JP2007205959A - Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method - Google Patents

Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method Download PDF

Info

Publication number
JP2007205959A
JP2007205959A JP2006026611A JP2006026611A JP2007205959A JP 2007205959 A JP2007205959 A JP 2007205959A JP 2006026611 A JP2006026611 A JP 2006026611A JP 2006026611 A JP2006026611 A JP 2006026611A JP 2007205959 A JP2007205959 A JP 2007205959A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic flaw
ultrasonic
probe unit
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006026611A
Other languages
Japanese (ja)
Inventor
Fumitaka Machida
文孝 町田
Yoshifumi Iwata
祥史 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP2006026611A priority Critical patent/JP2007205959A/en
Publication of JP2007205959A publication Critical patent/JP2007205959A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe unit for an ultrasonic flaw detector which inspects satisfactorily a defective part, without using a "single reflection method", even when the defective part to be subjected to ultrasonic flaw detection exists as a surface crack of an inspected object and even when an obstacle exists on a face, and also to provide a method of estimating a crack depth by an ultrasonic flaw detection method. <P>SOLUTION: The probe unit 1 for the ultrasonic flaw detector is provided with a transmitting probe 1a and a receiving probe 1b, and the transmitting probe 1a is arranged in the probe unit 1 to incline a sound axis 2a to a receiving probe 1b side. This method of estimating the crack depth by the ultrasonic flaw detection method uses the probe unit 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超音波探傷装置用の探触子ユニット、及び、超音波探傷法によるき裂深さの推測方法に関するものである。   The present invention relates to a probe unit for an ultrasonic flaw detection apparatus and a crack depth estimation method using an ultrasonic flaw detection method.

従来より、被検査体を破壊することなく、当該被検査体の内部を検査する方法として、超音波探傷法が知られている。超音波探傷法は、被検査体の表面に、超音波を送受信する探触子を密着させて移動させながら、反射波をモニターにて確認することによって、被検査体内部の検査を行う方法である。   Conventionally, an ultrasonic flaw detection method is known as a method for inspecting the inside of an inspection object without destroying the inspection object. The ultrasonic flaw detection method is a method for inspecting the inside of an inspection object by checking a reflected wave on a monitor while bringing a probe for transmitting and receiving ultrasonic waves into close contact with the surface of the inspection object and moving it. is there.

図3は、この超音波探傷法によって、被検査体10を検査する様子を示したものである。尚、本図において、11は超音波探傷装置用の探触子を、13は被検査体10内に存在する欠陥部を、14は探触子11から発信された超音波を、また、θは超音波14の入射角をそれぞれ示している。   FIG. 3 shows a state in which the inspection object 10 is inspected by this ultrasonic flaw detection method. In this figure, 11 is a probe for an ultrasonic flaw detector, 13 is a defective portion existing in the inspection object 10, 14 is an ultrasonic wave transmitted from the probe 11, and θ Respectively indicate the incident angles of the ultrasonic waves 14.

この超音波探傷法では、まず、被検査体10の下側面に探触子11を接触させ、この探触子11より、所定の入射角θで超音波14を発信する。次に、この超音波14の反射波を探触子11によって受信し、超音波の発信から受信までに要した時間に基づいて、探触子11から欠陥部13までの距離Wを割り出す。   In this ultrasonic flaw detection method, first, the probe 11 is brought into contact with the lower surface of the object 10 to be inspected, and the ultrasonic wave 14 is transmitted from the probe 11 at a predetermined incident angle θ. Next, the reflected wave of the ultrasonic wave 14 is received by the probe 11, and the distance W from the probe 11 to the defect portion 13 is determined based on the time required from the transmission of the ultrasonic wave to the reception.

そして、この距離W、計測の基準となる位置(基準位置)Rから探触子11までの距離y、及び、超音波14の入射角θそれぞれの値に基づいて計算を行うことによって、基準位置Rから欠陥部13までの距離X、及び、欠陥部13の深さDを求める。このようにして、欠陥部13の位置を特定する。   Then, a calculation is performed based on the distance W, the distance y from the position (reference position) R serving as a measurement reference to the probe 11, and the values of the incident angle θ of the ultrasonic wave 14, thereby calculating the reference position. A distance X from R to the defective portion 13 and a depth D of the defective portion 13 are obtained. In this way, the position of the defective portion 13 is specified.

