment of an ultrasonic device according to the present invention, FIG. 2 is a diagram showing a specific example of an interdigital electrode, and FIG. 3 is a diagram showing a surface wave leaking from a line wave source.
Figure 4 shows the underwater ultrasound excitation model, Figure 4 shows the wave number matching at the solid-liquid interface, Figure 5 shows the frequency dependence of the underwater ultrasound radiation angle, and Figure 6 shows the ultrasound according to the present invention. FIG. 2 is a diagram showing a transmitting/receiving signal waveform converted by an interdigital electrode for transmitting and receiving waves in the device and two signal waveforms via a gate circuit. 1... Piezoelectric body, 2, 3... Interdigital electrode, 4... Liquid, 5... Observation object.

Claims (1)

【特許請求の範囲】[Claims] 1 一面にインターデイジタル電極を有する板状
圧電体の、該インターデイジタル電極を有する面
を液体に接して配置し、前記電極へf≠Vs/d
(fは励振周波数、Vsは圧電体上の表面波速度、
dはインターデイジタル電極の電極周期)の交流
信号の印加で液体中の2方向に超音波ビームを発
生させ、当該2方向のうち一方向の超音波ビーム
を観察物体表面に、他方向の超音波ビームを観察
物体の内部にそれぞれ集束させ、観察物体の表面
から反射してくる第1の反射波、及び観察物体の
内部から反射してくる第2の反射波を共に前記イ
ンターデイジタル電極で受波し、前記第1の反射
波を基準として前記第1と第2の反射波の位相差
を検出することにより、前記位相差に基づき前記
観察物体の内部の弾性的性質の変化分としての前
記観察物体の音響像を得ることを特徴とする超音
波装置。
1 Place the surface of a plate-shaped piezoelectric body having interdigital electrodes on one surface in contact with a liquid, and apply f≠V s /d to the electrodes.
(f is the excitation frequency, V s is the surface wave velocity on the piezoelectric material,
Ultrasonic beams are generated in two directions in the liquid by applying an alternating current signal (d is the electrode period of the interdigital electrode), and the ultrasonic beam in one of the two directions is applied to the surface of the observed object, while the ultrasonic beam in the other direction is applied to the surface of the observed object. The beams are respectively focused inside the observation object, and the first reflected wave reflected from the surface of the observation object and the second reflected wave reflected from the inside of the observation object are both received by the interdigital electrode. By detecting a phase difference between the first and second reflected waves using the first reflected wave as a reference, the observation as a change in the elastic properties inside the observation object is performed based on the phase difference. An ultrasonic device characterized by obtaining an acoustic image of an object.
JP56121361A 1981-08-04 1981-08-04 Ultrasonic wave device Granted JPS5822978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56121361A JPS5822978A (en) 1981-08-04 1981-08-04 Ultrasonic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56121361A JPS5822978A (en) 1981-08-04 1981-08-04 Ultrasonic wave device

Publications (2)

Publication Number Publication Date
JPS5822978A JPS5822978A (en) 1983-02-10
JPH045290B2 true JPH045290B2 (en) 1992-01-31

Family

ID=14809345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56121361A Granted JPS5822978A (en) 1981-08-04 1981-08-04 Ultrasonic wave device

Country Status (1)

Country Link
JP (1) JPS5822978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160115284A (en) 2015-03-26 2016-10-06 이소현 3-dimensional shape processing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088700U (en) * 1983-11-24 1985-06-18 ティーディーケイ株式会社 Surface acoustic wave single probe
DE3409929A1 (en) * 1984-03-17 1985-09-26 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar METHOD FOR THE DISPLAY OF ELASTIC PARAMETERS IN OBJECT SURFACES
JPS6291857A (en) * 1985-10-18 1987-04-27 Koji Toda Ultrasonic imaging system
JP2673289B2 (en) * 1987-05-27 1997-11-05 耕司 戸田 Ultrasonic device
JP2683719B2 (en) * 1987-06-03 1997-12-03 耕司 戸田 Ultrasound imaging device
JPS63302361A (en) * 1987-06-03 1988-12-09 Koji Toda Ultrasonic scanning apparatus
JP4738621B2 (en) * 2001-04-09 2011-08-03 セイコーインスツル株式会社 Pulse detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICROSCOPE LENS USING CONVERSION OF RAYLEIGH TO COMPRESSIONAL WAVES *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160115284A (en) 2015-03-26 2016-10-06 이소현 3-dimensional shape processing method

Also Published As

Publication number Publication date
JPS5822978A (en) 1983-02-10

Similar Documents

Publication Publication Date Title
JPS61110050A (en) Ultrasonic probe
JPH0525045B2 (en)
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
JPH045290B2 (en)
US4101852A (en) Microacoustic shear bulk wave device
RU2814451C1 (en) Dual-mode electroacoustic transducer
US3004425A (en) Signal-transmitting and receiving system
SU1146595A1 (en) Ultrasonic scanning device
JPH0280924A (en) Apparatus for measuring propagation velocity of surface wave
SU1265597A2 (en) Method for visualization of acoustic fields in solid-state acoustic lines
JPH0432726A (en) Hydrophone
SU392357A1 (en) FAQ
JPH0731169Y2 (en) Ultrasonic probe
JPH0235935B2 (en)
KR20200105327A (en) Probe for measuring crack depth of concrete structure using ultrasound
JPH06281634A (en) Ultrasonic probe
JPS59173747A (en) Composite ultrasonic probe
JPH06113398A (en) Sound wave transducer element
JP4035707B2 (en) Ultrasonic velocity measuring device
RU2499254C2 (en) Ultrasonic immersion multi-sectional combined piezoelectric converter
SU832452A1 (en) Device for receiving and registering signals at ultrasonic inspection
JP2673289B2 (en) Ultrasonic device
Kikuchi et al. Study on IDT for acoustic imaging uses
SU1530983A1 (en) Wide-band piezoelectric transducer
SU1314235A1 (en) Method and apparatus for measuring sound velocity