JPH07286916A - Method for measuring residual stress - Google Patents

Method for measuring residual stress

Info

Publication number
JPH07286916A
JPH07286916A JP7730294A JP7730294A JPH07286916A JP H07286916 A JPH07286916 A JP H07286916A JP 7730294 A JP7730294 A JP 7730294A JP 7730294 A JP7730294 A JP 7730294A JP H07286916 A JPH07286916 A JP H07286916A
Authority
JP
Japan
Prior art keywords
magnetic fields
residual stress
magnetic field
bias magnetic
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7730294A
Other languages
Japanese (ja)
Inventor
Riichi Murayama
理一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7730294A priority Critical patent/JPH07286916A/en
Publication of JPH07286916A publication Critical patent/JPH07286916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To provide a method capable of measuring the residual stresses of a plate with high accuracy. CONSTITUTION:Bias magnetic fields BV, BV,... are applied parallel to the surface of a steel plate S. Induced magnetic fields BI, BI,... which are perpendicular to the direction of the bias magnetic fields BV, BV,... within the same plane and opposite to each other are applied. Complex magnetic fields BC, BC,... are formed by the combination of the bias magnetic fields BV, BV,... and the induced magnetic fields BI, BI,..., causing magnetostrictions alternately in the direction of the bias magnetic fields BV, BV,... and in the opposite direction. An SH0--mode surface wave is generated by the magnetostrictions generated. Such bias magnetic fields BV, BV,... and induced magnetic fields BI, BI,... can be applied by use of an electromagnet, and therefore sufficient magnetic field strength to measure residual stresses can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、振動方向が進行方向に
垂直であり、且つ板材の表面に平行なSH0モードの表
面波にて板材の残留応力を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a residual stress of a plate material by an SH 0 mode surface wave whose vibration direction is perpendicular to the traveling direction and which is parallel to the surface of the plate material.

【0002】[0002]

【従来の技術】圧延鋼板の残留応力は、例えば切断され
た製品鋼板に反りを発生させ、品質の低下及び歩留まり
の低下の原因となるため、残留応力の除去処理に供すべ
く非破壊検査によってこれを高精度に測定することが重
要である。
2. Description of the Related Art Residual stress of a rolled steel sheet causes, for example, a warp in a cut product steel sheet, which causes deterioration of quality and yield. It is important to measure with high accuracy.

【0003】図6は非破壊検査による従来の残留応力測
定方法の原理を説明するための模式図であり、鋼板Sに
残留する主応力σ1 ,σ2 の方向と鋼板Sの組織異方性
の軸とが一致する場合を表している。超音波を鋼板Sの
圧延方向に偏波した横波T1及びこれに直角な方向に偏
波した横波T2 を生成し、鋼板Sの上方からこれに垂直
に入射し、鋼板Sの厚み方向への伝播時間TT1,TT2
測定すると、鋼板Sに残留する主応力σ1 ,σ2 の方向
と鋼板Sの組織異方性の軸とが一致する場合は、次の
(1)式にて音響複屈折量Bを求めることができる。そ
して音響複屈折量Bに基づいて次の(2)式にて鋼材S
の内部平均応力を算出する。 B=(VT1−VT2)/VT =(TT1−TT2)/TT …(1) B=B0 +CA (σ1 −σ2 ) ∴ σ1 −σ2 =(B−B0 )/CA …(2) 但し、VT1:横波T1 の音速 VT2:横波T2 の音速 VT :横波T1 ,T2 の平均音速 TT :横波T1 ,T2 の平均伝播時間 B0 :組織異方性の効果 CA :音弾性定数
FIG. 6 is a schematic diagram for explaining the principle of a conventional residual stress measuring method by nondestructive inspection. The directions of the principal stresses σ 1 and σ 2 remaining in the steel sheet S and the structure anisotropy of the steel sheet S are shown in FIG. It shows the case where the axis of is in agreement. A transverse wave T 1 that is polarized in the rolling direction of the steel sheet S and a transverse wave T 2 that is polarized in a direction perpendicular to the ultrasonic wave are generated, and are incident vertically from above the steel sheet S to the thickness direction of the steel sheet S. When the propagation times T T1 and T T2 of the steel sheet are measured and the directions of the principal stresses σ 1 and σ 2 remaining in the steel sheet S coincide with the axis of the structure anisotropy of the steel sheet S, the following equation (1) is used. Thus, the acoustic birefringence amount B can be obtained. Then, based on the acoustic birefringence amount B, the steel material S is calculated by the following equation (2).
Calculate the internal average stress of. B = (V T1 -V T2) / V T = (T T1 -T T2) / T T ... (1) B = B 0 + C A (σ 1 -σ 2) ∴ σ 1 -σ 2 = (B- B 0) / C a ... ( 2) where, V T1: transverse wave T 1 of the sound speed V T2: transverse wave T 2 of the acoustic velocity V T: mean of the transverse wave T 1, T 2 sound speed T T: transverse wave T 1, T 2 Average propagation time B 0 : Effect of tissue anisotropy C A : Acoustoelastic constant

