JPH01248052A - Ultrasonic flaw detection method and apparatus therefor - Google Patents
Ultrasonic flaw detection method and apparatus thereforInfo
- Publication number
- JPH01248052A JPH01248052A JP63077452A JP7745288A JPH01248052A JP H01248052 A JPH01248052 A JP H01248052A JP 63077452 A JP63077452 A JP 63077452A JP 7745288 A JP7745288 A JP 7745288A JP H01248052 A JPH01248052 A JP H01248052A
- Authority
- JP
- Japan
- Prior art keywords
- inspected
- coil
- flaw detection
- current
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 22
- 239000000523 sample Substances 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 29
- 230000005415 magnetization Effects 0.000 claims 4
- 239000002184 metal Substances 0.000 abstract description 3
- 125000006850 spacer group Chemical group 0.000 abstract description 3
- 239000000696 magnetic material Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- BLRBOMBBUUGKFU-SREVYHEPSA-N (z)-4-[[4-(4-chlorophenyl)-5-(2-methoxy-2-oxoethyl)-1,3-thiazol-2-yl]amino]-4-oxobut-2-enoic acid Chemical compound S1C(NC(=O)\C=C/C(O)=O)=NC(C=2C=CC(Cl)=CC=2)=C1CC(=O)OC BLRBOMBBUUGKFU-SREVYHEPSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は溶接鋼管の溶接部等の被検香材肉厚方向部位の
超音波探傷方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection method for a thicknesswise portion of a flavoring material to be tested, such as a welded portion of a welded steel pipe.
〔従来の技術]
従来、サブマージドアーク溶接(SAW)された鋼管等
の被検査材の突合わせ溶接部に対して超音波探傷を行う
場合には第10図に示す如く、溶接部20を有する母材
21の表面にはピエゾ圧電素子を用いており、近接する
入射角δ3.δ2.δ□の3つの斜角探触子a、b、c
が溶接部20からの距離を相違させて接触されており、
夫々の探触子から溶接部20に対して超音波ビームを入
射させ、その反射エコーを検出することによって探傷を
行う。このように複数の探触子を用い、これらの位置を
相違せしめるのは溶接部20の全肉厚についての探傷を
行うためである。[Prior Art] Conventionally, when performing ultrasonic flaw detection on a butt weld of a submerged arc welded (SAW) inspected material such as a steel pipe, a weld 20 is provided as shown in Fig. 10. A piezoelectric element is used on the surface of the base material 21, and the incident angle δ3. δ2. Three angle probes a, b, c of δ□
are contacted at different distances from the welding part 20,
Flaw detection is performed by making an ultrasonic beam enter the welded part 20 from each probe and detecting the reflected echo. The reason why a plurality of probes are used in this manner and their positions are different is to perform flaw detection over the entire thickness of the welded portion 20.
上述した従来の超音波探傷方法によれば超音波探傷装置
本体も複数の信号入力用チャンネルを装備する必要があ
り、装置が大型化する。これに対して探触子1つを用い
る場合は全肉厚の探傷を行うために溶接部に対して接近
、離隔させる走査を行う必要があり、探傷時間が長いと
いう欠点がある。このような問題は電磁超音波探傷の場
合においても同様である。According to the conventional ultrasonic flaw detection method described above, the main body of the ultrasonic flaw detection apparatus also needs to be equipped with a plurality of signal input channels, which increases the size of the apparatus. On the other hand, when one probe is used, it is necessary to perform scanning to approach and separate from the welded part in order to perform flaw detection of the entire wall thickness, which has the disadvantage that the flaw detection time is long. Such problems are similar in the case of electromagnetic ultrasonic flaw detection.
本発明は斯かる事情に鑑みてなされたものであり、その
目的とするところは、電磁超音波探傷の探触子のコイル
に供給する交流電流の周波数を変化させることによって
、発生する超音波(SH波)の入射角を変化させ、被検
査材の溶接部の全肉厚範囲を1探触子で探傷することが
できる超音波探傷方法及び装置を提供することにある。The present invention has been made in view of the above circumstances, and its purpose is to reduce the amount of ultrasonic waves ( An object of the present invention is to provide an ultrasonic flaw detection method and apparatus that can detect the entire thickness range of a welded part of a material to be inspected with one probe by changing the incident angle of SH waves.
