JP2966515B2 - Ultrasonic inspection method and ultrasonic inspection device - Google Patents

Ultrasonic inspection method and ultrasonic inspection device

Info

Publication number
JP2966515B2
JP2966515B2 JP2322831A JP32283190A JP2966515B2 JP 2966515 B2 JP2966515 B2 JP 2966515B2 JP 2322831 A JP2322831 A JP 2322831A JP 32283190 A JP32283190 A JP 32283190A JP 2966515 B2 JP2966515 B2 JP 2966515B2
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
fluid inlet
outlet side
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2322831A
Other languages
Japanese (ja)
Other versions
JPH04194745A (en
Inventor
正浩 小池
弘明 千葉
修司 神本
茂 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2322831A priority Critical patent/JP2966515B2/en
Publication of JPH04194745A publication Critical patent/JPH04194745A/en
Application granted granted Critical
Publication of JP2966515B2 publication Critical patent/JP2966515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼材等でできた構造物を超音波を用いて、
破壊せずに検査する方法及び装置に係り、特に、複雑形
状のタービンのダブテール部(ブレードの根元部及びデ
イスクのブレード植込部)を検査するのに最適な方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a structure made of a steel material or the like using ultrasonic waves.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for inspecting without breaking, and more particularly to an optimal method for inspecting a dovetail portion (a root portion of a blade and a blade implant portion of a disk) of a turbine having a complicated shape.

〔従来の技術〕[Conventional technology]

従来の検査方法は、第7図に示すように、ダブテール
部の平面部分(流体入口側又は出口側)に探触子を設置
し、欠陥からの反射波を受信することにより、欠陥の有
無を判定するものである。この方法は、円周方向(θ)
一軸方向(z)に進展する欠陥3を検出するのに適して
いる。しかし、軸方向(z)一半径方向(r)に進展す
る径方向欠陥4を検出しようとした場合には、超音波が
当たる欠陥の面積が小さいために受信強度が小さく、検
出が困難である。一方、この径方向欠陥を検出するため
の方法が、マテリアルズ、エバリユエーシヨン 41−13
(1983年)第1511頁から第1516頁(Materials Evaluati
on,vol.41,No.13(1983)PP1511−1516)に論じられて
いる。この文献で取り上げているデイスクは、第8図に
示す形状であり、ダブテール部下部のくびれ部分に探触
子が設置できる。この場合には、超音波が当たる径方向
欠陥4の面積が大きいため、超音波の受信強度が大きく
欠陥の検出が可能である。
In the conventional inspection method, as shown in FIG. 7, a probe is installed on a flat portion (a fluid inlet side or an outlet side) of a dovetail portion, and the presence or absence of a defect is determined by receiving a reflected wave from the defect. It is to judge. This method uses the circumferential direction (θ)
It is suitable for detecting a defect 3 that extends in the uniaxial direction (z). However, when trying to detect a radial defect 4 that extends in the axial direction (z) and one radial direction (r), the reception intensity is small because the area of the defect irradiated with ultrasonic waves is small, and it is difficult to detect the defect. . On the other hand, a method for detecting this radial defect is described in Materials, Evaluation 41-13.
(1983) pages 1511 to 1516 (Materials Evaluati
on, vol. 41, No. 13 (1983) PP1511-1516). The disk described in this document has a shape shown in FIG. 8, and a probe can be installed in a constricted portion below a dovetail portion. In this case, since the area of the radial defect 4 to which the ultrasonic wave is applied is large, the reception intensity of the ultrasonic wave is large and the defect can be detected.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の従来技術では、ダブテール部の下部にくびれ部
分(傾斜部分)がないデイスクダブテール部の検査には
適用できない問題があつた。
The above conventional technique has a problem that it cannot be applied to the inspection of a disk dovetail portion having no constricted portion (inclined portion) below the dovetail portion.

本発明の目的は、デイスク面と垂直な方向にタブテー
ル溝が加工してあるアキシャルエントリ型タービンのタ
ブテール部に発生した径方向欠陥がデイスクにくびれ部
分が存在するか否かを問わず超音波検査で確実に検出で
きる超音波検査方法及び超音波検査装置を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an ultrasonic inspection for a radial entry generated in a tab tail portion of an axial entry type turbine in which a tab tail groove is machined in a direction perpendicular to a disk surface regardless of whether or not the disk has a constricted portion. It is an object of the present invention to provide an ultrasonic inspection method and an ultrasonic inspection device that can be reliably detected by the method.

