JP2563452B2 - Ultrasonic stress measurement probe - Google Patents

Ultrasonic stress measurement probe

Info

Publication number
JP2563452B2
JP2563452B2 JP63056904A JP5690488A JP2563452B2 JP 2563452 B2 JP2563452 B2 JP 2563452B2 JP 63056904 A JP63056904 A JP 63056904A JP 5690488 A JP5690488 A JP 5690488A JP 2563452 B2 JP2563452 B2 JP 2563452B2
Authority
JP
Japan
Prior art keywords
wave oscillator
transverse wave
probe
plate
transverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63056904A
Other languages
Japanese (ja)
Other versions
JPH01229925A (en
Inventor
晃明 笠原
憲武 小口
智紀 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP63056904A priority Critical patent/JP2563452B2/en
Publication of JPH01229925A publication Critical patent/JPH01229925A/en
Application granted granted Critical
Publication of JP2563452B2 publication Critical patent/JP2563452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波を利用して鉄鋼構造部材の応力を測
定する際に使用される超音波応力測定用探触子に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to an ultrasonic stress measurement probe used when measuring stress of a steel structural member using ultrasonic waves.

[従来の技術] 超音波応力測定の基本原理は第3図に示すように、測
定したい同一のスポットにおいて縦波及び主応力(被測
定体)方向に振動する2つの横波の伝播時間(TL:縦波
Tsn:σh方向に振動する横波)を測定する。この時各
々の伝播時間と主応力の間には次の関係式が成立する。
[Prior Art] The basic principle of ultrasonic stress measurement is, as shown in Fig. 3, the propagation time (T L of two transverse waves oscillating in the longitudinal wave and the principal stress (measurement object) direction at the same spot to be measured). :longitudinal wave
T sn : Transverse wave oscillating in the σ h direction) is measured. At this time, the following relational expression holds between each propagation time and the principal stress.

k1、k2、α1、α2:材料定数 そこで、従来はこの測定に縦波探触子で先ずTLを測定
し、次に横波探触子で振動方向をσ1、σ2方向に変えて
TS1、TS2を測定している。
k 1, k 2, α 1 , α 2: material constant Therefore, conventionally measured first T L in longitudinal wave probe in this measurement, then 1 vibration direction sigma in transverse probe, sigma 2 directions Change to
Measuring T S1 and T S2 .

[従来技術の問題点] 通常、伝播時間を測定する際、試料と探触子の間に超
音波を効果的に伝播させるために接触媒質と呼ばれる液
体を挿入している。
[Problems of Prior Art] Usually, when measuring the propagation time, a liquid called a couplant medium is inserted between the sample and the probe in order to effectively propagate the ultrasonic wave.

このため、従来の方法では、毎回探触子を変えるため
に、接触媒質の膜厚が変ってしまい、高精度な測定がで
きず、例えばその誤差は応力換算で10〜30kg/mm2にも達
するという問題がある。
For this reason, in the conventional method, since the probe is changed every time, the film thickness of the contact medium changes, and highly accurate measurement cannot be performed.For example, the error is 10 to 30 kg / mm 2 in terms of stress conversion. There is a problem of reaching.

本発明は斯かる点に鑑みて提案されるもので、従来例
に比較してその測定誤差の小さい超音波応力測定用探触
子を提案するのが目的である。
The present invention is proposed in view of such a point, and an object thereof is to propose a probe for ultrasonic stress measurement having a smaller measurement error than the conventional example.

[問題点を解決するための手段] 本発明は、上記問題点を解決する手段として、被測定
体側から順に保護板第1横波振動子、第1遮閉板、第2
横波振動子、第2遮閉板、縦波振動子、ダンパーを配置
し、かつ前記第1、第2遮閉板の板厚を横波波長の1/4
〜1/10に設定して成る超音波応力測定用探触子を提案す
る。
[Means for Solving the Problems] As means for solving the above problems, the present invention provides a protection plate, a first transverse wave oscillator, a first shielding plate, and a second shielding plate in order from the measured object side.
A transverse wave oscillator, a second shielding plate, a longitudinal wave oscillator, and a damper are arranged, and the plate thickness of the first and second shielding plates is set to 1/4 of the transverse wave wavelength.
We propose a probe for ultrasonic stress measurement, which is set to ~ 1/10.

