JPH07325070A - Ultrasonic method for measuring depth of defect - Google Patents

Ultrasonic method for measuring depth of defect

Info

Publication number
JPH07325070A
JPH07325070A JP6119833A JP11983394A JPH07325070A JP H07325070 A JPH07325070 A JP H07325070A JP 6119833 A JP6119833 A JP 6119833A JP 11983394 A JP11983394 A JP 11983394A JP H07325070 A JPH07325070 A JP H07325070A
Authority
JP
Japan
Prior art keywords
defect
ultrasonic
depth
wave
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6119833A
Other languages
Japanese (ja)
Inventor
Junichi Takabayashi
順一 高林
Yasuhiro Aikawa
康浩 相川
Shuichi Tateishi
修一 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Toshiba Corp
Nittetsu Elex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nittetsu Elex Co Ltd filed Critical Toshiba Corp
Priority to JP6119833A priority Critical patent/JPH07325070A/en
Publication of JPH07325070A publication Critical patent/JPH07325070A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02845Humidity, wetness

Abstract

PURPOSE:To measure the depth of a defect at a high detecting sensitivity without changing the shape of a body to be inspected. CONSTITUTION:Depth of a defect 4 generated in a body 3 to be inspected is measured by the ultrasonic method. A longitudinal wave vertical probe 1 is provided just over the defect 4 generated in the body 3 to be inspected, and a transverse wave angle beam probe 2 is provided opposite to the longitudinal wave vertical probe 1. These probes 1, 2 are used for the double-probe method, and one of them is used for a transmitter, and the other is used for a receiver, and the transmitting time from the transmission of the end echo, of which mode is converted at the tip of the defect 4 for transmission, to the receipt thereof is measured. A result of the measurement is used for an expression obtained on the basis of the transmission route of the ultrasonic beam, which is geometrically obtained, so as to obtain the depth of the defect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は構造物の非破壊検査等に
より発見された欠陥(クラックとも割れとも称す)に対
して寿命評価を行う点から必要となる欠陥の深さ(大き
さ)を測定するための超音波法による欠陥深さの測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention determines the depth (size) of a defect required for evaluating the life of a defect (also called a crack) which is found by nondestructive inspection of a structure. The present invention relates to a method of measuring a defect depth by an ultrasonic method for measuring.

【0002】[0002]

【従来の技術】構造物の非破壊検査においては、強度上
許容されるサイズの模擬欠陥と比較して欠陥の検出感度
および合否を決定している。しかし、重要な構造物にお
いて合格範囲であるが欠陥が発見された場合、および欠
陥として検出されてもすぐに補修ができない場合などに
おいて、構造物の寿命評価を行うために欠陥のサイズを
測定する必要があった。
2. Description of the Related Art In non-destructive inspection of a structure, the detection sensitivity and pass / fail of a defect are determined in comparison with a simulated defect of a size that is allowable in terms of strength. However, if a defect is found in a critical structure that is within the acceptable range, or if a defect cannot be repaired immediately even if it is detected as a defect, the size of the defect is measured to evaluate the life of the structure. There was a need.

【0003】この欠陥サイズ測定方法としては、例えば
特開昭54-55493号公報,特開平3−146859号公報などに
開示されているように、渦流探傷,電気抵抗法,超音波
探傷における端部エコー法などが知られている。渦流探
傷や電気抵抗法では探傷面側に欠陥がなければ測定でき
ない上に測定値にばらつきが大きい欠点がある。
As this defect size measuring method, for example, as disclosed in Japanese Patent Laid-Open No. 54-55493 and Japanese Patent Laid-Open No. 3-146859, the edge portion in eddy current flaw detection, electric resistance method, ultrasonic flaw detection The echo method and the like are known. The eddy current flaw detection method and the electric resistance method have the drawback that measurement cannot be performed unless there is a flaw on the flaw detection surface side, and the measured values vary widely.