〔課題を解決するため手段〕 上記目的を達成するため、本発明はデイスク面と垂直
な方向にタブテール溝が加工してあるアキシャルエント
リ型タービンのタブテール部の検査領域を軸方向に三領
域に分け、それぞれ次の方法で検査する。
[Means for Solving the Problems] In order to achieve the above object, the present invention divides the inspection area of the tab tail portion of the axial entry type turbine in which the tab tail groove is machined in the direction perpendicular to the disk surface into three regions in the axial direction. And inspected in the following manner.

三領域に分けた場合の軸方向中央部は、送信用及び受
信用として二個の探触子を用意し、それぞれデイスクの
流体入口側と出口側の面に設置する。仮に流体入口側の
面に設置した探触子から超音波を送信し、出口側に設置
した探触子で欠陥からの反射波を受信する。また両端部
の検査のためには、流体入口側または流体出口側の面
に、探触子を二個または一個設置する。探触子から送信
された超音波は、欠陥と探触子を設置していない面とで
反射して受信される。
In the central part in the axial direction when divided into three regions, two probes are prepared for transmission and reception, and are respectively installed on the fluid inlet side and the outlet side of the disk. An ultrasonic wave is transmitted from a probe installed on the surface on the fluid inlet side, and a reflected wave from a defect is received by the probe installed on the outlet side. For inspection of both ends, two or one probe is provided on the surface on the fluid inlet side or the fluid outlet side. The ultrasonic wave transmitted from the probe is reflected and received by the defect and the surface on which the probe is not installed.

この欠陥からの反射波が受信できるかどうかで、欠陥
の有無を判定する。
The presence or absence of a defect is determined based on whether or not a reflected wave from the defect can be received.

〔作用〕[Action]

三領域に分けた軸方向中央部の検査では、探触子から
送信された超音波が、欠陥に斜め方向から入射され、入
射と反対方向に反射される。この反射波を送信用探触子
と反対面に設置された別の探触子(受信用探触子)で受
信する。受信用探触子では、欠陥からの反射波以外にダ
ブテール部の内部形状からの反射波が得られる。そのた
め、欠陥からの反射波が得られる時間軸上にあらかじめ
時間ゲートを設定し、欠陥からの反射波のみを抽出す
る。従つて、欠陥が存在しない場合にはゲート内に信号
が得られず、ゲート内の信号の有無により欠陥の有無を
判定する。両端部の検査では、まず欠陥で反射し、つい
で送信用探触子を設置した面と反対面で反射した超音波
(又はその逆の伝播径路の超音波)を、送信と別の探触
子または同じ探触子で受信する。この場合も軸方向中央
部と同様にゲート内に信号が存在するかどうかにより、
欠陥の有無を判定する。
In the inspection of the central portion in the axial direction divided into three regions, the ultrasonic wave transmitted from the probe is incident on the defect from an oblique direction and is reflected in a direction opposite to the incident direction. This reflected wave is received by another probe (reception probe) installed on the opposite side of the transmission probe. In the receiving probe, a reflected wave from the inner shape of the dovetail portion is obtained in addition to a reflected wave from the defect. Therefore, a time gate is set in advance on a time axis on which a reflected wave from the defect is obtained, and only the reflected wave from the defect is extracted. Therefore, if there is no defect, no signal is obtained in the gate, and the presence or absence of the signal in the gate determines the presence or absence of the defect. In the inspection of both ends, first, the ultrasonic wave reflected by the defect and then reflected by the surface opposite to the surface where the transmitting probe is installed (or the ultrasonic wave of the propagation path opposite thereto) is transmitted to another probe. Or receive with the same probe. In this case as well as in the central part in the axial direction, depending on whether there is a signal in the gate,
The presence or absence of a defect is determined.