【0004】しかしながら、このような方法にあっては
組織異方性の効果B0 が、残留応力が無い初期状態にて
測定でき,且つその値が安定である場合か、無視し得る
程に小さい値である場合でないと内部平均応力を正確に
測定することができないという問題があった。そこで、
組織異方性に拘わらず残留応力を測定すべく、振動方向
が進行方向に垂直であり、且つ被検査材平面に並行であ
るSH0 モードの表面波を用いる方法が提案されてい
る。
However, in such a method, the effect B 0 of the tissue anisotropy can be measured in the initial state without residual stress, and the value is stable, or it is negligibly small. There is a problem that the internal average stress cannot be accurately measured unless it is a value. Therefore,
In order to measure the residual stress regardless of the tissue anisotropy, a method of using a surface wave of SH 0 mode in which the vibration direction is perpendicular to the traveling direction and parallel to the plane of the material to be inspected has been proposed.

【0005】SH0 モードの表面波を生成する探触子と
しては、圧電素子を利用した圧電型探触子又はローレン
ツ力を利用したローレンツ力型電磁超音波探触子が知ら
れている。圧電型探触子は、Yカットした振動子による
電気音響変換を利用して横波の超音波を発生させ、これ
を油等の接触媒体を介して所要の角度にて鋼板に入射す
ることによってSH0 モードの表面波を生成する。しか
し音速測定において、接触媒体が誤差の原因となり高精
度を要する残留応力の測定には適さない。また鋼板の表
面状態によって測定結果に影響を受けるため、圧電型探
触子を接触させる鋼板面を鏡仕上げしなければならず、
製造ラインにおける測定には実用的ではない。
As a probe for generating SH 0 mode surface waves, a piezoelectric probe using a piezoelectric element or a Lorentz force type electromagnetic ultrasonic probe using Lorentz force is known. The piezoelectric probe generates transverse ultrasonic waves by utilizing electroacoustic conversion by a Y-cut transducer, and makes this incident on a steel plate at a required angle via a contact medium such as oil, and thereby SH Generates a 0- mode surface wave. However, in sound velocity measurement, the contact medium causes an error and is not suitable for measuring residual stress that requires high accuracy. Also, since the measurement results are affected by the surface condition of the steel plate, the steel plate surface with which the piezoelectric probe contacts must be mirror-finished,
Not practical for measurements on the production line.

【0006】一方、ローレンツ力型電磁超音波探触子
は、鋼板と並行でその向きが相互に逆である複数の磁場
を鋼板に印加し、該磁場と直角に渦電流を発生させるこ
とによって生じるローレンツ力を利用してSH0 モード
の表面波を生成するため、製造ラインにおける残留応力
の測定に応用することが可能である。
On the other hand, the Lorentz force type electromagnetic ultrasonic probe is generated by applying a plurality of magnetic fields parallel to the steel sheet and having directions opposite to each other to the steel sheet and generating eddy currents at right angles to the magnetic fields. Since the SH 0 mode surface wave is generated by utilizing the Lorentz force, it can be applied to the measurement of residual stress in the manufacturing line.

