JPH09145696A - Method and apparatus for measuring depth of flaw - Google Patents

Method and apparatus for measuring depth of flaw

Info

Publication number
JPH09145696A
JPH09145696A JP7302679A JP30267995A JPH09145696A JP H09145696 A JPH09145696 A JP H09145696A JP 7302679 A JP7302679 A JP 7302679A JP 30267995 A JP30267995 A JP 30267995A JP H09145696 A JPH09145696 A JP H09145696A
Authority
JP
Japan
Prior art keywords
defect
probe
wave
vertical
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7302679A
Other languages
Japanese (ja)
Inventor
Junichi Takabayashi
順一 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7302679A priority Critical patent/JPH09145696A/en
Publication of JPH09145696A publication Critical patent/JPH09145696A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the depth of flaw conveniently with high detection sensitivity without varying the shape of an object. SOLUTION: A flaw 4 generated in an object 3 to be inspected is measured by an ultrasonic method. A longitudinal wave vertical probe 1 is set directly above the flaw 4 generated in an object 3 and a transverse wave oblique probe 2 is set oppositely thereto. These probes 1, 2 are used, respectively, for transmission and reception in two probe method. Both probes 1, 2 are positioned at such points as the end echo propagating while being subjected to mode conversion at the forward end of flaw 4 has maximum energy and then the distance between the incident points of probe is measured. The measurements are substituted into a calculation formula derived from the propagation route of ultrasonic beam determined geometrically thus determining the depth of flaw.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は構造物の非破壊検査等に
より発見された欠陥(クラックとも割れとも称す)に対
して寿命評価を行う点から必要となる欠陥の深さ(大き
さ)を測定するための超音波法を使用した欠陥深さ測定
方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention determines the depth (size) of a defect required for evaluating the life of a defect (also called a crack) which is found by nondestructive inspection of a structure. The present invention relates to a defect depth measuring method using an ultrasonic method for measuring and a device therefor.

【0002】[0002]

【従来の技術】構造物の非破壊検査においては、強度上
許容されるサイズの模擬欠陥と比較して欠陥の検出感度
および合否を決定している。しかし、重要な構造物にお
いて合格範囲であるが欠陥が発見された場合、および欠
陥として検出されてもすぐに補修ができない場合などに
おいて、構造物の寿命評価を行うために欠陥のサイズを
測定する必要があった。
2. Description of the Related Art In non-destructive inspection of a structure, the detection sensitivity and pass / fail of a defect are determined in comparison with a simulated defect of a size that is allowable in terms of strength. However, if a defect is found in a critical structure that is within the acceptable range, or if a defect cannot be repaired immediately even if it is detected as a defect, the size of the defect is measured to evaluate the life of the structure. There was a need.

【0003】この欠陥サイズ測定方法としては、例えば
特開昭54-55493号公報,特開平3−146859号公報などに
開示されているように、渦流探傷,電気抵抗法,超音波
探傷における端部エコー法などが知られている。渦流探
傷や電気抵抗法では探傷面側に欠陥がなければ測定でき
ない上に測定値にばらつきが大きい欠点がある。
As the defect size measuring method, for example, as disclosed in JP-A-54-55493 and JP-A-3-146859, the edge portion in the eddy current flaw detection, the electric resistance method and the ultrasonic flaw detection is disclosed. The echo method and the like are known. The eddy current flaw detection method and the electric resistance method have the drawback that measurement cannot be performed unless there is a flaw on the flaw detection surface side, and the measured values vary widely.

【0004】また、探傷面と反対側から発生した欠陥の
深さを測定できる端部エコー法においては、主として図
10(a)に示すように被検査体3に発生した欠陥4の先
端に横波斜角探触子2から超音波ビーム、つまり、横波
入射ビーム7を照射して得られる端部エコーの反射成分
6aをもとの横波斜角探触子2で検出する端部エコー法
と、図10(b)に示すように端部エコーの回析成分6を
他方の横波斜角探触子2で検出する二探触子端部エコー
法がある。
Further, in the end echo method capable of measuring the depth of a defect generated from the side opposite to the flaw detection surface,
As shown in FIG. 10 (a), the reflection component of the end echo obtained by irradiating the tip of the defect 4 generated in the inspection object 3 with the ultrasonic wave, that is, the transverse wave incident beam 7 from the transverse wave oblique angle probe 2. 6a is detected by the original transverse wave bevel probe 2 and the diffraction component 6 of the end echo is detected by the other transverse wave bevel probe 2 as shown in FIG. 10 (b). There is a two-probe end echo method.