〔実施例〕〔Example〕

まず、探触子の設置面を中心に検査方法について述べ
る。第9図に、第一段フツクに発生した欠陥4を検出す
る方法について示す。流体入口側と出口側に探触子を設
置する。どちらが送信用探触子,受信用探触子でもよい
が、ここでは、流体入口側の探触子5を送信,出口側の
探触子6を受信として用いる。実際に被検査体(ダブテ
ール部)1内に送信した超音波は、振動子の大きさ,周
波数等に依存してある範囲に拡がる。しかしここでは、
拡がりのなかで最も強度が高い部分(以下音軸と呼ぶ)
について考え、音軸が検査点8と一致する位置に探触子
5,6を設置する。もし、検査点8に欠陥4が存在する
と、被検検体(ダブテール部)1内に斜めに入射した超
音波7は、欠陥4で反射し、流体出口側に設置した受信
用探触子6の位置に達する(探触子は第9図中の実線で
示す)。検査点8を軸(z)方向のa方向に移動する場
合には、送信用及び受信用探触子5,6をa方向に走査す
る。一方、検査点8をb方向に移動する場合には、送信
用及び受信用探触子5,6をb方向に走査する。この方法
でダブテール部の両端部を検査しようとした場合には、
有限な大きさを持つ探触子が設置できないため、超音波
が入射できず、検査が不可能な領域が存在する(第9図
中A,C)。そこで、流体入口側の領域Aの検査では、第1
0図に示すように送信用及び受信用探触子5,6を流体出口
側に設置する。探触子5から斜め方向に送信された超音
波7は、欠陥4で反射され次に流体入口側の面で反射
し、受信用探触子6で受信される。探触子5,6の位置を
逆にし、逆の伝播経路の場合でも同じである。さらに、
流体出口側の領域Cの検査では、第11図に示すように送
信用及び受信用探触子5,6を流体入口側に設置する。探
触子5から斜め方向に送信された超音波7は、欠陥4で
反射され、次に、流体出口側の面で反射し、受信用探触
子6で受信される。この場合も、探触子5,6の位置を逆
にし、逆の伝播経路の場合でも同じ結果である。領域A
及びCを検査する場合には、探触子が有限の大きさを持
つため、送信用及び受信用探触子5,6を同一平面上で、
かつ、同一線上に設置できない場合がある。その場合に
は、第12図に示すように、送信用及び受信用探触子を左
右にずらして、すなわち、千鳥状に配置して検査する。
First, the inspection method will be described focusing on the installation surface of the probe. FIG. 9 shows a method for detecting a defect 4 occurring in the first hook. Probes are installed on the fluid inlet and outlet sides. Either may be the transmitting probe or the receiving probe, but here, the probe 5 on the fluid inlet side is used for transmitting, and the probe 6 on the outlet side is used for receiving. The ultrasonic wave actually transmitted into the test object (dovetail part) 1 spreads in a certain range depending on the size, frequency, and the like of the vibrator. But here,
The part with the highest intensity in the spread (hereinafter referred to as the sound axis)
At the position where the sound axis coincides with the inspection point 8.
Install 5,6. If the defect 4 exists at the inspection point 8, the ultrasonic wave 7 obliquely incident on the specimen (dovetail) 1 is reflected by the defect 4 and is reflected by the receiving probe 6 installed on the fluid outlet side. The position is reached (the probe is shown by a solid line in FIG. 9). When moving the inspection point 8 in the a direction of the axis (z), the transmission and reception probes 5, 6 are scanned in the a direction. On the other hand, when the inspection point 8 is moved in the b direction, the transmission and reception probes 5, 6 are scanned in the b direction. If you try to inspect both ends of the dovetail in this way,
Since a probe having a finite size cannot be installed, there is a region where ultrasonic waves cannot enter and inspection is impossible (A and C in FIG. 9). Therefore, in the inspection of the region A on the fluid inlet side, the first
As shown in FIG. 0, the transmitting and receiving probes 5, 6 are installed on the fluid outlet side. The ultrasonic wave 7 transmitted obliquely from the probe 5 is reflected by the defect 4, then reflected by the surface on the fluid inlet side, and received by the receiving probe 6. The same applies to the case where the positions of the probes 5 and 6 are reversed and the propagation paths are reversed. further,
In the inspection of the region C on the fluid outlet side, the transmitting and receiving probes 5, 6 are installed on the fluid inlet side as shown in FIG. The ultrasonic wave 7 transmitted obliquely from the probe 5 is reflected by the defect 4, then reflected by the surface on the fluid outlet side, and received by the receiving probe 6. Also in this case, the same result is obtained even when the positions of the probes 5 and 6 are reversed and the propagation paths are reversed. Area A
And C, since the probe has a finite size, the transmitting and receiving probes 5, 6 are placed on the same plane,
And it may not be able to be installed on the same line. In such a case, as shown in FIG. 12, the transmission and reception probes are shifted left and right, that is, arranged in a staggered manner, and the inspection is performed.