特開2004−333387号公報JP 2004-333387 A

ところで、このような超音波探傷法において、図4に示したように、欠陥部13が被検査体10の表面き裂として存在し、且つ、当該表面上に障害物15が存在する場合には、探触子11から発信する超音波14の入射角θが小さいと、超音波14が欠陥部13に当らず、欠陥部13からの反射波を得られないため、探傷検査を行うことができない。そのため、このような場合は、超音波14の入射角θを大きくして(入射角θを浅くして)超音波を発信し、探傷検査を行う必要がある。   By the way, in such an ultrasonic flaw detection method, as shown in FIG. 4, when the defect portion 13 exists as a surface crack of the inspection object 10 and the obstacle 15 exists on the surface. When the incident angle θ of the ultrasonic wave 14 transmitted from the probe 11 is small, the ultrasonic wave 14 does not hit the defect part 13 and a reflected wave from the defect part 13 cannot be obtained, so that the flaw detection inspection cannot be performed. . Therefore, in such a case, it is necessary to increase the incident angle θ of the ultrasonic wave 14 (decrease the incident angle θ), transmit the ultrasonic wave, and perform a flaw detection inspection.

しかしながら、入射角θを大きして超音波探傷をすると、図5に示したように、被検査体10の表面に表面波17が発生し、これが障害物15に当ることによって生じる反射波が、欠陥部13からの反射波に干渉する。その結果、欠陥部13からの反射波を弱めてしまうため、欠陥部13からの反射波を探触子11において好適に受信できず、正確な探傷検査を行えないという問題があった。   However, when ultrasonic flaw detection is performed by increasing the incident angle θ, a surface wave 17 is generated on the surface of the inspection object 10 as shown in FIG. It interferes with the reflected wave from the defective part 13. As a result, since the reflected wave from the defect portion 13 is weakened, the reflected wave from the defect portion 13 cannot be suitably received by the probe 11, and there is a problem that an accurate flaw detection inspection cannot be performed.

尚、このような場合、「一回反射法」を利用した検査方法、すなわち、図6(a)に示したように、発信した超音波14を、探触子11を接触させた面の反対側面に反射させることによって、超音波探傷を行う方法も考えられる。だが、この一回反射法は、図6(b)に示すように、超音波を反射させようとする面が平滑ではない場合には、超音波が散乱してしまい、好適に実施できないという問題がある。   In such a case, the inspection method using the “single reflection method”, that is, as shown in FIG. 6A, the transmitted ultrasonic wave 14 is opposite to the surface on which the probe 11 is contacted. A method of performing ultrasonic flaw detection by reflecting on the side surface is also conceivable. However, as shown in FIG. 6B, this single reflection method cannot be suitably implemented because the ultrasonic waves are scattered when the surface to which the ultrasonic waves are reflected is not smooth. There is.

本発明は、このような従来の超音波探傷法における問題を解決すべくなされたものであって、欠陥部が被検査体の表面き裂として存在し、且つ、当該面上に障害物が存在する場合であっても、「一回反射法」を利用することなく、当該欠陥部を好適に検査できる超音波探傷装置用の探触子ユニット、及び、超音波探傷法によるき裂深さの推測方法を提供することを目的とする。   The present invention has been made to solve such a problem in the conventional ultrasonic flaw detection method, in which the defect exists as a surface crack of the object to be inspected, and an obstacle exists on the surface. Even if it is a case, the probe unit for an ultrasonic flaw detector capable of suitably inspecting the defect without using the “single reflection method”, and the crack depth by the ultrasonic flaw detection method The purpose is to provide an estimation method.