【0005】これらの端部エコーは極めて微弱であるた
め、結晶粒界ノイズ等とのS/N比が非常に悪く、超音
波のモードや屈折角の選定、欠陥4の端部に超音波を集
中させるための焦点型探傷子の採用などS/N比向上の
ため種々の検討がされてきている。
Since these end echoes are extremely weak, the S / N ratio with crystal grain boundary noise, etc. is very poor, and the ultrasonic mode and refraction angle are selected, and ultrasonic waves are applied to the end of the defect 4. Various studies have been made to improve the S / N ratio, such as the use of a focus type flaw detector for focusing.

【0006】[0006]

【発明が解決しようとする課題】特にオーステナイト系
ステンレス鋼等の減衰の大きな材料においては、ノイズ
エコーの妨害により欠陥端部からの信号を正しく認識す
ることが困難であり、端部エコーが検出不能となること
もかなりあった。したがって、欠陥の長さ方向に数ミリ
ピッチで深さを測定して、欠陥のプロフィールを測定す
るなどということは不可能であった。
Particularly in a material with large attenuation such as austenitic stainless steel, it is difficult to correctly recognize the signal from the defect end due to the interference of noise echo, and the end echo cannot be detected. There were quite a few cases. Therefore, it is impossible to measure the defect profile by measuring the depth in the length direction of the defect at a pitch of several millimeters.

【0007】本発明者らは欠陥4の先端部に欠陥面と平
行する方向から縦波の超音波ビームを照射した場合、欠
陥4の先端部から欠陥面に対しておよそ下方45°の方向
に従来の端部エコーで利用されていた反射成分(図10中
符号6a)、または回折成分(図10中符号6)より10倍
以上強い端部エコーが横波にモード変換されて放出され
ることを見出した。
When the inventors of the present invention irradiate the tip of the defect 4 with a longitudinal ultrasonic wave from a direction parallel to the defect plane, the direction of the tip of the defect 4 is about 45 ° below the defect plane. It is confirmed that the reflection component (reference numeral 6a in FIG. 10) or the reflection component (reference numeral 6 in FIG. 10) that is used in the conventional end echo is more than 10 times stronger than the end component and is emitted after being converted into a transverse wave. I found it.

【0008】この現象は逆のルート、すなわち欠陥4の
先端部に対して欠陥面とおよそ45°をなす方向から横波
の超音波ビームを当てた場合においても、欠陥4の先端
部より欠陥4面と平行で欠陥4の先端部から遠ざかる方
向に縦波にモード変換された強い端部エコーが放出され
る。
This phenomenon occurs in the opposite route, that is, when a transverse ultrasonic beam is applied to the tip of the defect 4 from a direction that makes an angle of about 45 ° with the defect surface, the defect 4 surface starts from the tip of the defect 4. A strong end echo mode-converted into a longitudinal wave is emitted in a direction parallel to and away from the tip of the defect 4.

【0009】従来はモード変換による音速の差や、複雑
な反射経路等のため、このモード変換された端部エコー
は注目されていなかった。上述のように従来の端部エコ
ー法ではS/N比が悪いなかでの測定となり、欠陥の先
端部エコーの識別が難しい課題がある。
Heretofore, this mode-converted end echo has not been paid attention because of a difference in sound velocity due to mode conversion, a complicated reflection path, and the like. As described above, according to the conventional end echo method, the measurement is performed even when the S / N ratio is bad, and there is a problem that it is difficult to identify the tip echo of the defect.

【0010】本発明は上記課題を解決するためになされ
たもので、被検査体に発生した欠陥に対して被検査体の
形状を変えることなく、簡便かつ高い検出感度でS/N
比のよい測定ができ、欠陥の深さを測定できる超音波法
を利用した欠陥深さ測定方法およびその装置を提供する
ことにある。
The present invention has been made to solve the above-mentioned problems, and it is simple and has a high detection sensitivity without changing the shape of the object to be inspected with respect to a defect generated in the object to be inspected.
An object of the present invention is to provide a defect depth measuring method using an ultrasonic method and a device therefor capable of measuring a good ratio and measuring the depth of a defect.