本方法を具体化するための超音波検査装置を第1図に
示す。第1図において、5は送信用探触子、6は受信用
探触子、7は超音波、9は送信器、10は受信器、11は受
信波の有無判定回路、12はしきい値設定回路、13はゲー
ト設定器、14は伝播距離測定器、15はピーク値検出器、
16は表示器である。
FIG. 1 shows an ultrasonic inspection apparatus for embodying the present method. In FIG. 1, 5 is a transmitting probe, 6 is a receiving probe, 7 is an ultrasonic wave, 9 is a transmitter, 10 is a receiver, 11 is a circuit for determining the presence or absence of a received wave, and 12 is a threshold value. Setting circuit, 13 is a gate setting device, 14 is a propagation distance measuring device, 15 is a peak value detector,
16 is a display.

第2図は信号波形の説明図である。 FIG. 2 is an explanatory diagram of a signal waveform.

はじめに、送信器9からの送信信号(第2図ア)によ
り送信用探触子5から超音波7(第2図イ)を送信す
る。ダブテール部分を伝播した超音波7を受信用探触子
6で受信し、受信器10に送られる(第2図ウ)。受信し
た超音波7は、受信波の有無判定器11で、あらかじめ設
定したゲート(第2図エ)内に信号があり、かつノイズ
除去のために設定したしきい値(第2図オ)以上の信号
があるか判定される。もし欠陥が存在する場合には、ゲ
ート内にしきい値以上の反射波が得られ、受信波の有無
判定器11で信号があると判定される。受信波の有無判定
器11で得られた信号は、伝播距離測定器14とピーク値検
出器15に送られる。伝播距離測定器14では、送信からそ
の信号が受信されるまでの時間を測定し、この時間
(T)に被検査体の音速(v)を掛けることで伝播距離
(L)を求める。
First, an ultrasonic wave 7 (FIG. 2A) is transmitted from the transmission probe 5 in accordance with a transmission signal (FIG. 2A) from the transmitter 9. The ultrasonic wave 7 having propagated through the dovetail portion is received by the receiving probe 6 and sent to the receiver 10 (FIG. 2C). The received ultrasonic wave 7 has a signal in a gate (FIG. 2D) which has been set in advance and is equal to or more than a threshold value (FIG. 2E) set for noise elimination by a received wave presence / absence determining unit 11. Is determined. If a defect exists, a reflected wave equal to or larger than the threshold value is obtained in the gate, and the presence / absence determination unit 11 for the received wave determines that there is a signal. The signal obtained by the received wave presence / absence determining unit 11 is sent to a propagation distance measuring unit 14 and a peak value detector 15. The propagation distance measuring device 14 measures the time from transmission to reception of the signal, and multiplies the time (T) by the sound speed (v) of the test object to determine the propagation distance (L).

L=T×v …(1) ピーク値検出器15では、受信波のピーク値を求め、表
示器16へ出力する。第1図では、軸方向中央部を検査す
る探触子の配置で記しているが、両端部の検査の際に
は、第10図及び第11図に記したように、同一面に探触子
を設置し、同様な流れで検査する。ここでは、検査結果
の確認,欠陥の位置の算出のために伝播距離測定器14,
ピーク値検出器15を設けたが、これらがなくても良い。
L = T × v (1) The peak value detector 15 calculates the peak value of the received wave and outputs it to the display 16. In FIG. 1, the arrangement of the probe for inspecting the central portion in the axial direction is described. However, when inspecting the both end portions, as shown in FIGS. A child is set up and inspected in the same way. Here, in order to confirm the inspection result and calculate the position of the defect, the propagation distance measuring device 14,
Although the peak value detector 15 is provided, these may not be provided.