そのための手段として、本発明に係る超音波探傷装置用の探触子ユニットは、発信用探触子と受信用探触子とを備えたものであって、前記発信用探触子は、そこから発信される超音波の入射角が78°以上88°以下である斜角探触子であって、その音軸が前記受信用探触子側に傾いて当該探触子ユニットに配置されていることを特徴としている。   As a means therefor, a probe unit for an ultrasonic flaw detector according to the present invention comprises a transmitting probe and a receiving probe, and the transmitting probe is there. An oblique angle probe having an incident angle of ultrasonic waves transmitted from 78 ° to 88 °, the sound axis of which is inclined to the receiving probe side and disposed in the probe unit. It is characterized by being.

また、本発明に係る超音波探傷法によるき裂深さの推測方法は、発信用探触子と受信用探触子とを備えた探触子ユニットを人工的にき裂を設けた模擬試験片に接触させた後、当該模擬試験片へ78°以上88°以下の入射角で前記発信用探触子より超音波を発信してから、当該超音波の反射波を前記受信用探触子で受信し、当該受信した反射波の強度から前記強度標準値を求め、その後に、前記探触子ユニットを被検査体に接触させた後、前記被検査体へ78°以上88°以下の入射角で前記発信用探触子より超音波を発信してから、当該超音波の反射波を前記受信用探触子で受信し、当該受信した反射波の強度を、求めてた強度標準値と比較対照することによって、被検査体に存在しているき裂の深さを推測することを特徴としている。   In addition, the method for estimating the crack depth by the ultrasonic flaw detection method according to the present invention is a simulation test in which a probe unit including a transmitting probe and a receiving probe is artificially provided with a crack. After contacting the piece, an ultrasonic wave is transmitted from the transmitting probe to the simulation test piece at an incident angle of 78 ° to 88 °, and then the reflected wave of the ultrasonic wave is transmitted to the receiving probe. The intensity standard value is obtained from the intensity of the received reflected wave, and after that, the probe unit is brought into contact with the object to be inspected, and then incident on the object to be inspected at 78 ° to 88 °. After transmitting an ultrasonic wave from the transmitting probe at a corner, the reflected wave of the ultrasonic wave is received by the receiving probe, and the intensity of the received reflected wave is obtained with the obtained intensity standard value and By comparing and contrasting, the depth of the crack existing in the object to be inspected is estimated.

尚、本発明に係る探触子ユニット、及び、超音波探傷法によるき裂深さの推測方法において、受信用探触子の音軸を、前記発信用探触子の音軸と10°以上30°以下の範囲内で交差するように、当該探触子ユニットに配置した場合には、より一層、受信用探触子での受信効率を高めることができる。   In the probe unit according to the present invention and the crack depth estimation method based on the ultrasonic flaw detection method, the sound axis of the receiving probe is set to be 10 ° or more with the sound axis of the transmitting probe. When arranged in the probe unit so as to intersect within a range of 30 ° or less, the receiving efficiency of the receiving probe can be further improved.

本発明に係る超音波探傷装置用の探触子ユニット、及び、超音波探傷法によるき裂深さの推測方法によれば、被検査体の表面き裂が存在し、且つ、当該面上に障害物が存在する場合であっても、「一回反射法」を利用することなく、当該き裂の深さを好適に探傷検査することができる。   According to the probe unit for an ultrasonic flaw detector according to the present invention and the crack depth estimation method by the ultrasonic flaw detection method, the surface crack of the object to be inspected exists and on the surface. Even if there is an obstacle, the crack depth can be suitably inspected without using the “single reflection method”.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。図1は、本実施形態に係る探触子ユニット1を真上から見た様子を示したものである。探触子ユニット1は、超音波を発信するための発信用探触子1aと、発信された超音波の反射波を受信するための受信用探触子1bとから構成される。尚、本図において、2aは発信用探触子の音軸を、2bは受信用探触子の音軸をそれぞれ示している。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 shows a state in which the probe unit 1 according to this embodiment is viewed from directly above. The probe unit 1 includes a transmitting probe 1a for transmitting ultrasonic waves and a receiving probe 1b for receiving reflected waves of the transmitted ultrasonic waves. In this figure, 2a indicates the sound axis of the transmitting probe, and 2b indicates the sound axis of the receiving probe.