【0004】また、探傷面と反対側から発生した欠陥の
深さを測定できる端部エコー法においては、主として図
4(a)に示すように被検査体3に発生した欠陥4の先
端に横波斜角探触子2から超音波ビーム、つまり、横波
入射ビーム7を照射して得られる端部エコーの反射成分
6aをもとの横波斜角探触子2で検出する端部エコー法
と、図4(b)に示すように端部エコーの回析成分6を
他方の横波斜角探触子2で検出する二探触子端部エコー
法がある。
Further, in the edge echo method capable of measuring the depth of a defect generated from the side opposite to the flaw detection surface, a transverse wave is mainly applied to the tip of the defect 4 generated in the inspection object 3 as shown in FIG. 4 (a). An edge echo method in which the ultrasonic wave beam, that is, the reflected component 6a of the edge echo obtained by irradiating the transverse wave incident beam 7 is detected by the transverse wave bevel probe 2 based on the end echo method, As shown in FIG. 4B, there is a two-probe end echo method in which the diffraction component 6 of the end echo is detected by the other transverse wave bevel probe 2.

【0005】これらの端部エコーは極めて微弱であるた
め、結晶粒界ノイズ等とのS/N比が非常に悪く、超音
波のモードや屈折角の選定、欠陥4の端部に超音波を集
中させるための焦点型探傷子の採用などS/N比向上の
ため種々の検討がされてきている。
Since these end echoes are extremely weak, the S / N ratio with crystal grain boundary noise, etc. is very poor, and the ultrasonic mode and refraction angle are selected, and ultrasonic waves are applied to the end of the defect 4. Various studies have been made to improve the S / N ratio, such as the use of a focus type flaw detector for focusing.

【0006】[0006]

【発明が解決しようとする課題】特にオーステナイト系
ステンレス鋼等の減衰の大きな材料においては、ノイズ
エコーの妨害により欠陥端部からの信号を正しく認識す
ることが困難であり、端部エコーが検出不能となること
もかなりあった。したがって、欠陥の長さ方向に数ミリ
ピッチで深さを測定して、欠陥のプロフィールを測定す
るなどということは不可能であった。
Particularly in a material with large attenuation such as austenitic stainless steel, it is difficult to correctly recognize the signal from the defect edge due to the interference of noise echo, and the edge echo cannot be detected. There were quite a few cases. Therefore, it is impossible to measure the defect profile by measuring the depth in the length direction of the defect at a pitch of several millimeters.

【0007】本発明者らは欠陥4の先端部に欠陥面と平
行する方向から縦波の超音波ビームを照射した場合、欠
陥4の先端部から欠陥面に対しておよそ下方45°の方向
に従来の端部エコーで利用されていた反射成分(図4中
符号6a)、または回折成分(図4中符号6)より10倍
以上強い端部エコーが横波にモード変換されて放出され
ることを見出した。
When the inventors of the present invention irradiate the tip of the defect 4 with a longitudinal ultrasonic wave from a direction parallel to the defect plane, the direction of the tip of the defect 4 is about 45 ° below the defect plane. It is confirmed that the reflection component (reference numeral 6a in FIG. 4) or the reflection component (reference numeral 6 in FIG. 4) used in the conventional end echo is 10 times or more stronger than the end component, and the end echo is converted into a transverse wave and emitted. I found it.

【0008】この現象は逆のルート、すなわち欠陥4の
先端部に対して欠陥面とおよそ45°をなす方向から横波
の超音波ビームを当てた場合においても、欠陥4の先端
部より欠陥4面と平行で欠陥4の先端部から遠ざかる方
向に縦波にモード変換された強い端部エコーが放出され
る。
This phenomenon occurs in the opposite route, that is, when a transverse ultrasonic beam is applied to the tip of the defect 4 from a direction that makes an angle of about 45 ° with the defect surface, the defect 4 surface starts from the tip of the defect 4. A strong end echo mode-converted into a longitudinal wave is emitted in a direction parallel to and away from the tip of the defect 4.

【0009】従来はモード変換による音速の差や、複雑
な反射経路等のため、このモード変換された端部エコー
は注目されていなかった。上述のように従来の端部エコ
ー法ではS/N比が悪いなかでの測定となり、欠陥の先
端部エコーの識別が難しい課題がある。
Heretofore, this mode-converted end echo has not been paid attention because of a difference in sound velocity due to mode conversion, a complicated reflection path, and the like. As described above, according to the conventional end echo method, the measurement is performed even when the S / N ratio is bad, and there is a problem that it is difficult to identify the tip echo of the defect.