【0011】[0011]

【課題を解決するための手段】本発明は被検査体に発生
した欠陥の深さを超音波法により測定する方法におい
て、前記被検査体に発生した欠陥の真上に縦波垂直探触
子を設けるとともに、この縦波垂直探触子に対向して横
波斜角探触子を設け、これらの探触子の一方を送信用と
し、他方を受信用とし、前記欠陥の先端部でモード変換
して伝播する端部エコーが最大エネルギーとなる位置に
前記両探触子を位置決めさせ、この時の探触子の入射点
間距離を測定し、その測定結果を幾何学的に求めた超音
波ビームの伝播ルートから導き出した計算式にあてはめ
て計算することにより欠陥の深さを求めることを特徴と
する。
According to the present invention, in a method for measuring the depth of a defect generated in an object to be inspected by an ultrasonic method, a longitudinal wave vertical probe is located directly above the defect generated in the object to be inspected. And a transverse wave bevel probe facing the longitudinal wave vertical probe, one of these probes for transmitting and the other for receiving, and mode conversion at the tip of the defect. The two echoes are positioned at the position where the end echo propagating as a result has the maximum energy, the distance between the incident points of the probes at this time is measured, and the ultrasonic wave geometrically obtained the measurement result. The feature is that the defect depth is obtained by applying the calculation formula derived from the beam propagation route to the calculation.

【0012】また、本発明は被検査体上に設けられ縦波
垂直振動子と横波斜角振動子の少なくとも一方を取り付
けるセンサホルダと、前記両振動子の少なくとも一方を
取り付けるガイドスクリューと、このガイドスクリュー
を駆動する駆動用モータと、前記センサホルダまたはガ
イドスクリューに取り付ける位置検出器と、前記センサ
ホルダに設けた押付機構と、この押付機構を取り付ける
スキャナアームとを具備したことを特徴とする。
According to the present invention, a sensor holder provided on an object to be inspected for attaching at least one of a vertical wave vertical oscillator and a transverse wave oblique angle oscillator, a guide screw for attaching at least one of the both oscillators, and this guide It is characterized by comprising a drive motor for driving the screw, a position detector attached to the sensor holder or the guide screw, a pressing mechanism provided on the sensor holder, and a scanner arm to which the pressing mechanism is attached.

【0013】さらに、本発明は被検査体上に設けられ縦
波垂直振動子または横波斜角振動子の少なくとも一方を
リニアアレイ型探触子で構成し、これらの振動子を取り
付けるセンサホルダと、このセンサホルダに設けた押付
機構と、この押付機構を取り付けるスキャナアームとを
具備したことを特徴とする。
Further, according to the present invention, at least one of a vertical-wave vertical oscillator and a transverse-wave oblique-angle oscillator provided on an object to be inspected is constituted by a linear array type probe, and a sensor holder to which these oscillators are attached, The present invention is characterized in that a pressing mechanism provided on the sensor holder and a scanner arm to which the pressing mechanism is attached are provided.

【0014】[0014]

【発明の実施の形態】本実施の形態の説明に先立ち、本
発明の原理について図1を参照しながら説明する。図1
において、被検査体3に発生した欠陥4の真上に縦波垂
直探触子1を配置し、この探触子1に対向した位置に横
波斜角探触子2を配置する。欠陥4の真上から縦波垂直
探触子1により欠陥4の先端に向けて入射された縦波超
音波ビーム5は、欠陥4の先端に当たると横波にモード
変換された端部エコー6bが欠陥とおよそ45°をなす角
度で欠陥の両下方向に放出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the description of this embodiment, the principle of the present invention will be described with reference to FIG. FIG.
In FIG. 1, the longitudinal wave vertical probe 1 is arranged directly above the defect 4 generated in the inspected object 3, and the transverse wave bevel probe 2 is arranged at a position facing the probe 1. The longitudinal ultrasonic wave beam 5 incident from directly above the defect 4 toward the tip of the defect 4 by the longitudinal vertical probe 1 has an end echo 6b that is mode-converted into a transverse wave when hitting the tip of the defect 4. It is emitted to both sides of the defect at an angle of about 45 °.

【0015】このモード変換した端部エコー6bは図10
で説明した端部エコーの反射成分6、および端部エコー
の回析成分6よりもかなり強いエコーであるため、底面
で1回反射しても十分に強いエコーとして横波斜角探触
子2で受信されるため、結晶粒界ノイズ等とのS/N比
は極めて良好である。
The mode-converted end echo 6b is shown in FIG.
Since the echo component is considerably stronger than the reflection component 6 of the end echo described above and the diffraction component 6 of the end echo, the transverse wave bevel probe 2 produces a sufficiently strong echo even if it is reflected once at the bottom surface. Since it is received, the S / N ratio with the grain boundary noise and the like is extremely good.