図示されているように、探触子ユニット1において、発信用探触子1aの音軸2aは、受信用探触子1bでの受信効率を高めるため、受信用探触子1b側に傾いて配置されている。尚、この場合において、発信用探触子1aの音軸2aと受信用探触子1bの音軸2bとの交差角αは、10°以上30°以下(20°±10°)とすることが好ましい。これは、交差角αをこの範囲内とすることが、経験則上、最も受信効率が良いとされているからである。   As shown in the figure, in the probe unit 1, the sound axis 2a of the transmitting probe 1a is inclined toward the receiving probe 1b in order to increase the receiving efficiency of the receiving probe 1b. Has been placed. In this case, the crossing angle α between the sound axis 2a of the transmitting probe 1a and the sound axis 2b of the receiving probe 1b should be 10 ° to 30 ° (20 ° ± 10 °). Is preferred. This is because setting the crossing angle α within this range is based on an empirical rule that reception efficiency is the best.

そして、探触子ユニット1が備える発信用探触子1aは、斜め前方に超音波を発信する斜角探触子であって、78°以上88°以下という、一般的な探触子よりも浅い入射角で超音波を発信するようになっている。   And the probe 1a for transmission with which the probe unit 1 is provided is an oblique probe which transmits an ultrasonic wave diagonally forward, Comprising: Compared with the general probe which is 78 degrees or more and 88 degrees or less. Ultrasound is transmitted at a shallow incident angle.

尚、発信される超音波の入射角がこれだけ浅いと、表面波が発生し、その反射波との干渉によって欠陥部からの反射波が弱まってしまい、正確な探傷検査ができないとも考えられるが、本実施形態に係る探触子ユニット1では、発信用探触子1aと受信用探触子1bとが分かれて配置されている上、発信用探触子1aの音軸2aが、受信用探触子1b側に傾いて配置され、受信効率を高められるようになっているので、このような干渉が生じて欠陥部からの反射波が弱まっても、好適に探傷検査を行うことができる。   In addition, if the incident angle of the transmitted ultrasonic wave is so shallow, a surface wave is generated, and the reflected wave from the defect portion is weakened due to interference with the reflected wave, and it is considered that an accurate flaw detection inspection cannot be performed, In the probe unit 1 according to the present embodiment, the transmitting probe 1a and the receiving probe 1b are separately arranged, and the sound axis 2a of the transmitting probe 1a is used as the receiving probe. Since it is arranged to be inclined toward the contact 1b and the reception efficiency can be improved, even if such interference occurs and the reflected wave from the defective portion is weakened, the flaw detection inspection can be suitably performed.

次に、この探触子ユニット1を使用して、超音波探傷法によるき裂深さを推測する方法について説明する。図2は、探触子ユニット1を被検査体10の下側面に接触させ、超音波探傷を実施する様子を真横から示したものである。尚、本図において、3は被検査体10の下側面より生じたき裂を、4は発信用探触子1aから発信された超音波を、5は障害物を、θは、超音波4の入射角を、また、図中の斜線部は超音波4より拡がった超音波ビーム束をそれぞれ示している。   Next, a method for estimating the crack depth by the ultrasonic flaw detection method using the probe unit 1 will be described. FIG. 2 shows a state in which the probe unit 1 is brought into contact with the lower surface of the inspection object 10 and ultrasonic flaw detection is performed from the side. In this figure, 3 is a crack generated from the lower surface of the inspection object 10, 4 is an ultrasonic wave transmitted from the transmitting probe 1a, 5 is an obstacle, and θ is an ultrasonic wave 4. The incident angle, and the hatched portion in the figure indicates the ultrasonic beam bundle that has spread from the ultrasonic wave 4.

まず、図示されているように、探触子ユニット1を被検査体10に接触させたら、被検査体10へと超音波4を発信する。尚、ここで発信される超音波4は、発信用探触子1aより発信されるため、78°以上88°以下の入射角で発信される。   First, as shown in the drawing, when the probe unit 1 is brought into contact with the inspection object 10, the ultrasonic wave 4 is transmitted to the inspection object 10. In addition, since the ultrasonic wave 4 transmitted here is transmitted from the probe 1a for transmission, it is transmitted at an incident angle of 78 ° or more and 88 ° or less.