つぎに、第二の実施例を第3図を用いて説明する。第
3図の構成は、四個の探触子(5a,5b,6a,6b)、17は送
信用探触子切換器、18は送信用探触子切換器であり、1
〜11は第1図と同一の表示なので省略する。流体入口側
の領域Aの検査は、送信用探触子切換器17で送信器9と
探触子5bとを接続し、受信用探触子切換器18で探触子6b
と受信器10とを接続する。送信器9からの送信信号によ
り探触子5bから超音波7を送信する。ダブテール部内を
伝播した超音波を探触子6bで受信し、受信器10に送られ
る。その後の信号の流れは、第一の実施例と同一であ
る。但し、欠陥が存在する場合に得られる受信波は、超
音波7が欠陥で反射し、次に流体入口側の面で反射し、
探触子6bで受信された超音波である。次に、軸方向中央
部(領域B)の検査は、送信用探触子切換器17で送信器
9と探触子5aとを接続し、受信用探触子切換器18で探触
子6bと受信器10とを接続する。この後の信号の流れは、
第一の実施例と同一である。最後に流体出口側の領域C
の検査は、送信用探触子切換器17で送信器9と探触子5a
とを接続し、受信用探触子切換器18で探触子6aと受信器
10とを接続する。この後の信号の流れは、領域Aの検査
の場合と同じである。
Next, a second embodiment will be described with reference to FIG. FIG. 3 shows a configuration in which four probes (5a, 5b, 6a, 6b), 17 is a transmission probe switch, 18 is a transmission probe switch,
11 are the same as those shown in FIG. Inspection of the region A on the fluid inlet side is performed by connecting the transmitter 9 and the probe 5b by the transmission probe switch 17, and by using the probe 6b by the reception probe switch 18.
And the receiver 10 are connected. The ultrasonic wave 7 is transmitted from the probe 5b by the transmission signal from the transmitter 9. The ultrasonic wave propagated in the dovetail portion is received by the probe 6b and sent to the receiver 10. The subsequent signal flow is the same as in the first embodiment. However, the reception wave obtained in the case where the defect is present is such that the ultrasonic wave 7 is reflected by the defect and then reflected by the surface on the fluid inlet side,
This is an ultrasonic wave received by the probe 6b. Next, in the inspection of the central portion in the axial direction (region B), the transmitter 9 is connected to the probe 5a by the transmission probe switch 17, and the probe 6b is connected by the reception probe switch 18. And the receiver 10 are connected. After this, the signal flow
This is the same as the first embodiment. Finally, the region C on the fluid outlet side
Inspection of the transmitter 9 and the probe 5a by the transmission probe switch 17
The probe 6a and the receiver are connected by the receiving probe switch 18.
Connect with 10. The subsequent signal flow is the same as in the case of the inspection of the area A.

第3図に示した第二の実施例では、探触子を流体入口
側の面と出口側の面との間で移動する必要はなく、切換
器17,18の操作だけで良いため、探触子の走査が容易に
なる利点がある。
In the second embodiment shown in FIG. 3, it is not necessary to move the probe between the surface on the fluid inlet side and the surface on the outlet side, and only the operation of the switches 17 and 18 is sufficient. There is an advantage that the scanning of the stylus becomes easy.

二つの実施例は、全ての領域を二個の探触子を用いて
検査している。つぎに示す第三の実施例では、両端部の
領域A,Cを一個の探触子で検査するようにした。前述の
ように、探触子から送信される超音波はある範囲に拡が
り、超音波の強度は、第4図に示すように音軸から離れ
るにしたがつて小さくなる。探触子で超音波を受信する
際も、探触子への入射角度により受信感度が異なり、第
4図と同じ分布である。このことは、欠陥や受信用探触
子が音軸上になくても、受信強度が小さくなるものの欠
陥からの反射波が受信できることを示す。そこで第三の
実施例では、第5図,第6図に示すように両端部の領域
A,Cを一個の探触子で検査する。軸方向中央部の検査
は、第一及び第二の実施例と同じである。また装置構成
は、設置している探触子の数が異なる(第二の実施例で
は四個,第三の実施例では二個)だけで第三の実施例と
同じである。領域Cの検査では、流体入口側に設置した
探触子5を、送信用探触子切換器17で送信器9と、そし
て受信用探触子切換器18で受信器10とを接続する。探触
子5から送信された超音波7は、ダブテール部内を伝播
し、送信と同じ探触子5で受信される。また、領域Aの
検査は流体出口側に設置した探触子を用いる点が異なる
だけで、領域Cの検査と同じである。
In two embodiments, all areas are inspected using two probes. In the third embodiment described below, the regions A and C at both ends are inspected by one probe. As described above, the ultrasonic waves transmitted from the probe spread over a certain range, and the intensity of the ultrasonic waves decreases as the distance from the sound axis increases, as shown in FIG. Even when the probe receives an ultrasonic wave, the receiving sensitivity varies depending on the angle of incidence on the probe, and the distribution is the same as in FIG. This indicates that even if the defect or the receiving probe is not on the sound axis, the reflected wave from the defect can be received although the reception intensity is low. Therefore, in the third embodiment, as shown in FIG. 5 and FIG.
Inspect A and C with one probe. The inspection at the axial center is the same as in the first and second embodiments. The configuration of the apparatus is the same as that of the third embodiment except that the number of the installed probes is different (four in the second embodiment and two in the third embodiment). In the inspection of the region C, the probe 5 installed on the fluid inlet side is connected to the transmitter 9 by the transmission probe switch 17 and to the receiver 10 by the reception probe switch 18. The ultrasonic wave 7 transmitted from the probe 5 propagates in the dovetail portion and is received by the same probe 5 as the transmission. The inspection of the area A is the same as the inspection of the area C, except that the probe installed on the fluid outlet side is used.