本発明に係る溶接部の超音波探傷方法は、被検査材に交
叉する方向の磁界を与えると共に被検査材に沿う方向の
電流を通流して被検査材にS)l波を生ぜしめる電磁超
音波探傷方法において、前記電流を交流とし、その周波
数を経時的に変化せしめることを特徴とする。また本発
明の超音波探傷装置は、磁極を交互にして並設した複数
の磁石を備え、被検査材にこれと交叉する方向の磁界を
与えるべく配される磁化部材及び該磁化部材と被検査材
との間に配されるべきコイルからなるプローブを送、受
信用に各1個備え、送信用のプローブにはその出力周波
数が連続的に変化する周波数掃引回路から交流を通流せ
しめるべくなしてあることを特徴とする。The ultrasonic flaw detection method for welded parts according to the present invention uses electromagnetic ultrasound that applies a magnetic field in a direction that intersects the material to be inspected and also passes a current in the direction along the material to be inspected to generate S)l waves in the material to be inspected. The sonic flaw detection method is characterized in that the current is an alternating current and its frequency is changed over time. Further, the ultrasonic flaw detection apparatus of the present invention includes a plurality of magnets arranged in parallel with alternating magnetic poles, a magnetized member arranged to apply a magnetic field in a direction crossing the magnetized member to the inspected material, and a magnetized member and the inspected material. One probe is provided for transmitting and one for receiving, consisting of a coil to be placed between the probe and the material, and the transmitting probe should be made to pass alternating current from a frequency sweep circuit whose output frequency changes continuously. It is characterized by:
入射角は電流の周波数に依存する。従って周波数を変化
させることで入射角が変化し、それによって全肉厚の探
傷が可能になる。The angle of incidence depends on the frequency of the current. Therefore, by changing the frequency, the angle of incidence changes, thereby making it possible to detect flaws in the entire wall thickness.
以下、本発明方法をその実施例を示す図面に基づき具体
的に説明する。第1図はSH波を送受信する電磁超音波
探触子(以下プローブという)の構成と原理を示す模式
図であり、このプローブは被検査材3に対向させるべき
コイル2及び永久磁石1からなる。永久磁石1は幅りの
直方体状の永久磁石片1aを、上面が交互にSN極とな
るように幅方向に並置したものを2列並べてなるもので
あり、幅方向に相隣する磁石片1a、Ia間には幅dの
磁場回路遮断用に非磁性材からなるスペーサ1bを挿入
しである。コイル2は磁石1と平面視形状、寸法を略同
様としたパンケーキコイルである。このようなプローブ
はSH波送信用、受信用の双方に使用される。而してこ
のプローブによってSll波を発生する場合の作用につ
いて説明する。コイル2に電流Iを通流すると被検査材
3の表面に図中白抜矢符で示す如き逆方向の渦電流iが
発生する。磁石1によって被検査材3にかかっている磁
界をBとすると、i、B夫々に垂直なローレンツ力Fが
被検査材3の表面に働く。ここで磁界Bの方向は(D+
d)のピッチで反転しているため、ローレンツ力Fの作
用方向も(D+d)のピッチで反転する。またコイル2
に交流電流を通流するとローレンツ力Fの作用方向も交
流電流の半周期毎に反転し、それによって被検査材3の
表面の金属格子が該表面と平行に振動し、その振動方向
と垂直にSH波4が発生し、該Sll波4は入射角θで
被検査材3内を伝播する(第2図)、入射角θはコイル
2に印加する電流の周波数を変化させることにより変化
する。Hereinafter, the method of the present invention will be specifically explained based on drawings showing examples thereof. Fig. 1 is a schematic diagram showing the structure and principle of an electromagnetic ultrasonic probe (hereinafter referred to as probe) that transmits and receives SH waves. . The permanent magnet 1 is made by arranging two rows of rectangular parallelepiped permanent magnet pieces 1a arranged side by side in the width direction so that the upper surfaces thereof are alternately SN poles. , Ia, a spacer 1b made of a non-magnetic material and having a width d is inserted to interrupt the magnetic field circuit. The coil 2 is a pancake coil having substantially the same shape and dimensions as the magnet 1 in plan view. Such a probe is used both for transmitting and receiving SH waves. The effect of generating Sll waves using this probe will now be explained. When a current I is passed through the coil 2, an eddy current i in the opposite direction is generated on the surface of the material 3 to be inspected, as shown by the white arrow in the figure. If the magnetic field applied to the material 3 to be inspected by the magnet 1 is B, then a Lorentz force F perpendicular to i and B acts on the surface of the material 3 to be inspected. Here, the direction of magnetic field B is (D+
Since it is reversed at a pitch of d), the direction of action of the Lorentz force F is also reversed at a pitch of (D+d). Also coil 2
When an alternating current is passed through, the direction of action of the Lorentz force F is also reversed every half cycle of the alternating current, and as a result, the metal lattice on the surface of the material to be inspected 3 vibrates parallel to the surface, and perpendicular to the direction of vibration. A SH wave 4 is generated, and the Sll wave 4 propagates within the inspected material 3 at an incident angle θ (FIG. 2). The incident angle θ is changed by changing the frequency of the current applied to the coil 2.