次に、き裂3に当たって返ってくる反射波を、受信用探触子1bで受信する(尚、図2において、受信用探触子1bは、発信用探触子1aの真後ろにあるため、図示されていない)。そして、受信用探触子1bで受信した反射波の強度を、予め求めてあった強度標準値(詳しくは後述)と比較対照することによって、被検査体に存在しているき裂の深さを推測する。   Next, the reflected wave that returns upon hitting the crack 3 is received by the receiving probe 1b (in FIG. 2, the receiving probe 1b is directly behind the transmitting probe 1a. Not shown). Then, by comparing and comparing the intensity of the reflected wave received by the receiving probe 1b with an intensity standard value obtained in advance (details will be described later), the depth of the crack existing in the object to be inspected. Guess.

尚、図2で示したように、超音波ビーム束の中心線上にき裂3が存在しないため、き裂3に当たって返ってくる反射波の強度は、非常に弱いものと認められるが、本実施形態に係る探触子ユニット1は、発信用探触子1aと受信用探触子1bとが分かれて配置されている上、発信用探触子1aの音軸2aが、受信用探触子1b側に傾いて配置され、受信効率を高められるようになっているので、このような弱いレベルの反射波であっても、的確に受信することができる。   As shown in FIG. 2, since the crack 3 does not exist on the center line of the ultrasonic beam bundle, it is recognized that the intensity of the reflected wave that hits the crack 3 is very weak. In the probe unit 1 according to the embodiment, the transmitting probe 1a and the receiving probe 1b are separately arranged, and the sound axis 2a of the transmitting probe 1a is set to be a receiving probe. Since it is arranged so as to be inclined toward the 1b side so that the reception efficiency can be improved, even such a weak reflected wave can be received accurately.

次に、先述した強度標準値を求める方法について説明する。まず最初に、様々な深さの人工的なき裂を設けた模擬試験片を用意する。ここで、各模擬試験片に設けるき裂は、後の比較対照時における誤差を少なくするため、実際に被検査体に生じ得るき裂と同様のものであることが好ましい。すなわち、放電加工機によって設けるスリット状の綺麗なき裂ではなく、力を加えて実際に被検査体を破壊し、この破壊によって生じるようなき裂を設けることが好ましい。   Next, a method for obtaining the above-described intensity standard value will be described. First, mock specimens with artificial cracks of various depths are prepared. Here, the crack provided in each simulated test piece is preferably the same as the crack that can actually occur in the object to be inspected in order to reduce the error during the subsequent comparison. That is, it is preferable to provide a crack that is not caused by a slit-like clean crack provided by an electric discharge machine, but is actually broken by applying force and caused by this breakage.

次に、各模擬試験片の表面に探触子ユニット1を接触させ、発信用探触子1aより超音波4を発信する。そして、人工的に設けたき裂からの反射波を受信用探触子1bで受信し、その受信した反射波の強度を各模擬試験片ごとに記録する。このようにして、様々な深さのき裂についての強度標準値を求める。   Next, the probe unit 1 is brought into contact with the surface of each simulation test piece, and the ultrasonic wave 4 is transmitted from the probe 1a for transmission. Then, the reflected wave from the artificially provided crack is received by the receiving probe 1b, and the intensity of the received reflected wave is recorded for each simulation test piece. In this way, standard strength values for cracks of various depths are obtained.

尚、強度標準値を求める際、あまりにも細かく、例えば、き裂深さ0.1mm毎に強度標準値を求めるのは多大な労力を要するので、記録した反射波の強度及び人工的に設けたき裂の深さの関係から相関曲線を作成し、これから詳細な強度標準値を求めても構わない。   When obtaining the strength standard value, it is too fine. For example, obtaining the strength standard value for every crack depth of 0.1 mm requires a lot of labor. A correlation curve may be created from the relationship of the crack depth, and a detailed strength standard value may be obtained therefrom.