【0010】本発明は上記課題を解決するためになされ
たもので、被検査体に発生した欠陥に対して被検査体の
形状を変えることなく、きわめて強い端部エコーを観測
できるようにして、S/N比のすぐれた測定が可能で、
測定精度が高く欠陥の深さを測定できる超音波法による
欠陥深さの測定方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and enables an extremely strong end echo to be observed without changing the shape of the object to be inspected with respect to a defect generated in the object to be inspected. Excellent measurement of S / N ratio is possible,
An object of the present invention is to provide a defect depth measuring method by an ultrasonic method capable of measuring a defect depth with high measurement accuracy.

【0011】[0011]

【課題を解決するための手段】本発明は被検査体に発生
した欠陥の深さを超音波法により測定する方法におい
て、前記被検査体に発生した欠陥の真上に縦波垂直探触
子を設けるとともに、この縦波垂直探触子に対向して横
波斜角探触子を設け、これらの探触子の一方を送信用と
し、他方を受信用とし、前記欠陥の先端部でモード変換
して伝播する端部エコーの送信から受信に至る伝播時間
を測定し、その測定結果を幾何学的に求めた超音波ビー
ムの伝播ルートから導き出した計算式にあてはめて計算
することにより欠陥の深さを求めることを特徴とする
According to the present invention, in a method for measuring the depth of a defect generated in an object to be inspected by an ultrasonic method, a longitudinal wave vertical probe is located directly above the defect generated in the object to be inspected. And a transverse wave bevel probe facing the longitudinal wave vertical probe, one of these probes for transmitting and the other for receiving, and mode conversion at the tip of the defect. By measuring the propagation time from the transmission to the reception of the end echo that propagates as a result, and applying the calculation result to the calculation formula derived from the propagation route of the ultrasonic beam obtained geometrically, the depth of the defect can be calculated. Characterized by seeking

【0012】[0012]

【作用】図1に示したように、被検査体3の上面に欠陥
4の真上に位置して縦波垂直探触子1と、この探触子1
からずらして角度3θを有する位置に横波斜角探触子2
を設け、欠陥4の真上から縦波垂直探触子1により欠陥
4の先端に向けて縦波超音波を入射する。入射した縦波
超音波ビーム5は、欠陥4の先端に照射すると横波にモ
ード変換された端部エコー6bが欠陥4とおよそ45°を
なす角度で欠陥の両側に放出される。
As shown in FIG. 1, the longitudinal wave vertical probe 1 is located directly above the defect 4 on the upper surface of the object 3 to be inspected, and this probe 1
Transverse wave angle probe 2 at a position offset from the angle 3θ
And a longitudinal ultrasonic wave is incident from directly above the defect 4 by the longitudinal wave vertical probe 1 toward the tip of the defect 4. When the incident longitudinal wave ultrasonic beam 5 is applied to the tip of the defect 4, the end echo 6b, which has been converted into a transverse wave mode, is emitted to both sides of the defect 4 at an angle of about 45 °.

【0013】このモード変換した端部エコー6bは図4
で説明した端部エコーの反射成分6a、および端部エコ
ーの回折成分6よりもかなり強いエコーであるため、底
面で1回反射しても十分に強いエコーとして横波斜角探
触子2で受信され、結晶粒界ノイズ等とのS/N比は極
めて良好である。
The mode-converted end echo 6b is shown in FIG.
Since the echo component is considerably stronger than the reflection component 6a of the end echo and the diffraction component 6 of the end echo described above, it is received by the transverse wave bevel probe 2 as a sufficiently strong echo even if it is reflected once on the bottom surface. The S / N ratio with the grain boundary noise and the like is extremely good.