下記(1)弐のDF(θ)は入射角がθである場合の被
検査材厚み方向におけるSll波の指向特性を表す。DF (θ) in (1) 2 below represents the directivity characteristic of the Sll wave in the thickness direction of the material to be inspected when the incident angle is θ.
但し、
M :磁石片数
V、:S11波の音速
λ :SH波の波長
f :コイル電流の周波数
また、入射角θとコイル電流周波数でとの関係は下記(
3)式で表される。However, M : number of magnet pieces V, : sound speed of S11 wave λ : wavelength of SH wave f : frequency of coil current Also, the relationship between incident angle θ and coil current frequency is as follows (
3) It is expressed by the formula.
Vs = 2 (D+d) ・f−sinθ
−(3)ここでD及びdはプローブ、■、
は被検査材によって夫々決まる定数であるから、コイル
電流周波数fを変えることにより、入射角θを変えるこ
とができる。Vs = 2 (D+d) ・f-sinθ
-(3) where D and d are probes, ■,
Since is a constant determined depending on the material to be inspected, the incident angle θ can be changed by changing the coil current frequency f.
第3図は本発明装置の構成を示すブロック図である。高
周波発振回路12によって発振された高周波は分周回路
13によって分周されて周波数掃引回路14に入力され
る。周波数掃引回路14は上、下限設定スイッチ15.
16によって設定された周波数f。FIG. 3 is a block diagram showing the configuration of the apparatus of the present invention. The high frequency wave oscillated by the high frequency oscillation circuit 12 is frequency-divided by the frequency divider circuit 13 and input to the frequency sweep circuit 14 . The frequency sweep circuit 14 has upper and lower limit setting switches 15.
The frequency f set by 16.
f2の範囲で入力された周波数を連続的に変化させて出
力するものであり、f、−f2の範囲の出力変化を周期
的に反復する。この反復に関する同期信号をその表示の
同期をとるためにオシロスコープ17へ与える。周波数
掃引回路14出力は電力増幅回路18で増幅されインピ
ーダンス整合回路19を介して送信用プローブ5aのコ
イル2八通電される。The input frequency is continuously changed in the range of f2 and outputted, and the output changes in the range of f and -f2 are periodically repeated. A synchronization signal for this repetition is provided to the oscilloscope 17 to synchronize its display. The output of the frequency sweep circuit 14 is amplified by a power amplifier circuit 18 and energized through an impedance matching circuit 19 to the coil 28 of the transmitting probe 5a.
受信用プローブ5bのコイル2はインピーダンス整合回
路20を介して信号増幅回路21に接続されている。受
信用プローブ5bが検出した信号はここで増幅されて同
期回路22へ入力され、ここで同調がとられ、更に帯域
通過濾波器23でノイズが除去されてオシロスコープ1
7へ入力される。The coil 2 of the reception probe 5b is connected to a signal amplification circuit 21 via an impedance matching circuit 20. The signal detected by the reception probe 5b is amplified and input to the synchronization circuit 22, where it is tuned, and furthermore, the noise is removed by the bandpass filter 23, and the signal is sent to the oscilloscope 1.