また、この強度標準値は、必ずしも模擬試験片を用意して求める必要はない。例えば、過去に行った実際の検査データから信頼し得る標準値が求められるのであれば、それを使用しても良いし、また、コンピュータを使用したシミュレーションによって求めても構わない。   Moreover, it is not always necessary to prepare the strength standard value by preparing a mock test piece. For example, if a reliable standard value is obtained from actual inspection data performed in the past, it may be used, or may be obtained by simulation using a computer.

尚、以上の実施形態においては、発信用探触子1aと受信用探触子1bとが探触子ユニット1において密着して配置されているが、これらは必ずしも密着して配置されている必要はなく、それぞれの距離が一定となってれば、所定の間隔をあけて配置しても良く、また、前後にずれていても構わない。   In the above embodiment, the transmitting probe 1a and the receiving probe 1b are arranged in close contact with each other in the probe unit 1. However, they need to be arranged in close contact with each other. If the respective distances are constant, they may be arranged at a predetermined interval, or they may be shifted back and forth.

以上に説明したように、本発明に係る超音波探傷装置用の探触子ユニット、及び、超音波探傷法によるき裂深さの推測方法によれば、発信用探触子から発信される超音波の入射角が78°以上88°以下でと浅い入射角であるところ、発信用探触子と受信用探触子とが分かれて配置されている上、発信用探触子の音軸が、受信用探触子側に傾いて配置され受信効率を高められるようになっているので、被検査体の表面き裂が存在し、且つ、当該面上に障害物が存在する場合であっても、「一回反射法」を利用することなく、当該き裂の深さを好適に探傷検査することができる。   As described above, according to the probe unit for an ultrasonic flaw detector according to the present invention and the crack depth estimation method using the ultrasonic flaw detection method, the ultrasonic wave transmitted from the transmitter is transmitted. When the incident angle of the sound wave is a shallow incident angle of 78 ° or more and 88 ° or less, the transmitting probe and the receiving probe are arranged separately, and the sound axis of the transmitting probe is Since it is arranged to be inclined to the receiving probe side so as to improve the receiving efficiency, the surface crack of the object to be inspected exists and the obstacle exists on the surface. However, the crack depth can be suitably inspected without using the “single reflection method”.

本発明に係る探触子ユニット1を示した図。The figure which showed the probe unit 1 which concerns on this invention. 本発明に係る探触子ユニット1を利用して超音波探傷を実施する様子を示した図。The figure which showed a mode that ultrasonic testing was implemented using the probe unit 1 which concerns on this invention. 従来の超音波探傷法の説明図1。FIG. 1 is an explanatory diagram of a conventional ultrasonic flaw detection method. 従来の超音波探傷法の説明図2。FIG. 2 is an explanatory diagram of a conventional ultrasonic flaw detection method. 従来の超音波探傷法の説明図3。FIG. 3 is an explanatory diagram of a conventional ultrasonic flaw detection method. 従来の超音波探傷法の説明図4。FIG. 4 is an explanatory diagram of a conventional ultrasonic flaw detection method.

符号の説明Explanation of symbols

1 :探触子ユニット、
1a:発信用探触子、
1b:受信用探触子、
2a:発信用探触子1aの音軸、
2b:受信用探触子1bの音軸、
3 :き裂、
4 :超音波、
10:被検査体、
11:探触子、
13:欠陥部、
14:超音波、
15:障害物、
17:表面波、
α :発信用探触子1aの音軸2aと受信用探触子1bの音軸2bとの交差角、
θ :超音波の入射角
1: Probe unit,
1a: outgoing probe,
1b: reception probe,
2a: sound axis of the probe 1a for transmission,
2b: sound axis of the receiving probe 1b,
3: Crack,
4: Ultrasound,
10: Inspected object,
11: Probe,
13: defective part,
14: Ultrasound,
15: Obstacle,
17: surface wave,
α: intersection angle between the sound axis 2a of the transmitting probe 1a and the sound axis 2b of the receiving probe 1b,
θ: Angle of incidence of ultrasonic wave

Claims (5)