【0007】図7はローレンツ力型電磁超音波探触子の
要部を示す斜視図であり、送・受信子が共に同構造であ
る。鋼板Sの上方には、短冊状の複数の永久磁石21,2
1,…が、そのN極又はS極が交互に鋼板Sと対向する
ように2列配置してあり、永久磁石21,21,…によって
鋼板Sにそれと直角に上向き又は下向きの磁場BP ,B
P ,…が印加される。また永久磁石21,21,…の下端に
はこれに対向して所要巻回数を有するプローブコイル22
が配設してあり、プローブコイル22に給電することによ
って、鋼板Sに前記磁場BP ,BP ,…と直角に渦電流
Iが発生する。これによって鋼板Sには、渦電流Iと直
角に相互に向きが逆なローレンツ力R,R,…が発生
し、該ローレンツ力R,R,…によって鋼板SにSH0
モードの表面波が生成する。
FIG. 7 shows a Lorentz force type electromagnetic ultrasonic probe.
FIG. 3 is a perspective view showing a main part, in which both the transmitter and the receiver have the same structure.
It Above the steel plate S, a plurality of strip-shaped permanent magnets 21, 2 are provided.
1, ..., N poles or S poles alternately face the steel plate S
Are arranged in two rows like this, and by the permanent magnets 21, 21, ...
A magnetic field B that is upward or downward at right angles to the steel plate SP, B
P, ... are applied. Also, at the lower end of the permanent magnets 21, 21, ...
Is opposite to this, the probe coil 22 having the required number of turns
Is provided, and power is supplied to the probe coil 22.
Then, the magnetic field B is applied to the steel plate S.P, BPEddy current at right angles to
I occurs. As a result, the steel plate S is directly connected with the eddy current I.
Lorentz force R, R, ...
Then, the Lorentz force R, R, ...0
A mode surface wave is generated.

【0008】そして、その長手方向に搬送される鋼板S
に、その搬送方向及びこれに直角な方向に同じ距離ずつ
SH0 モードの表面波を伝播させ、両表面波の伝播時間
をそれぞれ測定し、両伝播時間の差に基づいて板材の残
留応力を測定する。
Then, the steel plate S conveyed in its longitudinal direction
In addition, the SH 0 mode surface wave is propagated at the same distance in the transport direction and the direction perpendicular to it, the propagation time of both surface waves is measured, and the residual stress of the plate material is measured based on the difference between both propagation times. To do.

【0009】[0009]

【発明が解決しようとする課題】しかしながらローレン
ツ力型電磁超音波探触子を用いて残留応力を測定する従
来の方法にあっては、永久磁石によって印加し得る磁場
強度は2000〜3000ガウスが限度であるため、残留応力を
測定するには不十分であり、十分な測定精度が得られな
いという問題があった。また電磁石を利用してローレン
ツ力型電磁超音波探触子を構築することはできない。本
発明はかかる事情に鑑みてなされたものであって、その
目的とするところは磁歪を利用して生成したSH0 モー
ドの表面波を用いることによって、高精度に板材の残留
応力を測定し得る方法を提供することにある。
However, in the conventional method of measuring the residual stress using the Lorentz force type electromagnetic ultrasonic probe, the magnetic field strength that can be applied by the permanent magnet is limited to 2000 to 3000 gauss. Therefore, it is insufficient to measure the residual stress, and there is a problem that sufficient measurement accuracy cannot be obtained. Also, it is not possible to construct a Lorentz force type electromagnetic ultrasonic probe using an electromagnet. The present invention has been made in view of such circumstances, and an object thereof is to accurately measure the residual stress of a plate material by using SH 0 mode surface waves generated by utilizing magnetostriction. To provide a method.

【0010】[0010]

【課題を解決するための手段】第1発明に係る残留応力
測定方法は、その長手方向に搬送される板材に、その搬
送方向及びこれに直角な方向にSH0 モードの表面波を
伝播させ、両表面波の伝播時間をそれぞれ測定し、両伝
播時間の差に基づいて板材の残留応力を測定する方法に
おいて、前記SH0 モードの表面波を、磁歪を利用して
発生させることを特徴とする。
A method for measuring residual stress according to a first aspect of the invention is to propagate a surface wave of SH 0 mode to a plate material conveyed in its longitudinal direction in the conveying direction and in a direction perpendicular thereto, In the method of measuring the propagation times of both surface waves and measuring the residual stress of the plate material based on the difference between the two propagation times, the SH 0 mode surface wave is generated by utilizing magnetostriction. .

【0011】第2発明に係る残留応力測定方法は、第1
発明において、前記磁歪は、板材の表面と平行な方向の
バイアス磁界と、同じ面内で前記バイアス磁界に直交
し、交互に逆方向の誘導磁界とを前記板材に印加するこ
とによって発生させることを特徴とする。
The residual stress measuring method according to the second invention is the first method.
In the invention, the magnetostriction is generated by applying a bias magnetic field in a direction parallel to the surface of the plate material, and an induction magnetic field orthogonal to the bias magnetic field in the same plane and alternately in opposite directions to the plate material. Characterize.

【0012】[0012]

【作用】図1は本発明方法を説明するための鋼板の平面
図であり、印加する磁場の方向と発生する磁歪の方向と
を示している。鋼板Sの表面に、これと平行にバイアス
磁場BV ,BV ,…を印加する。そしてこのバイアス磁
場BV ,BV ,…の方向と同一面内で直角であり、交互
に逆方向の誘導磁場BI ,BI ,…を印加する。これに
よってバイアス磁場BV ,BV ,…と誘導磁場BI ,B
I ,…とが合成された複合磁場BC ,BC ,…が形成さ
れ、該複合磁場BC ,BC ,…によって、バイアス磁場
V ,BV ,…の方向及びその逆の方向に交互に磁歪が
発生する。そして発生した磁歪によってSH0 モードの
表面波が生成する。このようなバイアス磁場BV
V ,…及び誘導磁場BI ,BI ,…は電磁石を用いて
印加することが可能であり、従って残留応力を測定する
に十分な磁場強度を得ることができる。
FIG. 1 is a plan view of a steel sheet for explaining the method of the present invention, showing the direction of the applied magnetic field and the direction of the generated magnetostriction. Bias magnetic fields B V , B V , ... Are applied to the surface of the steel plate S in parallel with this. Then, the induction magnetic fields B I , B I , ... Which are perpendicular to the bias magnetic fields B V , B V , ... As a result, the bias magnetic fields B V , B V , ... And the induced magnetic fields B I , B
I, ... and is combined magnetic field B C synthesized, B C, ... are formed, the composite magnetic field B C, B C, by ..., the bias magnetic field B V, B V, ... direction and the opposite direction of the Magnetostriction occurs alternately. Then, due to the generated magnetostriction, a surface wave of SH 0 mode is generated. Such a bias magnetic field B V ,
B V , ... And the induced magnetic fields B I , B I , ... Can be applied using electromagnets, and therefore a magnetic field strength sufficient to measure residual stress can be obtained.

【0013】[0013]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図2は本発明に係る残留応力測定
方法を適応するための測定装置の構成を示すブロック図
であり、図中Sは鋼板である。矢符方向に搬送される鋼
板Sの上方には磁歪型の送信子1a,2a及び該送信子1a,
2aから所定距離隔てた受信子1b,2bを備えるセンサ1,
2が、鋼板Sの搬送方向(θ=0)及びそれに直角な方
向(θ=90)に設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. FIG. 2 is a block diagram showing the configuration of a measuring apparatus for applying the residual stress measuring method according to the present invention, where S is a steel plate. Above the steel plate S conveyed in the arrow direction, the magnetostrictive transmitters 1a, 2a and the transmitters 1a, 1a,
Sensor 1 including receivers 1b and 2b, which are separated by a predetermined distance from 2a
2 are provided in the transport direction (θ = 0) of the steel plate S and in the direction (θ = 90) perpendicular thereto.

【0014】送信子1a,2aにはスイッチ4によってパル
ス発生器3にて発生されたパルスが交互に与えられるよ
うになっており、与えられたパルスによって送信子1a,
2aは、鋼板Sにバイアス磁場と誘導磁場との複合磁場を
印加して生じる磁歪によって、SH0 モードの表面波を
発生させる。この表面波は鋼板S内を所定距離伝播した
後、受信子1b,2bに受信され、受信信号はプリアンプ5
及びメインアンプ6にて増幅されて、伝播時間測定回路
7に与えられる。
Pulses generated by the pulse generator 3 are alternately applied to the transmitters 1a and 2a by the switch 4, and the transmitters 1a and 2a are applied by the applied pulses.
2a generates SH 0 mode surface waves by magnetostriction generated by applying a composite magnetic field of a bias magnetic field and an induction magnetic field to the steel plate S. This surface wave propagates through the steel plate S for a predetermined distance and then is received by the receivers 1b and 2b, and the received signal is the preamplifier 5
Also, it is amplified by the main amplifier 6 and given to the propagation time measuring circuit 7.

【0015】そして、伝播時間測定回路7はパルス発生
器3が駆動した時間から受信信号が与えられる時間まで
の伝播時間TSH0 (0)及びTSH0 (90)を求め、次
の(3)式によって算出した時間差ΔTを演算回路8に
与える。 TSH0 (0)−TSH0 (90)=ΔT …(3)
Then, the propagation time measuring circuit 7 obtains propagation times T SH0 (0) and T SH0 (90) from the time when the pulse generator 3 is driven to the time when the received signal is given, and the following formula (3) is obtained. The time difference ΔT calculated by is given to the arithmetic circuit 8. T SH0 (0) -T SH0 (90) = ΔT (3)

【0016】演算回路8では、次のようにして残留応力
を算出する。いま、鋼板Sに残留応力が無いとすると、
鋼板Sの搬送方向から角度θの方向へ伝播するSH0
ードの表面波の速度VSH0 は、次の(4)式にて近似さ
れる。 VSH0 (θ)=(μ/ρ)1/2 +1/2(1/ρμ)1/2 ・ C(B0 ・W400 +B4 ・W440 ・cos4θ)…(4) 但し、μ :ラメ定数 ρ :鋼の密度 C :弾性定数 B0 :金属組織による異方性を表す定数 B4 :金属組織による異方性を表す定数 W400 :結晶粒方位分布関数を球関数展開したときの4
次元の展開係数の1つ W440 :結晶粒方位分布関数を球関数展開したときの4
次元の展開係数の1つ
The arithmetic circuit 8 calculates the residual stress as follows. Now, assuming that the steel plate S has no residual stress,
The velocity V SH0 of the SH 0 mode surface wave propagating in the direction of the angle θ from the transport direction of the steel sheet S is approximated by the following equation (4). V SH0 (θ) = (μ / ρ) 1/2 + 1/2 (1 / ρμ) 1/2 · C (B 0 · W 400 + B 4 · W 440 · cos 4 θ) (4) where μ: Lame Constant ρ: Density of steel C: Elastic constant B 0 : Constant showing anisotropy due to metallic structure B 4 : Constant showing anisotropy due to metallic structure W 400 : 4 when spherical function expansion of crystal grain orientation distribution function is performed
One of the dimensional expansion coefficients W 440 : 4 when the crystal grain orientation distribution function is expanded by a spherical function
One of the dimension expansion factors

【0017】(4)式より、単位距離だけ伝播するに要
する伝播時間TSH0 (θ)は次の(5)式にて求められ
る。 TSH0 (θ)=1/VSH0 (θ) ≒D1 +D2 ・W400 +D3 ・W440 ・cos4θ…(5) 但し、D1 ,D2 ,D3 :定数
From equation (4), the propagation time T SH0 (θ) required to propagate a unit distance can be obtained by the following equation (5). T SH0 (θ) = 1 / V SH0 (θ) ≈ D 1 + D 2 · W 400 + D 3 · W 440 · cos 4θ (5) where D 1 , D 2 , D 3 : constants

【0018】一方、鋼板Sに残留応力σ(θ)が存在す
る場合は、(5)式に残留応力の影響項を加えた次の
(6)式にて伝播時間TSH0 (θ)を求めることができ
る。 TSH0 (θ)=D1 +D2 ・W400 +D3 ・W440 ・cos4θ+D4 ・σ(θ)…(6)
On the other hand, when the residual stress σ (θ) is present in the steel plate S, the propagation time T SH0 (θ) is calculated by the following equation (6) in which the influence term of the residual stress is added to the equation (5). be able to. T SH0 (θ) = D 1 + D 2 · W 400 + D 3 · W 440 · cos 4θ + D 4 · σ (θ) ... (6)

【0019】そして、TSH0 (0)及びTSH0 (90)
を測定し、その差ΔTを求めることによって次の(7)
式の如く、金属組織の異方性に拘わらず残留応力を直接
求める。なお定数D4 は予め実験により求めておく。 TSH0 (0)−TSH0 (90)=ΔT =D4 {σ(0)−σ(90)} ∴ σ(0)−σ(90)=ΔT/D4 …(7)
Then, T SH0 (0) and T SH0 (90)
Is measured and the difference ΔT is obtained, the following (7)
As in the formula, the residual stress is directly obtained regardless of the anisotropy of the metal structure. The constant D 4 is obtained in advance by experiments. T SH0 (0) −T SH0 (90) = ΔT = D 4 {σ (0) −σ (90)} ∴σ (0) −σ (90) = ΔT / D 4 (7)

【0020】図3は図2に示した測定装置の動作順を示
すタイミングチャートである。図3(a)の如く、パル
ス発生器3は所定の間隔にてパルスを発生してそれを送
信子1a,2aに交互に与える。そして図3(b)の如く、
受信子1aにてパルスに対応する受信エコーと,それに少
し遅れてSH0 モードの表面波に対応するエコーとが測
定され、その伝播時間TSH0 (0)を求める。また図3
(c)の如く、受信子2aにてに対応する受信エコーと,
それに少し遅れてSH0 モードの表面波に対応するエコ
ーとが測定され、その伝播時間TSH0 (90)を求め
る。
FIG. 3 is a timing chart showing the operation sequence of the measuring apparatus shown in FIG. As shown in FIG. 3A, the pulse generator 3 generates pulses at predetermined intervals and alternately applies the pulses to the transmitters 1a and 2a. Then, as shown in FIG.
The reception echo corresponding to the pulse and the echo corresponding to the surface wave of SH 0 mode are measured with a slight delay at the receiver 1a, and the propagation time T SH0 (0) is obtained. See also FIG.
As shown in (c), the reception echo corresponding to the receiver 2a,
The echo corresponding to the SH 0 mode surface wave is measured with a slight delay, and the propagation time T SH0 (90) is obtained.

【0021】求めたTSH0 (0),TSH0 (90)か
ら、図3(d)の如く、両者の差であるΔTを求め、図
3(e)の如く、前述した(7)式にΔTを代入して残
留応力を算出する。
From the obtained T SH0 (0) and T SH0 (90), the difference ΔT between the two is obtained as shown in FIG. 3 (d), and the above equation (7) is obtained as shown in FIG. 3 (e). The residual stress is calculated by substituting ΔT.

【0022】図4は引っ張り試験における本発明方法に
よる応力測定値と引っ張り応力との関係を示すグラフで
あり、縦軸に本発明方法による応力測定値を横軸に引っ
張り応力を示してある。図4から明らかな如く、本発明
方法による応力測定値と引っ張り応力とは直線関係にな
っており、本発明方法によって残留応力を正確に測定し
得ることが判る。
FIG. 4 is a graph showing the relationship between the stress measurement value and the tensile stress by the method of the present invention in the tensile test, wherein the vertical axis shows the stress measurement value by the method of the present invention and the horizontal axis shows the tensile stress. As is apparent from FIG. 4, the stress measurement value according to the method of the present invention and the tensile stress have a linear relationship, and it is understood that the residual stress can be accurately measured by the method of the present invention.

【0023】次に本発明方法と従来方法とを比較した結
果に付いて説明する。図5は、板材と探触子との間隙
(リフトオフ)と受信エコー高さとの関係を示すグラフ
であり、●は本発明方法を、○はローレンツ力を利用す
る従来の方法をそれぞれ示している。図 から明らかな
如く、ローレンツ力を利用する従来の方法では、探触子
を被検査材に密着させた場合であっても、その受信エコ
ー高さ(S/N)は3であり、本発明方法の略1/4と
低い。そしてリフトオフが増加するに従って受信エコー
高さは減少し、リフトオフが2mmにて測定不可能となっ
た。これに対し本発明方法では、リフトオフが2mmのと
きであってもその受信エコー高さ(S/N)は5と、従
来方法の最大値より更に高いものであった。
Next, the results of comparison between the method of the present invention and the conventional method will be described. FIG. 5 is a graph showing the relationship between the clearance (lift-off) between the plate material and the probe and the height of the received echo, where ● indicates the method of the present invention, and ○ indicates the conventional method utilizing the Lorentz force. . As is clear from the figure, in the conventional method using the Lorentz force, the reception echo height (S / N) is 3 even when the probe is brought into close contact with the material to be inspected. It is as low as about 1/4 of the method. Then, as the lift-off increased, the height of the received echo decreased, and the lift-off became 2 mm and measurement became impossible. On the other hand, in the method of the present invention, the received echo height (S / N) was 5 even when the lift-off was 2 mm, which was higher than the maximum value of the conventional method.

【0024】[0024]

【発明の効果】以上詳述した如く本発明に係る残留応力
測定方法にあっては、磁歪を利用して被検査材の残留応
力を測定するため、製造ラインにて高精度に残留応力を
測定でき、製品品質の向上及び歩留まりの向上が図れる
等、本発明は優れた効果を奏する。
As described above in detail, in the residual stress measuring method according to the present invention, since the residual stress of the material to be inspected is measured by utilizing magnetostriction, the residual stress can be measured with high accuracy on the manufacturing line. The present invention has excellent effects such as improvement of product quality and improvement of yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を説明するための鋼板の平面図であ
る。
FIG. 1 is a plan view of a steel plate for explaining the method of the present invention.

【図2】本発明に係る残留応力測定方法を適応するため
の測定装置の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a measuring apparatus for applying the residual stress measuring method according to the present invention.

【図3】図2に示した測定装置の動作順を示すタイミン
グチャートである。
3 is a timing chart showing an operation sequence of the measuring apparatus shown in FIG.

【図4】引っ張り試験における本発明方法による応力測
定値と引っ張り応力との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a stress measurement value and a tensile stress according to the method of the present invention in a tensile test.

【図5】板材と探触子との間隙と受信エコー高さとの関
係を示すグラフである。
FIG. 5 is a graph showing a relationship between a gap between a plate material and a probe and a reception echo height.

【図6】非破壊検査による従来の残留応力測定方法の原
理を説明するための模式図である。
FIG. 6 is a schematic diagram for explaining the principle of a conventional residual stress measuring method by nondestructive inspection.

【図7】ローレンツ力型探触子の要部を示す斜視図であ
る。
FIG. 7 is a perspective view showing a main part of a Lorentz force type probe.

【符号の説明】[Explanation of symbols]

1 センサ 1a 送信子 1b 受信子 2 センサ 2a 送信子 2b 受信子 3 パルス発生器 4 スイッチ 5 プリアンプ 6 メインアンプ 7 伝播時間測定回路 8 演算回路 BV バイアス磁場 BI 誘導磁場 BC 複合磁場 F 磁歪 S 鋼板1 sensor 1a transmitter 1b receiver 2 sensor 2a transmitter 2b receiver 3 pulse generator 4 switch 5 preamplifier 6 main amplifier 7 propagation time measurement circuit 8 arithmetic circuit B V bias magnetic field B I induced magnetic field B C complex magnetic field F magnetostriction S steel sheet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 その長手方向に搬送される板材に、その
搬送方向及びこれに直角な方向にSH0 モードの表面波
を伝播させ、両表面波の伝播時間をそれぞれ測定し、両
伝播時間の差に基づいて板材の残留応力を測定する方法
において、 前記SH0 モードの表面波を、磁歪を利用して発生させ
ることを特徴とする残留応力測定方法。
1. A surface wave of SH 0 mode is propagated in a plate material conveyed in its longitudinal direction in the conveying direction and in a direction perpendicular thereto, and the propagation times of both surface waves are respectively measured. A method for measuring residual stress of a plate material based on a difference, wherein the SH 0 mode surface wave is generated by utilizing magnetostriction.
【請求項2】 前記磁歪は、板材の表面と平行な方向の
バイアス磁界と、同じ面内で前記バイアス磁界に直交
し、交互に逆方向の誘導磁界とを前記板材に印加するこ
とによって発生させる請求項1記載の残留応力測定方
法。
2. The magnetostriction is generated by applying to the plate material a bias magnetic field in a direction parallel to the surface of the plate material and an induction magnetic field orthogonal to the bias magnetic field in the same plane and alternately in opposite directions. The residual stress measuring method according to claim 1.
JP7730294A 1994-04-15 1994-04-15 Method for measuring residual stress Pending JPH07286916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7730294A JPH07286916A (en) 1994-04-15 1994-04-15 Method for measuring residual stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7730294A JPH07286916A (en) 1994-04-15 1994-04-15 Method for measuring residual stress

Publications (1)

Publication Number Publication Date
JPH07286916A true JPH07286916A (en) 1995-10-31

Family

ID=13630118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7730294A Pending JPH07286916A (en) 1994-04-15 1994-04-15 Method for measuring residual stress

Country Status (1)

Country Link
JP (1) JPH07286916A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037436A (en) * 2002-07-02 2004-02-05 Sakai Iron Works Co Ltd Method of measuring sound elastic stress by surface sh wave and measuring sensor
JP2011196953A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Residual stress calculating device, residual stress measuring device, method of calculating residual stress, method of measuring residual stress and program
CN112763112A (en) * 2021-01-04 2021-05-07 东北林业大学 Rail stress measuring device and method
CN115491623A (en) * 2022-09-19 2022-12-20 四川大学 Oxygen-free copper residual stress regulation and control method based on external field treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037436A (en) * 2002-07-02 2004-02-05 Sakai Iron Works Co Ltd Method of measuring sound elastic stress by surface sh wave and measuring sensor
JP2011196953A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Residual stress calculating device, residual stress measuring device, method of calculating residual stress, method of measuring residual stress and program
CN112763112A (en) * 2021-01-04 2021-05-07 东北林业大学 Rail stress measuring device and method
CN115491623A (en) * 2022-09-19 2022-12-20 四川大学 Oxygen-free copper residual stress regulation and control method based on external field treatment

Similar Documents

Publication Publication Date Title
US4080836A (en) Method of measuring stress in a material
Ogi Field dependence of coupling efficiency between electromagnetic field and ultrasonic bulk waves
KR100561215B1 (en) Magnetostrictive Transducer for Generating and Sensing Elastic Ultrasonic waves, and Apparatus for Structural Diagnosis Using It
JP2015206782A (en) Residual stress evaluation method and residual stress evaluation device
Kubrusly et al. Unidirectional shear horizontal wave generation by periodic permanent magnets electromagnetic acoustic transducer with dual linear-coil array
US5467655A (en) Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
JPH07286916A (en) Method for measuring residual stress
JP3299505B2 (en) Ultrasonic flaw detection method using magnetostriction effect
US20060173341A1 (en) Electromagnetic ultrasound converter
US7395715B2 (en) Electromagnetic ultrasound probe
US20210293639A1 (en) Electromagnetic ultrasonic double-wave transducer
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
JP4465420B2 (en) Magnetostrictive ultrasonic element and nondestructive inspection method using the same
JP2001013118A (en) Electromagnetic ultrasonic probe
MacLauchlan et al. Measurement of thermal stress in railroad rails using ultrasonic SH waves
JPH07174736A (en) Correcting method for angle of propagation of ultrasonic wave of electromagnetic equipment angle-beam ultrasonic flaw detection
JPH06148148A (en) Ultrasonic attenuation measuring method, and material characteristic evaluating method
JP7222365B2 (en) SUBJECT THICKNESS MEASURING DEVICE AND THICKNESS MEASURING METHOD
JPH07174735A (en) Correcting method for sensitivity of electromagnetic equipment angle-beam ultrasonic flaw detection
JPH1038862A (en) Method and device for iron loss value evaluation
JP3058626B2 (en) Non-destructive inspection method for metal
JP2001249118A (en) Method for ultrasonically detecting degradation of metal
RU2207521C2 (en) Method for measuring propagation speed of cross acoustic waves in electrically conductive materials at single side access by means of contact free irradiation and reception of cross horisontally polarized acoustic waves
JP2611714B2 (en) Ultrasonic applied measuring device
RU166262U1 (en) ELECTROMAGNETIC ACOUSTIC CONVERTER