7.
第4図は鋼管10上に載置したプローブ5a、5bの平
面レイアウトを示すための模式的平面図を対応する模式
的立面図と示しており、SH波のプローブ5aから溶接
部11の延在方向に対して平面視で斜めに入射され、そ
の反射波をプローブ5bによって捉える。FIG. 4 shows a schematic plan view showing the planar layout of the probes 5a, 5b placed on the steel pipe 10 and a corresponding schematic elevation view, showing the extension of the welding part 11 from the SH wave probe 5a. The beam is incident obliquely in plan view with respect to the current direction, and the reflected wave is captured by the probe 5b.
第5図はプローブ5a、5bの平面図及び立面図であり
、磁石lはフレーム24を用いて外囲固定されている。FIG. 5 is a plan view and an elevation view of the probes 5a and 5b, in which the magnet l is fixed to the outer circumference using a frame 24.
そして鋼管10の長面曲率に合わせて下面は磁石片1a
、フレーム24共に凹面としてあり、コイル2もそれに
合わせて曲加工しである。In accordance with the long surface curvature of the steel pipe 10, the lower surface is a magnet piece 1a.
, the frame 24 is both concave, and the coil 2 is also curved accordingly.
このような装置によれば第4図に示す入射角θが周波数
掃引回路14の働きによって変化し、それによって溶接
部11はその全肉厚の範囲が探傷されることになるので
ある。According to such a device, the incident angle θ shown in FIG. 4 is changed by the action of the frequency sweep circuit 14, so that the entire thickness of the welded portion 11 is detected.
なお周波数の変更は上述の実施例の如く連続的に変化さ
せず、3.4種類の周波数発振回路を用意しておきこれ
らを切換えてコイル2に通電する如く段階的に切替えて
もよい。Note that the frequency may not be changed continuously as in the above-mentioned embodiments, but may be changed stepwise, such as by preparing 3.4 types of frequency oscillation circuits and switching between them to energize the coil 2.
被検査材の材質が鋼の場合で、コイル2に3種類の周波
数f =505(kHz)、583(kllz)及び1
009 (kHz)の交流電流を印加するものとし、S
H波の音速■。When the material to be inspected is steel, three types of frequencies f = 505 (kHz), 583 (kllz) and 1 are applied to the coil 2.
009 (kHz) is applied, and S
Sound speed of H wave ■.
=3230 (m/秒)、一つの永久磁石片の幅D=3
.2(mm)、非磁性スペーサの幅d=oとして入射角
θを求めると各周波数に対してθの値は表1に示す値と
なる。= 3230 (m/sec), width of one permanent magnet piece D = 3
.. 2 (mm) and the width of the nonmagnetic spacer d=o, the incident angle θ is determined as shown in Table 1 for each frequency.
表 1
第6図乃至第8図は各周波数に対応して検出されたプロ
ーブ5aのSllll−ム指向特性を横断面方向で示す
図であり、図より明らかな如<Sll波入射角θは周波
数fを変化させるだけで変化している。Table 1 Figures 6 to 8 are diagrams showing the Sll-wave directivity characteristics of the probe 5a detected corresponding to each frequency in the cross-sectional direction. It changes simply by changing f.
第9図は永久磁石の有効平面寸法WXL=10X32m
m、周波数r =505(kHz)、Sll波の音速V
、 =3230(m/秒)とした場合のSH波のビーム
指向特性をプローブ5aの上方から見た図であり、被検
査材表面内のビーム幅は永久磁石片の寸法及び磁石片の
数によって決定されるため被検査材の寸法及び形状を考
慮して最適のSH波ビーム指向特性を有するプローブを
設計すれば良い。Figure 9 shows the effective plane dimensions of the permanent magnet WXL = 10 x 32 m
m, frequency r = 505 (kHz), sound speed of Sll wave V
, = 3230 (m/sec) when viewed from above the probe 5a, and the beam width within the surface of the material to be inspected is determined by the size and number of permanent magnet pieces. Therefore, it is only necessary to design a probe having the optimum SH wave beam directivity characteristics by considering the dimensions and shape of the material to be inspected.