発信用探触子と受信用探触子とを備えた超音波探傷装置用の探触子ユニットであって、
前記発信用探触子は、そこから発信される超音波の入射角が78°以上88°以下である斜角探触子であって、その音軸が前記受信用探触子側に傾いて当該探触子ユニットに配置されていることを特徴とする超音波探傷装置用の探触子ユニット。
A probe unit for an ultrasonic flaw detector comprising a probe for transmission and a probe for reception,
The transmitting probe is an oblique probe in which an incident angle of an ultrasonic wave transmitted therefrom is 78 ° or more and 88 ° or less, and its sound axis is inclined to the receiving probe side. A probe unit for an ultrasonic flaw detector, which is disposed in the probe unit.
前記受信用探触子は、その音軸が、前記発信用探触子の音軸と10°以上30°以下の範囲内で交差するように、当該探触子ユニットに配置されていることを特徴とする請求項1に記載の超音波探傷装置用の探触子ユニット。   The receiving probe is arranged in the probe unit so that the sound axis thereof intersects the sound axis of the transmitting probe within a range of 10 ° to 30 °. The probe unit for an ultrasonic flaw detector according to claim 1, wherein the probe unit is an ultrasonic flaw detector. 発信用探触子と受信用探触子とを備えた探触子ユニットを被検査体に接触させた後、前記被検査体へ78°以上88°以下の入射角で前記発信用探触子より超音波を発信してから、当該超音波の反射波を前記受信用探触子で受信し、当該受信した反射波の強度を、予め求めてあった強度標準値と比較対照することによって、被検査体に存在しているき裂の深さを推測することを特徴とする、超音波探傷法によるき裂深さの推測方法。   After a probe unit having a transmitting probe and a receiving probe is brought into contact with an inspection object, the transmitting probe is incident on the inspection object at an incident angle of 78 ° to 88 °. After transmitting the ultrasonic wave more, the reflected wave of the ultrasonic wave is received by the receiving probe, and by comparing and contrasting the intensity of the received reflected wave with the intensity standard value obtained in advance, A method for estimating crack depth by an ultrasonic flaw detection method, wherein the depth of a crack existing in an object to be inspected is estimated. 前記探触子ユニットにおいて、前記発信用探触子及び前記受信用探触子が、それぞれの音軸が10°以上30°以下の範囲内で交差するように配置されていることを特徴とする、請求項3に記載の超音波探傷法によるき裂深さの推測方法。   In the probe unit, the transmitting probe and the receiving probe are arranged so that their sound axes intersect within a range of 10 ° to 30 °. A method for estimating crack depth by the ultrasonic flaw detection method according to claim 3. 前記探触子ユニットを、人工的にき裂を設けた模擬試験片に接触させた後、当該模擬試験片へ78°以上88°以下の入射角で前記発信用探触子より超音波を発信してから、当該超音波の反射波を前記受信用探触子で受信し、当該受信した反射波の強度から前記強度標準値を求めることを特徴とする、請求項3に記載の超音波探傷法によるき裂深さの推測方法。   After the probe unit is brought into contact with the artificial test piece provided with an artificial crack, ultrasonic waves are transmitted from the transmitting probe at an incident angle of 78 ° or more and 88 ° or less to the simulation test piece. The ultrasonic flaw detection according to claim 3, wherein the reflected wave of the ultrasonic wave is received by the receiving probe, and the intensity standard value is obtained from the intensity of the received reflected wave. Method for estimating crack depth by the method.
JP2006026611A 2006-02-03 2006-02-03 Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method Pending JP2007205959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026611A JP2007205959A (en) 2006-02-03 2006-02-03 Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026611A JP2007205959A (en) 2006-02-03 2006-02-03 Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method

Publications (1)

Publication Number Publication Date
JP2007205959A true JP2007205959A (en) 2007-08-16