【0014】図1において、被検査体3の板厚をt、欠
陥深さをd、横波斜角探触子2の屈折角をθとすれば、
欠陥4の先端でモード変換して放出される横波端部エコ
ー6bが被検査体3の底面に入反射する角度もθであ
る。この場合、縦波入射ビーム5と底面で1回反射する
モード変換した横波端部エコー6bの伝搬に要する時間
をTとすれば、Tは(1)式で示される。
In FIG. 1, if the plate thickness of the object 3 to be inspected is t, the defect depth is d, and the refraction angle of the transverse wave bevel probe 2 is θ,
The angle at which the transverse wave end echo 6b emitted after mode conversion at the tip of the defect 4 is reflected on the bottom surface of the DUT 3 is also θ. In this case, if the time required for propagation of the longitudinal wave incident beam 5 and the mode-converted transverse wave end echo 6b that is reflected once by the bottom surface is T, then T is expressed by equation (1).

【0015】[0015]

【数1】 (1)式においてCL は被検査体中における縦波の音
速、CS は横波の音速である。この(1)式から欠陥深
さdは次の(2)式として求められる。
[Equation 1] (1) C L is the acoustic velocity of the longitudinal waves in the object to be inspected in, C S is the speed of sound of the transverse wave in the formula. From this equation (1), the defect depth d can be obtained as the following equation (2).

【0016】[0016]

【数2】 [Equation 2]

【0017】なお、上記の説明では本発明の欠陥深さの
測定方法について垂直探触子を送信側、斜角探触子を受
信側としたが、斜角探触子を送信側、垂直探触子を受信
側としても、まったく同様である。
In the above description, the vertical probe was used as the transmitting side and the oblique probe was used as the receiving side in the defect depth measuring method of the present invention, but the oblique probe is used as the transmitting side and the vertical probe is used. The same is true when the tentacle is the receiving side.

【0018】[0018]

【実施例】図2を参照しながら本発明に係る超音波法に
よる欠陥深さの測定方法の第1の実施例を説明する。図
2(a)は被検査体3の大きさの寸法を示しており、左
側は長手方向の側面で、右側は幅方向の側面である。被
検査体3は厚さ20mm,幅60mm,長さ 100mmの大きさを有
するステンレス鋼(SUS304)製の平板で、中央部に欠陥
4として疲労き裂を発生させている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a method for measuring the depth of defects by the ultrasonic method according to the present invention will be described with reference to FIG. FIG. 2A shows the size of the object 3 to be inspected. The left side is the side surface in the longitudinal direction and the right side is the side surface in the width direction. The inspected body 3 is a flat plate made of stainless steel (SUS304) having a thickness of 20 mm, a width of 60 mm, and a length of 100 mm, and a fatigue crack is generated as a defect 4 in the central portion.

【0019】被検査体3に発生した欠陥4の真上に縦波
垂直探触子1を設け、この探触子1の両側に所定の間隔
をもって横波斜角探触子2を設けている。これらの探触
子1,2はいずれか一方が送信用で、他方が受信用とす
るが、何れを選ぶかは予め決めておく。被検査体3にお
ける縦波音波は5790m/s ,3100m/s である。
A longitudinal wave vertical probe 1 is provided directly above a defect 4 generated in an object to be inspected 3, and transverse wave oblique angle probes 2 are provided on both sides of the probe 1 at a predetermined interval. One of these probes 1 and 2 is for transmission and the other is for reception. Which one is selected is determined in advance. The longitudinal sound waves in the inspected body 3 are 5790 m / s and 3100 m / s.

【0020】欠陥上部に垂直探触子1を配置し、欠陥の
先端に向けて縦波超音波を入射すると、欠陥4の先端部
より下方約45°方向に強い横波超音波が発生するので、
底面で1回反射したこの横波を横波斜角探触子2で検出
する。
When the vertical probe 1 is arranged above the defect and longitudinal ultrasonic waves are incident toward the tip of the defect, a strong transverse ultrasonic wave is generated in a direction of about 45 ° below the tip of the defect 4.
This transverse wave reflected once by the bottom surface is detected by the transverse wave bevel probe 2.

【0021】この時の垂直探触子1から発信され、横波
斜角探触子2で受信されるまでの超音波の伝搬時間を測
定し、計算式(2)で計算することで欠陥の深さを求め
ることができる。
At this time, the propagation time of the ultrasonic wave transmitted from the vertical probe 1 and received by the transverse wave bevel probe 2 is measured, and the depth of the defect is calculated by the calculation formula (2). You can ask for it.