以上に詳述した如く、本発明方法においては、プローブ
のコイルに供給する交流電流の周波数を変化させ、発生
するSll波の入射角を変化させることにより、1組の
送信用及び受信用プローブのみを溶接部長手方向に対し
て1回走査するだけで突合わせ溶接部の全肉厚を探傷す
ることができ、従って走査時間も短く、超音波探傷装置
は1台でよい。As detailed above, in the method of the present invention, by changing the frequency of the alternating current supplied to the coil of the probe and changing the incident angle of the generated SLL wave, only one pair of transmitting and receiving probes can be used. The entire wall thickness of the butt weld can be detected by scanning once in the longitudinal direction of the weld length. Therefore, the scanning time is short and only one ultrasonic flaw detection device is required.
また被検査材表面と前記EMATプローブとの間に接触
媒体を用いなくて良いため非接触で効率の良い探傷がで
きる等本発明は優れた効果を奏する。Further, since there is no need to use a contact medium between the surface of the material to be inspected and the EMAT probe, the present invention has excellent effects such as non-contact and efficient flaw detection.
第1図は本発明方法の実施に用いるプローブの構成と原
理を説明する模式図、第2図は同プローブによって発生
されるローレンツ力の作用方向とSll波の伝播方向を
示す説明図、第3図は本発明装置全体のブロック図、第
4図は本発明方法の実施状態を示す模式図、第5図はプ
ローブの1実施例を示す平面図及び立面図、第6図乃至
第9図は本発明方法の実施により検出されたSR波のビ
ーム指向特性を示す図、第10図は従来の超音波探傷法
を説明する模式図である。
l・・・永久磁石 2・・・コイル 5a、5b・・・
探触子持 許 出願人 住友金属工業株式会社代理人
弁理士 河 野 登 夫第 to 5
41図
篤 2(!l
83 目
篤 4I2]
第 5 図
第6図 萬7図Fig. 1 is a schematic diagram explaining the structure and principle of the probe used to carry out the method of the present invention, Fig. 2 is an explanatory diagram showing the direction of action of the Lorentz force generated by the probe and the propagation direction of the Sll wave, and Fig. 3 The figure is a block diagram of the entire device of the present invention, Figure 4 is a schematic diagram showing the implementation state of the method of the present invention, Figure 5 is a plan view and elevation view showing one embodiment of the probe, and Figures 6 to 9. 10 is a diagram showing the beam directivity characteristics of SR waves detected by implementing the method of the present invention, and FIG. 10 is a schematic diagram illustrating the conventional ultrasonic flaw detection method. l...Permanent magnet 2...Coil 5a, 5b...
Probe Holder Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Noboru Kono No. 5 to 5 41 Atsushi 2 (!l 83 Me Atsushi 4I2) Figure 5 Figure 6 Figure 7
Claims (1)
査材に沿う方向の電流を通流して被検査材にSH波を生
ぜしめる電磁超音波探傷方法において、前記電流を交流
とし、その周波数を経時的に変化せしめることを特徴と
する電磁超音波探傷方法。 2、磁極を交互にして並設した複数の磁石を備え、被検
査材にこれと交叉する方向の磁界を与えるべく配される
磁化部材及び該磁化部材と被検査材との間に配されるべ
きコイルからなるプローブを送、受信用に各1個備え、
送信用のプローブにはその出力周波数が連続的に変化す
る周波数掃引回路から交流を通流せしめるべくなしてあ
ることを特徴とする超音波探傷装置。[Scope of Claims] 1. In an electromagnetic ultrasonic flaw detection method in which a magnetic field is applied to a material to be inspected in an intersecting direction and a current is passed in a direction along the material to be inspected to generate SH waves in the material to be inspected, the current An electromagnetic ultrasonic flaw detection method characterized by using alternating current as alternating current and changing its frequency over time. 2. A magnetization member comprising a plurality of magnets arranged in parallel with alternating magnetic poles and arranged to apply a magnetic field in a direction crossing the magnetization member to the material to be inspected, and a magnetization member disposed between the magnetization member and the material to be inspected. Equipped with one probe each for transmitting and receiving, which consists of two coils.