【0016】図10において、被検査体3の板厚をt,欠
陥深さをd,横波斜角探触子の屈折角をθとすれば、欠
陥先端でモード変換して放出される横波端部エコー6b
が被検査体3の底面に入反射する角度もθである。
In FIG. 10, when the plate thickness of the inspection object 3 is t, the defect depth is d, and the refraction angle of the transverse wave oblique angle probe is θ, the transverse wave end emitted after mode conversion at the defect tip. Part echo 6b
The angle at which the light is reflected on the bottom surface of the inspection object 3 is also θ.

【0017】この場合、縦波垂直探触子1から出る(ま
たは入る)超音波の中心点(以降入射点という)と横波
斜角探触子2の入射点との間の距離をlとすれば横波超
音波が被検査体表面で反射する回数をnとして l=dtanθ+nttanθ・・・(1) となり、この式から欠陥の深さdは d=l/tanθ−nt・・・(2) となり、既知の横波斜角探触子2の屈折角θと被検査体
3の厚さt、および測定された探触子入射点間距離lか
ら求めることができる。
In this case, the distance between the center point (hereinafter referred to as an incident point) of the ultrasonic wave which exits (or enters) the vertical wave vertical probe 1 and the incident point of the transverse wave oblique angle probe 2 is set to 1. For example, l = dtan θ + nt tan θ ・ ・ ・ (1) where n is the number of times the transverse ultrasonic waves are reflected on the surface of the object to be inspected. From this equation, the depth d of the defect is d = 1 / tan θ-nt ・ ・ ・ (2). , The known angle of refraction θ of the transverse wave oblique probe 2, the thickness t of the object 3 to be inspected, and the measured inter-probe incidence point distance l.

【0018】以上、本発明による欠陥深さの測定原理に
ついて縦波垂直探触子1を送信側、横波斜角探触子2を
受信側として説明したが、横波斜角探触子2を送信側、
縦波垂直探触子1を受信側としても、全く同様である。
よって以降縦波垂直探触子1を送信側、横波斜角探触子
2を受信側として説明する。
Although the longitudinal wave vertical probe 1 is used as the transmitting side and the transverse wave bevel probe 2 is used as the receiving side for the principle of measuring the depth of defects according to the present invention, the transverse wave bevel probe 2 is transmitted. side,
The same applies to the case where the longitudinal wave vertical probe 1 is used as the receiving side.
Therefore, hereinafter, the longitudinal wave vertical probe 1 will be described as the transmitting side, and the transverse wave oblique angle probe 2 will be described as the receiving side.

【0019】図2(a),(b)には欠陥が探傷面(探
触子の接触できる面)側にあり、横波の表面反射回数が
0または2回の場合の測定例を示す。本発明で検出しよ
うとしている端部エコー6bはかなり強いため、図に示
すように垂直縦波成分が被検査体3の底面で反射しても
十分強いエコーとして検出できるため、前述した説明
と、同じ理論で欠陥深さの測定が可能である。
FIGS. 2 (a) and 2 (b) show an example of measurement in the case where a defect is present on the flaw detection surface (the surface where the probe can come into contact) and the number of surface reflections of transverse waves is 0 or 2. Since the end echo 6b to be detected in the present invention is considerably strong, even if the vertical longitudinal wave component is reflected by the bottom surface of the DUT 3 as shown in the figure, it can be detected as a sufficiently strong echo. Defect depth can be measured with the same theory.

【0020】つぎに図2(a),(b)を参照しながら
本発明に係る超音波法による欠陥深さの測定方法の第1
の実施の形態を説明する。この第1の実施例は被検査体
3の上面から下方に欠陥4が生じている場合の欠陥4の
深さを測定する例である。図2(a)では欠陥4の深さ
が浅い場合の例を示し、図2(b)では欠陥4の深さが
深い場合の例を示している。
Next, referring to FIGS. 2 (a) and 2 (b), a first method of measuring a defect depth by an ultrasonic method according to the present invention will be described.
An embodiment will be described. The first embodiment is an example in which the depth of the defect 4 is measured when the defect 4 is formed below the upper surface of the inspection object 3. 2A shows an example in which the depth of the defect 4 is shallow, and FIG. 2B shows an example in which the depth of the defect 4 is deep.

【0021】図2(a),(b)ともに欠陥4の真上に
縦波垂直探触子1を設け、横波斜角探触子2を(a)の
場合には探触子1から遠ざけて設け、(b)の場合には
近づけて設けている。
2A and 2B, a longitudinal wave vertical probe 1 is provided directly above the defect 4, and the transverse wave oblique angle probe 2 is kept away from the probe 1 in the case of FIG. 2A. In the case of (b), they are provided close to each other.