[作用] 上記探触子においては、被計測体上に定置し、先ず第
1横波振動子を励起し、次に第2横波振動子を励起して
2種類の横波を発生させ、次に縦波振動子を励起して縦
波を発生させ、夫々の伝播時間を計測し、この結果から
前記関係式を用いて被計測体の応力を計測するもので、
第1遮閉板及び第2遮閉板は第1横波振動子及び第2横
波振動子で発生した機械的な振動が後方(上方)に伝わ
るのを抑える。但し、超音波は伝播する。
[Operation] In the above-mentioned probe, the probe is placed on the object to be measured, first the first transverse wave oscillator is excited, then the second transverse wave oscillator is excited to generate two kinds of transverse waves, and then the longitudinal wave is generated. A wave oscillator is excited to generate a longitudinal wave, each propagation time is measured, and the stress of the object to be measured is measured using the above relational expression from this result.
The first blocking plate and the second blocking plate suppress the mechanical vibration generated in the first transverse wave oscillator and the second transverse wave oscillator from being transmitted backward (upward). However, ultrasonic waves propagate.

なお、第1、第2遮閉板の板厚は振動は止め、超音波
は伝播することが条件であり、この条件を満足する値と
しては横波波長の1/4〜1/10が実用範囲で、好ましくは1
/8程度が最適である。このデータは第2図に示されてい
る。
Note that the thickness of the first and second shielding plates must be such that vibration is stopped and ultrasonic waves propagate, and a value satisfying this condition is 1/4 to 1/10 of the transverse wave wavelength in the practical range. And preferably 1
/ 8 is the best. This data is shown in FIG.

[実施例] 第1図は上記本発明に係る探触子の構造を示すもの
で、符号の1は振動子を保護し、被測定体表面と直接接
触する前面保護板である。
[Embodiment] FIG. 1 shows the structure of the probe according to the present invention. Reference numeral 1 is a front protection plate that protects the vibrator and is in direct contact with the surface of the object to be measured.

2は前記関係式のS1測定用の第1横波振動子、3は前
記関係式のS2測定用の第2横波振動子、4は第1、第2
横波振動子2、3間にあって、第1横波振動子2の振動
の残響を抑え、かつ電気的な絶縁を保証する第1遮閉板
である。
2 is the first shear wave oscillator for measuring S 1 of the relational expression, 3 is the second shear wave oscillator for measuring S 2 of the relational expression, 4 is the first and second
The first shield plate is located between the transverse wave oscillators 2 and 3 and suppresses reverberation of the vibration of the first transverse wave oscillator 2 and ensures electrical insulation.

5は縦波振動子、6は第2横波振動子3と縦波振動子
5間にあって、第2横波振動子3の残響を抑え、かつ電
気的な絶縁を保障する第2遮閉板にして、第1、第2遮
閉板4、6ともにその板厚は横波波長(S1、S2)の1/8
である。
Reference numeral 5 is a longitudinal wave oscillator, and 6 is a second shielding plate which is located between the second transverse wave oscillator 3 and the longitudinal wave oscillator 5 and which suppresses reverberation of the second transverse wave oscillator 3 and ensures electrical insulation. , The thickness of both the first and second shielding plates 4 and 6 is 1/8 of the transverse wave wavelength (S 1 , S 2 ).
Is.

7は縦波振動子5の残響を抑えるダンパー、8は第
1、第2横波振動子2、3及び縦波振動子5の両面に貼
着された電極にして、この電極8から夫々の振動子に電
気信号が入力されると共に振動子の振動を電気信号とし
て取り出すことができる。
Reference numeral 7 is a damper for suppressing reverberation of the longitudinal wave oscillator 5, and 8 is electrodes attached to both surfaces of the first and second transverse wave oscillators 2 and 3, and the longitudinal wave oscillator 5, and the respective vibrations from the electrode 8 are performed. An electric signal is input to the child, and the vibration of the vibrator can be taken out as an electric signal.