【0022】測定結果を図2(b)に示す。図2(b)
中、たて軸は欠陥の深さをクラック高さ(mm)として示
し、よこ軸は測定位置(幅方向)を(mm)で示してい
る。また、図中、白丸は斜角探触子2を右側に置いて測
定した場合の測定結果を、黒丸は左側に置いて測定した
場合の測定結果を、実線によるカーブは測定後、被検査
体3を破断させてクラック(欠陥)の深さを実測したき
裂先端のプロフィールを示している。
The measurement results are shown in FIG. 2 (b). Figure 2 (b)
The vertical axis indicates the depth of the defect as the crack height (mm), and the horizontal axis indicates the measurement position (width direction) in (mm). In the figure, the white circles show the measurement results when the bevel probe 2 was placed on the right side, the black circles show the measurement results when placed on the left side, and the solid curve shows the measurement results after the measurement. 3 shows a profile of a crack tip in which the depth of a crack (defect) was actually measured by breaking No. 3.

【0023】図2(b)から明らかのように、本実施例
によれば左右からの測定値と実測値はよく一致してお
り、また欠陥深さを測定するための端部エコー6bの検
出性はほぼ 100%であることが認められる。
As is apparent from FIG. 2B, according to this embodiment, the measured values from the left and right are in good agreement with the measured values, and the end echo 6b for detecting the defect depth is detected. It is recognized that the sex is almost 100%.

【0024】つぎに図3を参照しながら本発明に係る超
音波法による欠陥深さの測定方法の第2の実施例を説明
する。この第2の実施例は被検査体3の上面から下方に
欠陥4が生じている場合の欠陥4の深さを測定する例で
ある。図3(a)では欠陥4の深さが浅い場合の例を示
し、図3(b)では欠陥4の深さが深い場合の例を示し
ている。
Next, with reference to FIG. 3, a second embodiment of the method for measuring the defect depth by the ultrasonic method according to the present invention will be described. The second embodiment is an example of measuring the depth of the defect 4 when the defect 4 is formed below the upper surface of the inspection object 3. 3A shows an example in which the depth of the defect 4 is shallow, and FIG. 3B shows an example in which the depth of the defect 4 is deep.

【0025】図3(a),(b)ともに欠陥4の真上に
縦波垂直探触子1を設け、横波斜角探触子2を(a)の
場合には探触子1から遠ざけて設け、(b)の場合には
近づけて設けている。
In both FIGS. 3A and 3B, a longitudinal wave vertical probe 1 is provided directly above the defect 4, and a transverse wave oblique angle probe 2 is kept away from the probe 1 in the case of FIG. 3A. In the case of (b), they are provided close to each other.

【0026】この第2の実施例では図3(a),(b)
ともに検出しようとしている端部エコー6bはかなり強
いため、図示したように垂直縦波成分6bが被検査体3
の底面で反射しても十分強いエコーとして検出でき、前
記第1の実施例と同様の理論で欠陥4の深さを測定する
ことができる。
In the second embodiment, FIGS. 3 (a) and 3 (b) are used.
Since the end echo 6b to be detected together is quite strong, the vertical longitudinal wave component 6b is generated as shown in the figure.
Even if it is reflected by the bottom surface, it can be detected as a sufficiently strong echo, and the depth of the defect 4 can be measured by the same theory as in the first embodiment.

【0027】すなわち、欠陥4の開口端から欠陥4と平
行な縦波超音波を探触子1から入射すると、欠陥4の先
端部から下方45°に強い横波超音波が発生する。この横
波超音波を横波斜角探触子2で検出する。
That is, when a longitudinal ultrasonic wave parallel to the defect 4 is incident from the probe 1 through the opening end of the defect 4, a strong transverse ultrasonic wave is generated 45 ° below the tip of the defect 4. The transverse wave ultrasonic wave is detected by the transverse wave oblique angle probe 2.

【0028】この時の縦波垂直接触し1から発信され横
波斜角探触子2で受信されるまでの超音波の伝搬時間を
測定し前述した計算式(2)により計算することで欠陥
4の深さを求めることができる。
At this time, the propagation time of the ultrasonic wave from the vertical wave vertical contact 1 to the ultrasonic wave oblique angle probe 2 until it is received and measured by the transverse wave bevel probe 2 is calculated by the above-mentioned calculation formula (2) to detect the defect 4 The depth of can be calculated.