第5図,第6図の第三の実施例では、探触子が二個で
良く、しかも探触子を設置面間で移動する必要もないた
め、探触子の走査がさらに容易になる。
In the third embodiment shown in FIGS. 5 and 6, only two probes are required, and there is no need to move the probe between the installation surfaces, so that the scanning of the probe is further facilitated. .

このように、本発明の各実施例によれば、デイスク面
と垂直な方向にタブテール溝が加工してあるアキシャル
エントリ型タービンのタブテール部に発生した径方向欠
陥を各検査領域A,B,C毎に最適な探触子の配置条件を与
えてその径方向欠陥の有無を確実に検査してそのタブテ
ール部の健全性を確認出来る。
As described above, according to each embodiment of the present invention, the radial defects generated in the tab tail portion of the axial entry turbine in which the tab tail grooves are machined in the direction perpendicular to the disk surface are inspected in each of the inspection areas A, B, and C. Optimal probe placement conditions are given for each case, and the presence or absence of a radial defect can be reliably checked to confirm the soundness of the tab tail portion.

〔発明の効果〕〔The invention's effect〕

本発明によれば、デイスク面と垂直な方向にタブテー
ル溝が加工してあるアキシャルエントリ型タービンのタ
ブテール部に発生した径方向欠陥を確実に検出できるた
め、くびれていない構造のダブテール部においても、そ
の健全性を確認できる効果がある。
According to the present invention, a radial defect generated in a tab tail portion of an axial entry turbine in which a tab tail groove is machined in a direction perpendicular to the disk surface can be reliably detected, so even in a dovetail portion having a non-necked structure, There is an effect that its soundness can be confirmed.

【図面の簡単な説明】 第1図は本発明の第一実施例のブロツク図、第2図は第
1図の波形説明図、第3図は本発明の第二の実施例のブ
ロツク図、第4図は超音波の強度分布図、第5図は本発
明の第三の実施例の説明図、第6図は第5図の右側面
図、第7図,第8図は従来例の説明図、第9図ないし第
12図は本発明における探触子の配置の説明図である。 1……被検査体、2……ブレード、3……周方向欠陥、
4……径方向欠陥、5……送信用探触子、6……受信用
探触子,7……超音波、8……検査点、9……送信器、10
……受信器、11……受信波の有無判定器、12……しきい
値設定器、13……ゲート設定器、14……伝播距離測定
器、15……ピーク値検出器、16……表示器、17……送信
用探触子切換器、18……受信用探触子切換器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a first embodiment of the present invention, FIG. 2 is a waveform explanatory diagram of FIG. 1, FIG. 3 is a block diagram of a second embodiment of the present invention, FIG. 4 is an intensity distribution diagram of an ultrasonic wave, FIG. 5 is an explanatory view of a third embodiment of the present invention, FIG. 6 is a right side view of FIG. 5, FIG. 7 and FIG. Explanatory diagrams, FIGS. 9 to
FIG. 12 is an explanatory diagram of the arrangement of the probes according to the present invention. 1 ... inspected object, 2 ... blade, 3 ... circumferential defect,
4 ... radial defect, 5 ... transmitting probe, 6 ... receiving probe, 7 ... ultrasonic wave, 8 ... inspection point, 9 ... transmitter, 10
... Receiver, 11 ... Received wave presence / absence detector, 12 ... Threshold setting device, 13 ... Gate setting device, 14 ... Propagation distance measuring device, 15 ... Peak value detector, 16 ... Display, 17 ... Transmitting probe switch, 18 ... Receiving probe switch.