表1は各振動子の配置例に基づく超音波の受信感度を
示すもので、第1、第2横波振動子、そしてこの次に縦
波振動子が配置される例が最も良好である。
Table 1 shows the ultrasonic wave reception sensitivities based on the arrangement example of each transducer, and the example in which the first and second transverse wave transducers and then the longitudinal wave transducer are arranged is the best.

上記探触子を用いて鉄鋼構造部材に作用する応力を測
定する例を次に説明する。
An example of measuring the stress acting on the steel structural member using the probe will be described below.

まず、鉄鋼構造部材の表面に探触子を置く。この際
は、探触子の前面保護板1との間に挟雑物がないように
注意することが必要である。次に、第1横波振動子2に
対して電気信号を送り、この振動子2を励起させて超音
波を発生し、鉄鋼構造部材底面から反射して来た振動を
電極8から電気信号として取り込む。
First, the probe is placed on the surface of the steel structural member. At this time, it is necessary to take care so that there is no foreign matter between the probe and the front protective plate 1. Next, an electric signal is sent to the first transverse wave oscillator 2 to excite the oscillator 2 to generate ultrasonic waves, and the vibration reflected from the bottom surface of the steel structural member is captured as an electric signal from the electrode 8. .

同じように第2横波振動子3を励起すると共に鉄鋼構
造部材からの反射振動を電気信号として取り込む。
Similarly, the second transverse wave oscillator 3 is excited and the reflected vibration from the steel structural member is captured as an electric signal.

次に、縦波振動子5に対しても電極8から電気信号を
入力し、これを振起させて超音波を発生させ、鉄鋼構造
部材からの反射振動を電極8にて電気信号として取り込
み、これらのデータを基に前記関係式を用いて鉄鋼構造
部材に作用する応力を求める。
Next, an electric signal is input to the longitudinal wave oscillator 5 from the electrode 8 as well, and this is agitated to generate ultrasonic waves, and the reflected vibration from the steel structural member is taken in as an electric signal at the electrode 8. Based on these data, the stress acting on the steel structural member is obtained using the above relational expression.

[本発明の効果] 本発明は以上のように、探触子において、第1横波振
動子の次に第2横波振動子を、更にその次に縦波振動子
を配置し、更にこれらの振動子の間に振動の残響を抑
え、超音波は通す構造の第1、第2遮閉板を配置した。
[Advantages of the Present Invention] As described above, the present invention arranges the second transverse wave oscillator next to the first transverse wave oscillator, and further the longitudinal wave oscillator next to the first transverse wave oscillator in the probe. The first and second shield plates having a structure that suppresses the reverberation of vibrations and allows ultrasonic waves to pass through are arranged between the children.

この結果、夫々の振動子の励起時に他の振動子が影響
を受けて励起され、2種類或いは3種類の波が発生する
ということがないので、探触子を三層構造となし、同一
ポイントでの測定が可能であるから、受信感度が高くな
り、測定誤差の発生が殆どない。
As a result, when the respective oscillators are excited, the other oscillators are not influenced and excited to generate two kinds or three kinds of waves, so that the probe has a three-layer structure and the same point. Since the measurement can be performed at, the receiving sensitivity is high and the measurement error hardly occurs.