【0029】[0029]

【発明の効果】本発明によれば、被検査体に発生した欠
陥に対して被検査体の形状を変えることなく、きわめて
強い端部エコーを観測できるため、S/N比のすぐれた
測定が可能で、精度の向上が期待できる。よって、本発
明を用いることにより容器や構造物などの安全性評価、
残存寿命の推定を行うことが可能になるなど、その効果
は多大である。
According to the present invention, an extremely strong end echo can be observed without changing the shape of the object to be inspected with respect to a defect generated in the object to be inspected, so that the measurement with an excellent S / N ratio can be performed. Possible and expected to improve accuracy. Therefore, by using the present invention, safety evaluation of containers and structures,
The effect is enormous such that the remaining life can be estimated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超音波法による欠陥深さの測定方
法の作用を説明するための概略断面図。
FIG. 1 is a schematic cross-sectional view for explaining the action of a method for measuring a defect depth by an ultrasonic method according to the present invention.

【図2】(a)は本発明の第1の実施例における被検査
体の大きさを示す側面図、(b)は被検査体の欠陥深さ
を測定した結果を示す曲線図。
FIG. 2A is a side view showing a size of an inspection object according to the first embodiment of the present invention, and FIG. 2B is a curve diagram showing a result of measuring a defect depth of the inspection object.

【図3】(a)は本発明の第2の実施例を説明するため
の概略断面図、(b)は(a)の他の例を示す概略断面
図。
3A is a schematic sectional view for explaining a second embodiment of the present invention, and FIG. 3B is a schematic sectional view showing another example of FIG. 3A.

【図4】(a)は従来の超音波法による欠陥深さの測定
方法を説明するための概略断面図、(b)は(a)にお
ける他の例を示す概略断面図。
4A is a schematic cross-sectional view for explaining a defect depth measuring method by a conventional ultrasonic method, and FIG. 4B is a schematic cross-sectional view showing another example in FIG. 4A.

【符号の説明】[Explanation of symbols]

1…縦波垂直探触子、2…横波斜角探触子、3…被検査
体、4…欠陥、5…縦波入射ビーム、6…端部エコー、
6a…端部エコーの反射成分、6b…モード変換した端
部エコー、7…横波入射ビーム。
DESCRIPTION OF SYMBOLS 1 ... Longitudinal wave vertical probe, 2 ... Transverse wave oblique angle probe, 3 ... Inspected object, 4 ... Defect, 5 ... Longitudinal wave incident beam, 6 ... End echo,
6a ... Reflection component of edge echo, 6b ... Mode-converted edge echo, 7 ... Transverse wave incident beam.