An ultrasonic flaw detection device characterized in that the transmitting probe is configured to allow alternating current to flow through it from a frequency sweep circuit whose output frequency changes continuously.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63077452A JPH01248052A (en) | 1988-03-29 | 1988-03-29 | Ultrasonic flaw detection method and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63077452A JPH01248052A (en) | 1988-03-29 | 1988-03-29 | Ultrasonic flaw detection method and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01248052A true JPH01248052A (en) | 1989-10-03 |
Family
ID=13634407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63077452A Pending JPH01248052A (en) | 1988-03-29 | 1988-03-29 | Ultrasonic flaw detection method and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01248052A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04265853A (en) * | 1990-10-24 | 1992-09-22 | Babcock & Wilcox Co:The | Method and apparatus for identifying flaw depth in checking of tubular product |
JPH07167841A (en) * | 1993-07-12 | 1995-07-04 | Babcock & Wilcox Co:The | Method for detecting corrosion fatigue crack of boiler tube with film |
JP2007205959A (en) * | 2006-02-03 | 2007-08-16 | Kawada Industries Inc | Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method |
US20230031270A1 (en) * | 2021-07-27 | 2023-02-02 | Ecole De Technologie Superieure | Electromagnetic acoustic probe |
-
1988
- 1988-03-29 JP JP63077452A patent/JPH01248052A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04265853A (en) * | 1990-10-24 | 1992-09-22 | Babcock & Wilcox Co:The | Method and apparatus for identifying flaw depth in checking of tubular product |
JPH07167841A (en) * | 1993-07-12 | 1995-07-04 | Babcock & Wilcox Co:The | Method for detecting corrosion fatigue crack of boiler tube with film |
JP2007205959A (en) * | 2006-02-03 | 2007-08-16 | Kawada Industries Inc | Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method |
US20230031270A1 (en) * | 2021-07-27 | 2023-02-02 | Ecole De Technologie Superieure | Electromagnetic acoustic probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4127035A (en) | Electromagnetic transducer | |
US4295214A (en) | Ultrasonic shear wave transducer | |
US4466287A (en) | Non-destructive, non-contact ultrasonic material | |
CN110220974A (en) | SV ultrasound bulk wave unilateral side focused transducer suitable for aluminium sheet defects detection | |
CN108931577A (en) | A kind of oil-gas transportation steel plate electromagnetic acoustic automatic checkout system and method | |
JPH01248052A (en) | Ultrasonic flaw detection method and apparatus therefor | |
JP3886843B2 (en) | Electromagnetic ultrasonic transducer | |
US7395715B2 (en) | Electromagnetic ultrasound probe | |
US7434467B2 (en) | Electromagnetic ultrasound converter | |
JPH0587780A (en) | Method and apparatus for nondestructive inspection of metal pipe | |
US5987993A (en) | Test apparatus and method for nondestructive material testing | |
JPH11125622A (en) | Sh wave electromagnetic ultrasonic transducer and measuring method | |
CN211505345U (en) | Electromagnetic ultrasonic critical refraction longitudinal wave excitation device | |
US5936162A (en) | Method for the production of ultrasound waves for nondestructive materials testing and an ultrasound test instrument | |
JPS623900B2 (en) | ||
JP3504430B2 (en) | Beveled electromagnetic ultrasonic transducer | |
JP2001013118A (en) | Electromagnetic ultrasonic probe | |
Martinho et al. | Alignment precision enhancement of side-shifted dual periodic permanent magnets array with an enclosed-case electromagnetic acoustic transducer | |
JPH11248688A (en) | Electromagnetic ultrasonic flaw detector | |
CN111157627A (en) | Electromagnetic ultrasonic critical refraction longitudinal wave excitation device | |
CA1189947A (en) | Non-destructive, non-contact ultrasonic material testing method and apparatus | |
JPH0257267B2 (en) | ||
JPS6225259A (en) | Electromagnetic ultrasonic tranceducer | |
JP2538596B2 (en) | Electromagnetic ultrasonic transducer | |
JPH07294494A (en) | Electromagnetic ultrasonic transducer |