Family

ID=38485543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026611A Pending JP2007205959A (en) 2006-02-03 2006-02-03 Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP2007205959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293981A (en) * 2008-06-03 2009-12-17 Hitachi Engineering & Services Co Ltd Inspection method using guide wave
JP2010054497A (en) * 2008-07-31 2010-03-11 Mitsubishi Electric Corp Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detector
JP2010151501A (en) * 2008-12-24 2010-07-08 Kawada Industries Inc Method of inspecting flaw by ultrasonic waves, and probe unit for ultrasonic flaw detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140858A (en) * 1984-12-14 1986-06-27 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detecting method
JPS63186143A (en) * 1987-01-28 1988-08-01 Nkk Corp Ultrasonic wave probe
JPS646550A (en) * 1987-06-29 1989-01-11 Mitsubishi Motors Corp Controller for internal combustion engine equipped with automatic transmission
JPS6459152A (en) * 1987-08-31 1989-03-06 Nippon Kokan Kk Ultrasonic flaw detection of steel pipe
JPH01248052A (en) * 1988-03-29 1989-10-03 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method and apparatus therefor
JPH07181170A (en) * 1993-12-21 1995-07-21 Sakai Tekkosho:Kk Evaluation method of congested cracks on surface of solid by ultrasonic waves
JPH1114608A (en) * 1997-06-27 1999-01-22 Mitsubishi Heavy Ind Ltd Electromagnetic ultrasonic probe
JP2004333387A (en) * 2003-05-09 2004-11-25 Kawada Industries Inc Ultrasonic inspection method for welded part

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140858A (en) * 1984-12-14 1986-06-27 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detecting method
JPS63186143A (en) * 1987-01-28 1988-08-01 Nkk Corp Ultrasonic wave probe
JPS646550A (en) * 1987-06-29 1989-01-11 Mitsubishi Motors Corp Controller for internal combustion engine equipped with automatic transmission
JPS6459152A (en) * 1987-08-31 1989-03-06 Nippon Kokan Kk Ultrasonic flaw detection of steel pipe
JPH01248052A (en) * 1988-03-29 1989-10-03 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method and apparatus therefor
JPH07181170A (en) * 1993-12-21 1995-07-21 Sakai Tekkosho:Kk Evaluation method of congested cracks on surface of solid by ultrasonic waves
JPH1114608A (en) * 1997-06-27 1999-01-22 Mitsubishi Heavy Ind Ltd Electromagnetic ultrasonic probe
JP2004333387A (en) * 2003-05-09 2004-11-25 Kawada Industries Inc Ultrasonic inspection method for welded part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293981A (en) * 2008-06-03 2009-12-17 Hitachi Engineering & Services Co Ltd Inspection method using guide wave
JP2010054497A (en) * 2008-07-31 2010-03-11 Mitsubishi Electric Corp Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detector
JP2010151501A (en) * 2008-12-24 2010-07-08 Kawada Industries Inc Method of inspecting flaw by ultrasonic waves, and probe unit for ultrasonic flaw detector

Similar Documents

Publication Publication Date Title
CN104792866A (en) Ultrasonic detecting and positioning method and device based on TOFD (time of flight diffraction) and phased array
JPH0352908B2 (en)
CN110243320B (en) Tunnel lining crack depth non-contact measurement method and device
JP7450098B2 (en) Ultrasonic testing method and ultrasonic testing equipment
CN106596725B (en) A kind of composite structure Zone R defect ultrasound method of discrimination
CN109196350B (en) Method for detecting defects in materials by ultrasound
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
JP5846367B2 (en) Flaw detection method and flaw detection apparatus for welds using TOFD method
JP5530975B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2007205959A (en) Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method
CN111458415B (en) Method for detecting coupling state of ultrasonic phased array transducer and workpiece to be detected
JP4963087B2 (en) Drum can inspection method and apparatus
JP2007322350A (en) Ultrasonic flaw detector and method
JP2002062281A (en) Flaw depth measuring method and its device
JP2007047116A (en) Ultrasonic flaw detection method
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2009014513A (en) Ultrasonic flaw detection method
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
CA3044105C (en) Method and device for checking an object for flaws
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JP2009156834A (en) Method for measuring depth of crack-like defect
CN106323207A (en) Composite billet weld fusion depth detecting device and method
JP5243229B2 (en) Ultrasonic flaw detection method and probe unit for ultrasonic flaw detector
JP7516212B2 (en) Ultrasonic flaw detection device and ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712