フロントページの続き (72)発明者 立石 修一 神奈川県相模原市淵野辺5−10−1 日鉄 テクノス株式会社内Front Page Continuation (72) Inventor Shuichi Tateishi 5-10-1 Fuchinobe, Sagamihara City, Kanagawa Nittetsu Technos Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査体に発生した欠陥の深さを超音波
法により測定する方法において、前記被検査体に発生し
た欠陥の真上に縦波垂直探触子を設けるとともに、この
縦波垂直探触子に対向して横波斜角探触子を設け、これ
らの探触子の一方を送信用とし、他方を受信用とし、前
記欠陥の先端部でモード変換して伝播する端部エコーの
送信から受信に至る伝播時間を測定し、その測定結果を
幾何学的に求めた超音波ビームの伝播ルートから導き出
した計算式にあてはめて計算することにより欠陥の深さ
を求めることを特徴とする超音波法による欠陥深さの測
定方法。
1. A method of measuring the depth of a defect generated in an inspection object by an ultrasonic method, wherein a longitudinal wave vertical probe is provided directly above the defect generated in the inspection object, and the longitudinal wave is generated. A transverse wave bevel probe is provided opposite to the vertical probe, one of these probes is used for transmission, and the other is used for reception, and an end echo that propagates after mode conversion at the tip of the defect. It is characterized in that the propagation time from the transmission to the reception of is measured, and the depth of the defect is calculated by applying the measurement result to the calculation formula derived from the propagation route of the ultrasonic beam obtained geometrically. Defect depth measurement method by ultrasonic method.
【請求項2】 前記欠陥の先端部に縦波の超音波を入射
し、この先端部から発生する横波の超音波を横波斜角探
触子で受信することを特徴とする請求項1記載の超音波
法による欠陥深さの測定方法。
2. A longitudinal wave ultrasonic wave is incident on the tip of the defect, and a transverse ultrasonic wave generated from the tip is received by a transverse wave bevel probe. Defect depth measurement method by ultrasonic method.
【請求項3】 前記欠陥の先端部に横波の超音波を入射
し、この先端部から発生する縦波の超音波を縦波斜角探
触子で受信することを特徴とする請求項1記載の超音波
法による欠陥深さの測定方法。
3. The ultrasonic wave of a transverse wave is incident on the tip portion of the defect, and the ultrasonic wave of a longitudinal wave generated from the tip portion is received by a longitudinal wave bevel probe. Method for measuring the depth of defects by ultrasonic method.
JP6119833A 1994-06-01 1994-06-01 Ultrasonic method for measuring depth of defect Pending JPH07325070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6119833A JPH07325070A (en) 1994-06-01 1994-06-01 Ultrasonic method for measuring depth of defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6119833A JPH07325070A (en) 1994-06-01 1994-06-01 Ultrasonic method for measuring depth of defect

Publications (1)

Publication Number Publication Date
JPH07325070A true JPH07325070A (en) 1995-12-12

Family

ID=14771393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6119833A Pending JPH07325070A (en) 1994-06-01 1994-06-01 Ultrasonic method for measuring depth of defect

Country Status (1)

Country Link
JP (1) JPH07325070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249116A (en) * 2000-03-03 2001-09-14 Tokimec Inc Method and apparatus for determining flaw in specimen
JP2003066016A (en) * 2001-08-23 2003-03-05 Toshiba Corp Measuring method for depth of defect in structure
EP3396369A4 (en) * 2015-12-24 2018-12-12 Posco Crack measurement device and method
CN112484836A (en) * 2020-11-20 2021-03-12 西安热工研究院有限公司 Ultrasonic probe device and workpiece sound velocity measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249116A (en) * 2000-03-03 2001-09-14 Tokimec Inc Method and apparatus for determining flaw in specimen
JP2003066016A (en) * 2001-08-23 2003-03-05 Toshiba Corp Measuring method for depth of defect in structure
EP3396369A4 (en) * 2015-12-24 2018-12-12 Posco Crack measurement device and method
JP2019504311A (en) * 2015-12-24 2019-02-14 ポスコPosco Crack measuring apparatus and method
CN112484836A (en) * 2020-11-20 2021-03-12 西安热工研究院有限公司 Ultrasonic probe device and workpiece sound velocity measurement method
CN112484836B (en) * 2020-11-20 2023-04-07 西安热工研究院有限公司 Ultrasonic probe device and workpiece sound velocity measurement method

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
Dixon et al. A laser–EMAT system for ultrasonic weld inspection
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
KR20090115170A (en) Tubular object ultrasonic test device and ultrasonic test method
EP1271097A2 (en) Method for inspecting clad pipe
Kupperman et al. Ultrasonic NDE of cast stainless steel
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
KR101942792B1 (en) Steel material quality evaluation method and quality evaluation device
JP2009058238A (en) Method and device for defect inspection
JP2002062281A (en) Flaw depth measuring method and its device
WO2020039850A1 (en) Method and device for evaluating bonding interface
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JP5061891B2 (en) Crack depth measurement method
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
CN110988127B (en) Signal identification method for detecting defects on surface and near surface of round bar by rotary ultrasonic
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JPH09145696A (en) Method and apparatus for measuring depth of flaw
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JPH07248317A (en) Ultrasonic flaw detecting method
JPS62162958A (en) Ultrasonic flaw detecting method
JPH0545346A (en) Ultrasonic probe
JP3388316B2 (en) Ultrasonic inspection method