フロントページの続き (72)発明者 梶山 茂 茨城県日立市森山町1168番地 株式会社 日立製作所エネルギー研究所内 (56)参考文献 特開 平1−161145(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 29/00 - 29/28 Continuation of the front page (72) Inventor Shigeru Kajiyama 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Energy Laboratory, Hitachi, Ltd. (56) References JP-A-1-161145 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) G01N 29/00-29/28

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アキシャルエントリ型タービンデイスクの
デイスク側面へ設置した探触子からアキシャルエントリ
型タービンデイスクのダブテール部へ超音波を送信し、
ダブテール部からの反射された超音波を受信してダブテ
ール部の欠陥を検出する超音波検査方法において、 検査部位を流体入口側・中央部・流体出口側の3領域に
分けて、流体入口側領域を検査する場合には送信用探触
子と受信用探触子の双方を流体出口側デイスク面に設置
して超音波を送受信し、中央部領域を検査する場合には
送信用探触子と受信用探触子の一方を流体入口側デイス
ク面に、他方を流体出口側デイスク面に設置して超音波
を送受信し、流体出口側領域を検査する場合には送信用
探触子と受信用探触子の双方を流体入口側デイスク面に
設置して超音波を送受信することを特徴とする超音波検
査方法。
An ultrasonic wave is transmitted from a probe installed on a disk side surface of an axial entry type turbine disk to a dovetail portion of the axial entry type turbine disk.
In an ultrasonic inspection method for receiving a reflected ultrasonic wave from a dovetail portion and detecting a defect of the dovetail portion, an inspection site is divided into three regions of a fluid inlet side, a central portion, and a fluid outlet side, and a fluid inlet side region is provided. When inspecting, both the transmitting probe and the receiving probe are installed on the disk surface on the fluid outlet side to transmit and receive ultrasonic waves, and when inspecting the central area, the transmitting probe and the receiving probe are One of the receiving probes is installed on the disk surface on the fluid inlet side, and the other is installed on the disk surface on the fluid outlet side to transmit and receive ultrasonic waves.When inspecting the fluid outlet side area, the transmitting probe and the receiving probe are used. An ultrasonic inspection method, wherein both probes are placed on a disk surface on the fluid inlet side to transmit and receive ultrasonic waves.
【請求項2】アキシャルエントリ型タービンデイスクの
デイスク側面へ設置した探触子からアキシャルエントリ
型タービンデイスクのダブテール部へ超音波を送信する
超音波探触子と、超音波探触子に高電圧を印加する送信
器と、ダブテール部からの反射波を受信する超音波探触
子と、受信した反射波信号を増幅する受信器と、予め設
定しておいた時間ゲート内で受信した反射波信号の振幅
としきい値を比較して受信波の有無を判定する手段を備
えた超音波検査装置において、 流体入口側デイスク面と流体出口側デイスク面の双方に
2つずつの超音波探触子を配置し、流体入口側領域を検
査する場合には送信器と受信器の双方を流体出口側デイ
スク面の探触子と接続し、中央部領域を検査する場合に
は送信器と受信器の一方を流体出口側デイスク面の探触
子に、他方を流体入口側デイスク面の探触子に接続し、
流体出口側領域を検査する場合には送信器と受信器の双
方を流体入口側デイスク面の探触子と接続する受信探触
子切換器と送信探触子切換器を備えたことを特徴とする
超音波検査装置。
2. An ultrasonic probe for transmitting ultrasonic waves from a probe disposed on a disk side surface of an axial entry type turbine disk to a dovetail portion of the axial entry type turbine disk, and applying a high voltage to the ultrasonic probe. A transmitter to apply, an ultrasonic probe to receive the reflected wave from the dovetail part, a receiver to amplify the received reflected wave signal, and a reflected wave signal received within a preset time gate. An ultrasonic inspection apparatus comprising means for comparing the amplitude with a threshold value to determine the presence or absence of a received wave, wherein two ultrasonic probes are arranged on both the fluid inlet side disk surface and the fluid outlet side disk surface. When inspecting the fluid inlet side area, connect both the transmitter and the receiver to the probe on the fluid outlet side disk surface, and when inspecting the central area, connect one of the transmitter and the receiver. Fluid outlet side day Connect the other end to the probe on the disk surface and the probe on the disk surface on the fluid inlet side,
In the case of inspecting the fluid outlet side area, a receiver probe switch and a transmitter probe switch that connect both the transmitter and the receiver to the probe on the fluid inlet side disk surface are provided. Ultrasonic inspection equipment.
【請求項3】請求項1において、流体入口側領域および
流体出口側領域を検査する場合には超音波の送信,受信
を同一の探触子で実施する方法とし、中央部領域を検査
する場合には超音波の送信,受信を別々の探触子で実施
する方法とする超音波検査方法。
3. The method according to claim 1, wherein when the fluid inlet side area and the fluid outlet side area are inspected, the transmission and reception of ultrasonic waves are performed by the same probe, and the central area is inspected. An ultrasonic inspection method is a method in which transmission and reception of ultrasonic waves are performed by separate probes.
【請求項4】請求項1において、流体入口側領域および
流体出口側領域を検査する場合に、デイスク面上に送信
用探触子と受信用探触子とを千鳥状に配置することを特
徴とする超音波検査方法。
4. The inspection apparatus according to claim 1, wherein the transmission probe and the reception probe are arranged in a staggered manner on the disk surface when inspecting the fluid inlet side region and the fluid outlet side region. Ultrasonic inspection method.
JP2322831A 1990-11-28 1990-11-28 Ultrasonic inspection method and ultrasonic inspection device Expired - Lifetime JP2966515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322831A JP2966515B2 (en) 1990-11-28 1990-11-28 Ultrasonic inspection method and ultrasonic inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322831A JP2966515B2 (en) 1990-11-28 1990-11-28 Ultrasonic inspection method and ultrasonic inspection device

Publications (2)

Publication Number Publication Date
JPH04194745A JPH04194745A (en) 1992-07-14
JP2966515B2 true JP2966515B2 (en) 1999-10-25

Family

ID=18148094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322831A Expired - Lifetime JP2966515B2 (en) 1990-11-28 1990-11-28 Ultrasonic inspection method and ultrasonic inspection device

Country Status (1)

Country Link
JP (1) JP2966515B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185902B2 (en) * 2009-09-17 2013-04-17 三菱重工業株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for turbine rotor disk
JP5383892B2 (en) * 2012-11-19 2014-01-08 三菱重工業株式会社 Ultrasonic flaw detector for turbine rotor disk
JP6004934B2 (en) * 2012-12-28 2016-10-12 三菱日立パワーシステムズ株式会社 Turbine rotor
JP6395498B2 (en) * 2014-08-12 2018-09-26 三菱重工コンプレッサ株式会社 Ultrasonic flaw detection method and apparatus for blade grooves of turbine rotor disk

Also Published As

Publication number Publication date
JPH04194745A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
EP0139867B1 (en) Near surface inspection system
CA1169539A (en) Ultrasonic probe for nondestructive inspection
Kupperman et al. Ultrasonic NDE of cast stainless steel
JP2966515B2 (en) Ultrasonic inspection method and ultrasonic inspection device
KR20180103567A (en) Apparatus and method for detecting defects of structures
JPS6321135B2 (en)
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
RU2045059C1 (en) Method of ultrasonic quality controlling of mounting of tension connections
JPH05180807A (en) Method for selecting ultrasonic-wave probe and probe selected by method thereof
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPH0545346A (en) Ultrasonic probe
Matsui et al. Development of New Inspection Method for LSAW Pipes Using Matrix Phased Array UT
JPH10221308A (en) Method and device of detecting ruptured part in metal and probe
JP2997485B2 (en) Ultrasonic inspection apparatus and probe setting method for ultrasonic inspection apparatus
JP2004138392A (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR200263215Y1 (en) multi-scanning ultrasonic inspector for weld zone
JP3298085B2 (en) Ultrasonic flaw detection method and device
JP2883051B2 (en) Ultrasonic critical angle flaw detector
Sasaki et al. Pipe-Thickness Measurement Technology Using EMAT and Fiber Optic Sensors
KR20210086323A (en) Device for inspecting defects using nondestructive method
JPH0521011Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12