又、同一ポイントにおいて測定ができるため、従来の
ように接触媒質の膜厚が変ってこの点から測定誤差が生
じてしまうという虞れもない。
Further, since the measurement can be performed at the same point, there is no possibility that the film thickness of the couplant changes as in the conventional case and a measurement error occurs from this point.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る探触子の説明図、第2図は遮閉板
の板厚と波長比に対する受信感度の説明図、第3図は超
音波応力測定の原理説明図である。 1……前面保護板 2……第1横波振動子 3……第2横波振動子 4……第1遮閉板 5……縦波振動子 6……第2遮閉板 7……ダンパー 8……電極
FIG. 1 is an explanatory diagram of a probe according to the present invention, FIG. 2 is an explanatory diagram of receiving sensitivity with respect to a plate thickness of a shielding plate and a wavelength ratio, and FIG. 3 is an explanatory diagram of principles of ultrasonic stress measurement. 1 ... Front protection plate 2 ... First transverse wave oscillator 3 ... Second transverse wave oscillator 4 ... First blocking plate 5 ... Longitudinal wave oscillator 6 ... Second blocking plate 7 ... Damper 8 ……electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定体側から順に保護板、第1横波振動
子、第1遮閉板、第2横波振動子、第2遮閉板、縦波振
動子、ダンパーを配置し、かつ前記第1、第2遮閉板の
板厚を横波波長の1/4〜1/10に設定して成る超音波応力
測定用探触子。
1. A protective plate, a first transverse wave oscillator, a first shield plate, a second transverse wave oscillator, a second shield plate, a longitudinal wave oscillator, and a damper are arranged in this order from the side of the object to be measured, and the first plate is arranged. A probe for ultrasonic stress measurement, which is configured by setting the plate thicknesses of the first and second shielding plates to 1/4 to 1/10 of the transverse wave wavelength.
【請求項2】第1、第2遮閉板は振動の残響を抑え、電
気的な絶縁を保障する材質で作られていることを特徴と
する請求項1記載の超音波応力測定用探触子。
2. The ultrasonic stress measuring probe according to claim 1, wherein the first and second shielding plates are made of a material that suppresses reverberation of vibration and ensures electrical insulation. Child.
JP63056904A 1988-03-09 1988-03-09 Ultrasonic stress measurement probe Expired - Fee Related JP2563452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056904A JP2563452B2 (en) 1988-03-09 1988-03-09 Ultrasonic stress measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056904A JP2563452B2 (en) 1988-03-09 1988-03-09 Ultrasonic stress measurement probe

Publications (2)

Publication Number Publication Date
JPH01229925A JPH01229925A (en) 1989-09-13
JP2563452B2 true JP2563452B2 (en) 1996-12-11

Family

ID=13040437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056904A Expired - Fee Related JP2563452B2 (en) 1988-03-09 1988-03-09 Ultrasonic stress measurement probe

Country Status (1)

Country Link
JP (1) JP2563452B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489564A (en) * 1990-08-01 1992-03-23 Mitsubishi Electric Corp Vertical ultrasonic probe
JP6362533B2 (en) * 2013-12-24 2018-07-25 株式会社神戸製鋼所 Residual stress evaluation method and residual stress evaluation apparatus
JP6581462B2 (en) * 2015-10-15 2019-09-25 株式会社日立製作所 Ultrasonic inspection equipment
CN106370731A (en) * 2016-09-09 2017-02-01 中国石油大学(华东) Ultrasonic longitudinal and shear wave-resistivity integrated type probe for rock physical experiment

Also Published As

Publication number Publication date
JPH01229925A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JPS61110050A (en) Ultrasonic probe
Dunegan Modal analysis of acoustic emission signals
Woods et al. Evaluation of a novel surface acoustic wave gyroscope
US4680967A (en) Ultrasonic angle test probe having at least two transducers
JP2563452B2 (en) Ultrasonic stress measurement probe
US3946256A (en) System for generating or sensing transverse elastic bulk waves in solids
US3004425A (en) Signal-transmitting and receiving system
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
SU1594416A1 (en) Transducer of impedance flaw detector
JP2978708B2 (en) Composite angle beam probe
JPS637846Y2 (en)
JPS6133514B2 (en)
JPH0627091A (en) Ultrasonic probe
JP3959532B2 (en) Ultrasonic contact position detector
JPS59178379A (en) Ultrasonic probe
JPS5991798A (en) Ultrasonic wave probe
Gachagan et al. Piezoelectric materials for application in low profile interdigital transducer designs
Challis et al. Acoustic wave velocities in ceramics and other materials measured by a broadband goniometric method
JPH0627089A (en) Velocity measuring apparatus for surface acoustic wave
SU1530983A1 (en) Wide-band piezoelectric transducer
Scandelari et al. A sensor for liquids characterization based on elastic surface waves generated with a P (VF2-VF3) film in a non-piezoelectric media
JPH07270226A (en) Acoustoelectric effect type ultrasonic transducer
SU894554A2 (en) Monitoring wave-guide ultrasound receiver
SU1298639A1 (en) Method of measuring angle of introducing vibrations in material
SU1668931A1 (en) Method of measuring ultrasonic oscillation inlet angle of inclined transducers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees