JPH05288723A - Pitch-catch type ultrasonic flaw examination - Google Patents

Pitch-catch type ultrasonic flaw examination

Info

Publication number
JPH05288723A
JPH05288723A JP4116825A JP11682592A JPH05288723A JP H05288723 A JPH05288723 A JP H05288723A JP 4116825 A JP4116825 A JP 4116825A JP 11682592 A JP11682592 A JP 11682592A JP H05288723 A JPH05288723 A JP H05288723A
Authority
JP
Japan
Prior art keywords
defect
wave
wall surface
blade groove
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4116825A
Other languages
Japanese (ja)
Inventor
Shinya Inoue
慎也 井上
Naohito Yagi
尚人 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4116825A priority Critical patent/JPH05288723A/en
Publication of JPH05288723A publication Critical patent/JPH05288723A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Abstract

PURPOSE:To discriminate a direct propagation wave and a defect reflected wave distinctly from each other on the occasion of examination of a defect being parallel to the direction of propagation of an ultrasonic beam. CONSTITUTION:A transmission-side longitudinal wave angle probe 4a of a refractive angle 10 to 40 deg. is disposed on one of opposite blade groove end faces 2 of a blade groove tooth part 1 which has a defect 10 being parallel to the length direction, and a similar reception-side longitudinal wave angle probe 4b is disposed on the other, respectively. The defect is detected from a time difference between a propagation time of a wall surface reflected wave 8 once reflected on a blade groove wall surface 3 and then propagated as a longitudinal wave and a propagation time for which a wall surface defect reflected wave 9 once reflected on the blade groove wall surface 3 and then converted into a lateral wave is reflected by the defect 10, propagated to the blade groove wall surface 3, then converted in a mode into the longitudinal wave again and received.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タービンローターの翼
溝歯部の非破壊検査に好適なピッチキャッチ式超音波探
傷方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pitch catch type ultrasonic flaw detection method suitable for nondestructive inspection of blade groove teeth of a turbine rotor.

【0002】[0002]

【従来の技術】タービンローターの運転中、セレーショ
ン型翼溝歯部に発生する欠陥は翼溝のほぼ中央部で翼溝
に平行に発生しているが、それを超音波探傷方法で探傷
するにあたっては、超音波探触子が唯一接近できる翼溝
端面に探触子を配して超音波探傷を行っており、例えば
図5説明図に示すように、翼溝歯部1の両翼溝端面2に
発信側,受信側探触子4a′,4b′をそれぞれ配設
し、いわゆるピッチキャッチ式で欠陥10に対して発信
側探触子4a′から超音波ビームを入射して、その反射
波を受信側探触子4b′で受信して探傷している。しか
しこの場合、欠陥反射波11と発信側探触子4a′から
直接受信側探触子4b′に伝搬する直接伝搬波7とのビ
ーム路程差がほとんど同じため、欠陥識別は困難であ
る。また欠陥10で横波にモード変換した反射波12が
翼溝壁面3で再反射して受信されたり、又は欠陥10が
小さいためそのまま通過した超音波が欠陥側の翼溝壁面
3で反射して受信される等種々の反射波が発生して、欠
陥反射波11を特定することができない。そこで別の探
傷方法として、欠陥10が翼溝端面2まで進展した後磁
粉探傷法で翼溝端面2を検査するか、又は動翼を抜き取
った後翼溝部に磁粉探傷法を適用して検査しているが、
この方法では検査期間,コストが莫大で、かつ定検期間
中に全数検査を実施することは困難である。
2. Description of the Related Art During operation of a turbine rotor, a defect that occurs in the serration type blade groove tooth portion is generated in parallel with the blade groove at approximately the center of the blade groove. Performs ultrasonic flaw detection by arranging the probe on the blade groove end surface which can only be approached by the ultrasonic probe. For example, as shown in the explanatory diagram of FIG. The transmitting side probe 4a 'and the receiving side probe 4a' are arranged respectively, and an ultrasonic beam is made incident on the defect 10 from the transmitting side probe 4a 'by a so-called pitch catch type, and the reflected wave is reflected. The reception side probe 4b 'has received and has detected a flaw. However, in this case, since the beam path difference between the defect reflected wave 11 and the direct propagation wave 7 propagating from the transmitting side probe 4a 'to the receiving side probe 4b' is almost the same, it is difficult to identify the defect. In addition, the reflected wave 12 whose mode has been converted into the transverse wave at the defect 10 is re-reflected by the blade groove wall surface 3 and received, or the ultrasonic wave which has passed as it is because the defect 10 is small is reflected by the blade groove wall surface 3 on the defect side and received. Various reflected waves are generated, and the defect reflected wave 11 cannot be specified. Therefore, as another flaw detection method, the blade groove end face 2 is inspected by the magnetic particle flaw detection method after the defect 10 has propagated to the blade groove end surface 2, or the magnetic pole flaw detection method is applied to the blade groove portion after extracting the moving blade. But
With this method, the inspection period and cost are enormous, and it is difficult to perform 100% inspection during the regular inspection period.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、超音波ビームの伝搬方
向に平行な欠陥の探傷にあたり、直接伝搬波と欠陥反射
波が明確に識別できるとともに、タービンローター翼溝
歯部の欠陥探傷にあたっては動翼を抜き取ることなしに
翼溝端面より超音波探傷方法を用いることができ、検査
期間の短縮,コストの低減を図ることができるピッチキ
ャッチ式超音波探傷方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and in the flaw detection of a defect parallel to the propagation direction of the ultrasonic beam, the direct propagation wave and the defect reflection wave are clearly defined. Pitch that can be identified and ultrasonic flaw detection method can be used from blade groove end face without extracting blade for flaw detection of turbine rotor blade groove tooth portion, which can shorten inspection period and cost. An object is to provide a catch type ultrasonic flaw detection method.

【0004】[0004]

【課題を解決するための手段】そのために本発明は、超
音波ビームの伝搬方向に平行な欠陥を有する試験体の両
走査面に屈折角10〜40°の縦波斜角探触子をそれぞ
れ配置し、試験体の壁面で1回反射した後縦波のまま伝
搬する超音波ビームの伝搬時間と、試験体の壁面で1回
反射した後横波に変換した超音波ビームが欠陥で反射し
試験体の壁面まで伝搬した後再び縦波にモード変換して
受信されるまでの伝搬時間との、時間差により上記欠陥
を検出することを特徴とする。
To this end, the present invention provides a longitudinal wave bevel probe having a refraction angle of 10 to 40 ° on both scanning surfaces of a test body having a defect parallel to the propagation direction of an ultrasonic beam. The ultrasonic beam is placed and is reflected once by the wall surface of the test piece and propagates as a longitudinal wave, and the ultrasonic beam after being reflected once by the wall surface of the test object and converted into a transverse wave is reflected by a defect and tested. It is characterized in that the defect is detected by a time difference from a propagation time until the wave is propagated to the wall surface of the body and then converted into a longitudinal wave again to be received.

【0005】[0005]

【作用】本発明ピッチキャッチ式超音波探傷方法におい
ては、超音波ビームの伝搬方向に平行な欠陥を有する試
験体の両走査面に屈折角10〜40°の縦波斜角探触子
をそれぞれ配置したうえ、発信側探触子から超音波を発
信して、試験体内を伝搬した超音波を受信側探触子で受
信し、発信側探触子から直接受信側探触子に伝搬する超
音波及び試験体壁面で縦波のまま1回反射する反射波の
伝搬時間を基準にして、欠陥と試験体壁面間での反射波
の横波へのモード変換による遅れ時間を計測する。
In the pitch catch type ultrasonic flaw detection method of the present invention, a longitudinal wave bevel probe having a refraction angle of 10 to 40 ° is provided on both scanning surfaces of a test body having a defect parallel to the propagation direction of the ultrasonic beam. Ultrasonic waves are transmitted from the transmitting side probe, and the ultrasonic waves propagated in the test body are received by the receiving side probe, and are transmitted directly from the transmitting side probe to the receiving side probe. The delay time due to mode conversion of the reflected wave between the defect and the wall surface of the test body is measured based on the propagation time of the sound wave and the reflected wave that is reflected once as a longitudinal wave on the wall surface of the test body.

【0006】[0006]

【実施例】本発明ピッチキャッチ式超音波探傷方法をタ
ービンローター翼溝歯部の欠陥探傷に適用した一実施例
を図面について説明すると、図1は超音波伝搬経路の説
明図、図2は具体例における探傷状況の斜視図、図3は
同上における健全部探傷結果の説明図、図4は欠陥部探
傷結果の説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment in which the pitch catch type ultrasonic flaw detection method of the present invention is applied to flaw detection of a turbine rotor blade groove tooth portion will be described. FIG. 1 is an explanatory diagram of an ultrasonic wave propagation path, and FIG. FIG. 3 is a perspective view of a flaw detection situation in an example, FIG. 3 is an explanatory diagram of a flawless portion flaw detection result in the above, and FIG. 4 is a defect portion flaw detection result.

【0007】まず図1において本探傷方法を原理的に説
明する。一般に縦波が境界面に0°以外の角度で入射す
るときは横波へのモード変換を含む反射波となり、特に
縦波入射角50〜80°の間で縦波が非常に少なくなる
ことはよく知られている。すなわち図1において、翼溝
歯部1の翼溝端面2に当てた発信側縦波斜角探触子4a
より屈折角θで入射した壁面欠陥反射波9は、翼溝壁面
3に対して入射角90°−θで入射することになる。こ
の入射角が50〜80°になるように屈折角θを選ぶこ
とにより、翼溝壁面3と欠陥10間の壁面欠陥反射波9
に含まれる横波が多くなる。鋼中縦波音速5900m/s
に対し鋼中横波音速は3230m/s と伝搬時間が遅いた
め、欠陥10と翼溝壁面3間で横波にモード変換した超
音波を含む壁面欠陥反射波9は、受信側縦波斜角探触子
4bで受信されて、超音波探傷器のCRT画面上で、翼
溝端面2間を直接伝搬する直接伝搬波7や翼溝壁面3で
1回反射した後縦波のまま受信される壁面反射波8に対
して遅れエコーとして出現するため、欠陥の有無が判別
できる。
First, the principle of the present flaw detection method will be described with reference to FIG. Generally, when a longitudinal wave is incident on the boundary surface at an angle other than 0 °, it becomes a reflected wave including mode conversion to a transverse wave, and it is often the case that the longitudinal wave becomes extremely small especially between the incident angles of 50 to 80 °. Are known. That is, in FIG. 1, a transmission side longitudinal wave bevel probe 4a applied to the blade groove end surface 2 of the blade groove tooth portion 1
The wall surface defect reflected wave 9 that is incident at a refraction angle θ is incident on the blade groove wall surface 3 at an incident angle of 90 ° -θ. By selecting the refraction angle θ so that this incident angle is 50 to 80 °, the wall surface defect reflected wave 9 between the blade groove wall surface 3 and the defect 10 is selected.
Many transverse waves are included in. Longitudinal wave velocity in steel 5900m / s
On the other hand, since the transverse sound velocity in steel is 3230 m / s and the propagation time is slow, the wall-defect reflected wave 9 including ultrasonic waves mode-converted into the transverse wave between the defect 10 and the blade wall surface 3 is the receiving side longitudinal wave oblique probe. On the CRT screen of the ultrasonic flaw detector, the direct propagation wave 7 directly propagating between the blade groove end faces 2 and the wall reflection received as a longitudinal wave after being reflected once by the blade groove wall surface 3 on the CRT screen of the ultrasonic flaw detector Since it appears as a delayed echo with respect to the wave 8, the presence or absence of a defect can be determined.

【0008】この現象を更に詳細に説明すると、検査対
象の翼溝歯部1の断面積は小さいので超音波ビームの伝
搬経路を2次元平面として取扱える。翼溝歯部1の長さ
をL(m) ,幅をW(m) ,鋼中縦波音速をCL (m/s) ,鋼
中横波音波をCs (m/s) , 横波反射角をφ(度),屈折
角をθ(度)とすると、直接伝搬波7の伝搬時間t1(s)
は、t1 =L/CL となる。壁面反射波8の伝搬時間
2 (s) は、t2 =L/CL ・1/cosθとなり、L及
びθが小さいとt2 ≒t1 となり、CRT画面の時間軸
上では直接伝搬波7と壁面反射波8はほぼ同じ位置に出
現する。一方欠陥10がある場合の壁面欠陥反射波9は
翼溝壁面3で1回反射した後横波(図中点線)にモード
変換した成分が欠陥10で反射し、翼溝壁面3まで横波
で伝搬した後再び縦波にモード変換して受信される。縦
波での伝搬時間は壁面反射波8とほとんど変わらないと
すると、壁面欠陥反射波9と壁面反射波8との伝搬時間
差Δt(s) は、Δt=2・W・cos φ/Cs である。こ
こにφ=sin-1{Cs/CL sin(90−θ)}で、欠陥1
0が存在すれば、壁面反射波8よりΔtだけ遅れた位置
に壁面欠陥反射波9が欠陥エコーとして出現する。
Explaining this phenomenon in more detail, since the blade groove tooth portion 1 to be inspected has a small cross-sectional area, the propagation path of the ultrasonic beam can be treated as a two-dimensional plane. Length of blade groove tooth portion 1 is L (m), width is W (m), sound velocity in longitudinal steel is C L (m / s), transverse acoustic wave in steel is C s (m / s), transverse wave reflection When the angle is φ (degrees) and the refraction angle is θ (degrees), the propagation time t 1 (s) of the directly propagating wave 7 is
Is t 1 = L / C L. The propagation time t 2 (s) of the wall reflected wave 8 is t 2 = L / C L · 1 / cos θ, and when L and θ are small, t 2 ≈t 1 , and the direct propagation wave on the time axis of the CRT screen. 7 and the wall reflected wave 8 appear at almost the same position. On the other hand, when the defect 10 is present, the wall defect reflected wave 9 is reflected once by the blade groove wall surface 3 and then the mode-converted component into a transverse wave (dotted line in the figure) is reflected by the defect 10 and propagates to the blade groove wall surface 3 as a transverse wave. After that, the mode is converted again to longitudinal waves and received. Assuming that the propagation time in the longitudinal wave is almost the same as the wall reflected wave 8, the propagation time difference Δt (s) between the wall defect reflected wave 9 and the wall reflected wave 8 is Δt = 2 · W · cos φ / C s is there. Here φ = sin -1 {C s / C L sin (90-θ)}, a defect 1
If 0 exists, the wall surface defect reflected wave 9 appears as a defect echo at a position delayed by Δt from the wall surface reflected wave 8.

【0009】次に本発明方法の具体例を図2〜4につい
て説明する。図2において、試験体10 としては、ター
ビンローターのセレーション型翼溝歯部1を模似した低
炭素鋼で作られたモックアップを用いた。試験体10
長さLは33.4 mm、翼溝歯部1の幅Wは2mmである。両
側翼溝端面2に発信側縦波斜角探触子4a,受信側縦波
斜角探触子4bをそれぞれ配置し、超音波探傷器5とケ
ーブルで接続する。探触子4a,4bは5Z5×5LA
20(縦波斜角,屈折角20°,周波数5MHz,振動
子の大きさ5×5mm)を使用した。試験体10 には放電
加工により深さ1mm,長さ5mmのスリット状の欠陥10
を人工的に作ってある。
Next, a concrete example of the method of the present invention will be described with reference to FIGS. 2, the specimen 1 0, with a mockup made serrations type wing Mizoha portion 1 of a turbine rotor in low carbon steel obtained by monitor. The length L is 33.4 mm, the width W of Tsubasamizoha part 1 of the specimen 1 0 is 2 mm. A transmission side longitudinal wave bevel probe 4a and a reception side longitudinal wave bevel probe 4b are respectively arranged on the blade groove end faces 2 on both sides, and are connected to the ultrasonic flaw detector 5 by a cable. The probes 4a and 4b are 5Z5 × 5LA
20 (longitudinal wave oblique angle, refraction angle 20 °, frequency 5 MHz, vibrator size 5 × 5 mm) was used. Specimen 1 0 1mm deep by electric discharge machining, the slit-like defect length 5 mm 10
Is artificially made.

【0010】このような装置において、まず超音波探傷
器5のCRT画面6の時間軸を透過パルスで鋼中縦波1
00mmに設定したのち、探触子4a,4bを試験体10
の健全部の翼溝端面2に配置して、透過エコーを検出
し、探触子4a,4bを走査して壁面反射波8のエコー
高さが最大になる位置で固定する。次にこのエコー高さ
をCRT画面6上100%に調整する。すると図3の探
傷結果に示すように、健全な翼溝歯部1では壁面反射波
8の直後には遅れエコーは認められない。一方欠陥10
を有する翼溝歯部1では、図4の探傷結果に示すよう
に、壁面反射波8の直後に壁面欠陥反射波9の遅れエコ
ーが出現し、欠陥10が有ると判断できる。各反射波
7,8,9のビーム路程の計算結果は、直接伝搬波7の
ビーム路程t1・CL ×10-3=33.4 mm、壁面反射波
8のビーム路程t2・CL ×10-3=35.5 mm、壁面欠
陥反射波9のビーム路程(t2 ・CL +Δt・Cs )×
10-3=41.8 mmである。計算結果と探傷結果の各反射
波7,8,9の出現位置はよく符合しており、本発明方
法で正しく探傷できることを示している。
In such an apparatus, first, the longitudinal axis of a steel medium 1 is transmitted by a transmission pulse on the time axis of the CRT screen 6 of the ultrasonic flaw detector 5.
After setting the probe to 4 mm, set the probes 4a and 4b to the test piece 1 0.
Is placed on the blade groove end face 2 of the sound part, the transmitted echo is detected, and the probes 4a and 4b are scanned and fixed at the position where the echo height of the wall reflected wave 8 is maximum. Next, the echo height is adjusted to 100% on the CRT screen 6. Then, as shown in the flaw detection result of FIG. 3, no delayed echo is recognized immediately after the wall surface reflected wave 8 in the sound blade groove tooth portion 1. On the other hand, defect 10
As shown in the flaw detection result of FIG. 4, a delayed echo of the wall surface defect reflected wave 9 appears immediately after the wall surface reflected wave 8, and it can be determined that there is a defect 10 in the blade groove tooth portion 1 having. The calculation results of the beam path lengths of the reflected waves 7, 8 and 9 are the beam path length t 1 · C L × 10 −3 = 33.4 mm of the direct propagation wave 7 and the beam path length t 2 · C L of the wall reflected wave 8. × 10 -3 = 35.5 mm, beam path length of the wall defect reflected wave 9 (t 2 · C L + Δt · C s ) ×
It is 10 −3 = 41.8 mm. The appearance positions of the reflected waves 7, 8 and 9 in the calculation result and the flaw detection result are in good agreement, which shows that flaw detection can be correctly performed by the method of the present invention.

【0011】かくしてこのような実施例方法によれば、
従来動翼を抜き取って磁粉探傷法で検査していた翼溝歯
部の欠陥の有無を、動翼を抜き取ることなしに翼溝端面
より超音波探傷法により検査することが可能となり、動
翼取外し,新製動翼再取付等の検査付帯工事費の大幅低
減化が図られるとともに、検査期間の短縮化ができ、更
に全数検査の実施化が図られ、最終的には信頼性の高い
プラントを提供できる。また翼溝歯部と同様の形状を有
する動翼翼根部も検査できる。
Thus, according to such an embodiment method,
Conventionally, it is possible to inspect the blade groove tooth portion for defects with the ultrasonic flaw detection method without removing the blade, which was previously inspected by the magnetic particle flaw detection method by removing the blade. In addition to significantly reducing the cost of inspection-related work such as re-installation of new rotor blades, the inspection period can be shortened, and 100% inspection can be carried out, ultimately leading to a highly reliable plant. Can be provided. Also, a blade root portion having a shape similar to that of the blade groove tooth portion can be inspected.

【0012】[0012]

【発明の効果】要するに本発明によれば、超音波ビーム
の伝搬方向に平行な欠陥を有する試験体の両走査面に屈
折角10〜40°の縦波斜角探触子をそれぞれ配置し、
試験体の壁面で1回反射した後縦波のまま伝搬する超音
波ビームの伝搬時間と、試験体の壁面で1回反射した後
横波に変換した超音波ビームが欠陥で反射し試験体の壁
面まで伝搬した後再び縦波にモード変換して受信される
までの伝搬時間との、時間差により上記欠陥を検出する
ことにより、超音波ビームの伝搬方向に平行な欠陥の探
傷にあたり、直接伝搬波と欠陥反射波が明確に識別でき
るとともに、タービンローター翼溝歯部の欠陥探傷にあ
たっては動翼を抜き取ることなしに翼溝端面より超音波
探傷方法を用いることができ、検査期間の短縮,コスト
の低減を図ることができるピッチキャッチ式超音波探傷
方法を得るから、本発明は産業上極めて有益なものであ
る。
In summary, according to the present invention, longitudinal wave bevel probes having a refraction angle of 10 to 40 ° are arranged on both scanning surfaces of a test body having a defect parallel to the propagation direction of the ultrasonic beam.
The propagation time of the ultrasonic beam that propagates as a longitudinal wave after being reflected once by the wall surface of the test body, and the ultrasonic beam that has been reflected once by the wall surface of the test body and then converted into transverse waves is reflected by a defect and the wall surface of the test body With the propagation time until it is received again after being converted to a longitudinal wave after being propagated up to, by detecting the above-mentioned defect by the time difference, in detecting the defect parallel to the propagation direction of the ultrasonic beam, the direct propagation wave The defect reflected wave can be clearly discriminated, and in the flaw detection of the turbine rotor blade groove tooth part, the ultrasonic inspection method can be used from the blade groove end surface without removing the blade, shortening the inspection period and reducing the cost. Since the pitch catch type ultrasonic flaw detection method capable of achieving the above is obtained, the present invention is extremely useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明ピッチキャッチ式超音波探傷方法をター
ビンローター翼溝歯部の欠陥探傷に適用した一実施例に
おける超音波伝搬経路の説明図である。
FIG. 1 is an explanatory diagram of an ultrasonic wave propagation path in an embodiment in which a pitch catch type ultrasonic flaw detection method of the present invention is applied to defect flaw detection of a turbine rotor blade groove tooth portion.

【図2】具体例における探傷状況の斜視図である。FIG. 2 is a perspective view of a flaw detection state in a specific example.

【図3】同上における健全部探傷結果の説明図である。FIG. 3 is an explanatory diagram of a result of flaw detection on a sound portion in the above.

【図4】欠陥部探傷結果の説明図である。FIG. 4 is an explanatory diagram of a defect flaw detection result.

【図5】従来のピッチキャッチ式超音波探傷方法の説明
図である。
FIG. 5 is an explanatory view of a conventional pitch catch type ultrasonic flaw detection method.

【符号の説明】[Explanation of symbols]

0 試験体 1 翼溝歯部 2 翼溝端面 3 翼溝壁面 4a 発信側縦波斜角探触子 4b 受信側縦波斜角探触子 5 超音波探傷器 6 CRT画面 7 直接伝搬波 8 壁面反射波 9 壁面欠陥反射波 10 欠陥1 0 Specimen 1 Blade groove tooth portion 2 Blade groove end surface 3 Blade groove wall surface 4a Transmitting side longitudinal wave bevel probe 4b Receiving side longitudinal wave bevel probe 5 Ultrasonic flaw detector 6 CRT screen 7 Direct propagation wave 8 Wall reflected wave 9 Wall defect reflected wave 10 Defect

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超音波ビームの伝搬方向に平行な欠陥を
有する試験体の両走査面に屈折角10〜40°の縦波斜
角探触子をそれぞれ配置し、試験体の壁面で1回反射し
た後縦波のまま伝搬する超音波ビームの伝搬時間と、試
験体の壁面で1回反射した後横波に変換した超音波ビー
ムが欠陥で反射し試験体の壁面まで伝搬した後再び縦波
にモード変換して受信されるまでの伝搬時間との、時間
差により上記欠陥を検出することを特徴とするピッチキ
ャッチ式超音波探傷方法。
1. A longitudinal wave bevel probe having a refraction angle of 10 to 40 ° is arranged on each of the scanning surfaces of a test body having a defect parallel to the propagation direction of an ultrasonic beam, and the probe is used once on the wall surface of the test body. The propagation time of an ultrasonic beam that propagates as a longitudinal wave after being reflected, and the ultrasonic beam that has been reflected once by the wall surface of the test object and then converted into a transverse wave is propagated to the wall surface of the test object and then propagates again as a longitudinal wave. A pitch catch type ultrasonic flaw detection method, characterized in that the defect is detected based on a time difference from a propagation time until the mode is converted and received.
【請求項2】 長さ方向に平行な欠陥を有するタービン
ローター翼溝歯部の両翼溝端面に屈折角10〜40°の
縦波斜角探触子をそれぞれ配置し、請求項1記載の方法
により上記欠陥を検出することを特徴とするピッチキャ
ッチ式超音波探傷方法。
2. The method according to claim 1, wherein longitudinal wave bevel probes each having a refraction angle of 10 to 40 are arranged on both blade groove end faces of the turbine rotor blade groove tooth portion having a defect parallel to the lengthwise direction. A pitch catch type ultrasonic flaw detection method, characterized in that the above defects are detected by means of:
JP4116825A 1992-04-09 1992-04-09 Pitch-catch type ultrasonic flaw examination Withdrawn JPH05288723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116825A JPH05288723A (en) 1992-04-09 1992-04-09 Pitch-catch type ultrasonic flaw examination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116825A JPH05288723A (en) 1992-04-09 1992-04-09 Pitch-catch type ultrasonic flaw examination

Publications (1)

Publication Number Publication Date
JPH05288723A true JPH05288723A (en) 1993-11-02

Family

ID=14696563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116825A Withdrawn JPH05288723A (en) 1992-04-09 1992-04-09 Pitch-catch type ultrasonic flaw examination

Country Status (1)

Country Link
JP (1) JPH05288723A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322366A (en) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2014129732A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Turbine rotor
US9116098B2 (en) 2013-02-12 2015-08-25 General Electric Company Ultrasonic detection method and system
US9482645B2 (en) 2013-05-17 2016-11-01 General Electric Company Ultrasonic detection method and ultrasonic analysis method
JP2017058127A (en) * 2015-09-14 2017-03-23 三菱日立パワーシステムズ株式会社 Ultrasonic sound wave probing method and ultrasonic sound wave probing device
JP6470460B1 (en) * 2018-08-21 2019-02-13 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection method and flaw detection apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322366A (en) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2014129732A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Turbine rotor
US9116098B2 (en) 2013-02-12 2015-08-25 General Electric Company Ultrasonic detection method and system
US9482645B2 (en) 2013-05-17 2016-11-01 General Electric Company Ultrasonic detection method and ultrasonic analysis method
JP2017058127A (en) * 2015-09-14 2017-03-23 三菱日立パワーシステムズ株式会社 Ultrasonic sound wave probing method and ultrasonic sound wave probing device
JP6470460B1 (en) * 2018-08-21 2019-02-13 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection method and flaw detection apparatus
JP2020030070A (en) * 2018-08-21 2020-02-27 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection method and flaw detector

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
Achenbach et al. Self-calibrating ultrasonic technique for crack depth measurement
US5497662A (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
US4760737A (en) Procedure for flaw detection in cast stainless steel
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JP2002062281A (en) Flaw depth measuring method and its device
JP4144703B2 (en) Tube inspection method using SH waves
JP2001208729A (en) Defect detector
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2966515B2 (en) Ultrasonic inspection method and ultrasonic inspection device
JP2007205959A (en) Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method
Fortunko et al. Ultrasonic inspection of stainless steel butt welds using horizontally polarized shear waves
JPH1151909A (en) Ultrasonic wave flaw detecting method
JP2001124746A (en) Ultrasonic inspection method
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPS63298054A (en) Ultrasonic flaw detecting method for screw joint part of pipe
Fahr et al. Detection and characterization of surface cracks using leaky Rayleigh waves
JP2922508B1 (en) Automatic ultrasonic flaw detector
JPS62162958A (en) Ultrasonic flaw detecting method
JPH1151910A (en) Crack detection method and measuring method for cracked part plate thickness
JPS63261151A (en) Ultrasonic probe
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
Edwards et al. Interaction of ultrasonic waves with surface-breaking defects
Fahr et al. Surface acoustic wave studies of surface cracks in ceramics

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706