【0022】この第1の実施の形態では図2(a),
(b)ともに検出しようとしている端部エコー6bはか
なり強いため、図示したように垂直縦波成分6bが被検
査体3の底面で反射しても十分強いエコーとして検出で
き、欠陥4の深さを測定することができる。
In the first embodiment, as shown in FIG.
(B) Since the end echo 6b to be detected together is quite strong, even if the vertical longitudinal wave component 6b is reflected on the bottom surface of the DUT 3 as shown in the figure, it can be detected as a sufficiently strong echo and the depth of the defect 4 can be detected. Can be measured.

【0023】すなわち、欠陥4の開口端から欠陥4と平
行な縦波超音波を探触子1から入射すると、欠陥4の先
端部から下方45°に強い横波超音波が発生するので、底
面で1回反射した横波超音波を横波斜角探触子2で検出
する。この時の縦波垂直接触子1と横波斜角探触子2の
入射点間距離lを測定し前述した計算式(2) により計算
することで欠陥4の深さを求めることができる。
That is, when a longitudinal ultrasonic wave parallel to the defect 4 is incident from the probe 1 through the opening end of the defect 4, a strong transverse ultrasonic wave is generated 45 ° below the tip of the defect 4, so that the ultrasonic wave is generated at the bottom surface. The transverse-wave ultrasonic wave reflected once is detected by the transverse-wave oblique-angle probe 2. At this time, the depth 1 of the defect 4 can be obtained by measuring the distance 1 between the incident points of the longitudinal wave vertical contactor 1 and the transverse wave bevel probe 2 and calculating it by the above-mentioned formula (2).

【0024】つぎに図3により本発明に係る欠陥深さ測
定装置の第1の実施の形態を説明する。図3において、
縦波垂直探触子1と横波斜角探触子2は被検査体3上に
載置されるが、縦波垂直探触子1はセンサホルダ8の先
端部取付部材9に固定されており、欠陥4の垂直線上に
位置決めされる。横波斜角探触子2はスクリュー10の移
動部材11に固定されている。スクリュー10はセンサホル
ダ8に固定された斜角探触子駆動用モータ12に直結し、
このモータ12の駆動により回転して横波斜角探触子2を
左右に移動させる。
Next, the first embodiment of the defect depth measuring apparatus according to the present invention will be described with reference to FIG. In FIG.
The longitudinal-wave vertical probe 1 and the transverse-wave oblique-angle probe 2 are placed on the device under test 3, but the longitudinal-wave vertical probe 1 is fixed to the tip end mounting member 9 of the sensor holder 8. , Is located on the vertical line of the defect 4. The transverse wave bevel probe 2 is fixed to a moving member 11 of a screw 10. The screw 10 is directly connected to the bevel probe driving motor 12 fixed to the sensor holder 8,
By the drive of this motor 12, it rotates to move the transverse wave bevel probe 2 left and right.

【0025】センサホルダ8の先端部には位置検出器13
が取り付けられている。センサホルダ8は例えばコイル
ばねのような押付機構14を介してスキャナアーム15に取
り付けられている。スキャナアーム15は自動超音波探傷
試験装置(以下UT装置と記す)に設けられたものであ
る。
A position detector 13 is provided at the tip of the sensor holder 8.
Is attached. The sensor holder 8 is attached to the scanner arm 15 via a pressing mechanism 14 such as a coil spring. The scanner arm 15 is provided in an automatic ultrasonic flaw detector (hereinafter referred to as a UT device).

【0026】つぎに上記構成の装置による通常の欠陥有
無の探傷から欠陥深さを測定するまでの手順を説明す
る。まず、UT装置によって本実施の形態に係る欠陥深
さ測定装置がパターン駆動され、この時、横波斜角探触
子2から通常の自動探傷と同様に欠陥有無の探傷を行
う。この探傷により欠陥(割れ)が確認されたなら、そ
の時得られた欠陥エコーのビーム路程とあらかじめ求め
ておいた横波斜角探触子2の屈折角θから欠陥の位置を
求める。
Next, the procedure from the usual flaw detection for the presence or absence of a defect to the measurement of the defect depth by the apparatus having the above-mentioned structure will be described. First, the defect depth measuring apparatus according to the present embodiment is pattern-driven by the UT apparatus, and at this time, flaw detection for defects is performed from the transverse wave bevel probe 2 in the same manner as normal automatic flaw detection. If a defect (crack) is confirmed by this flaw detection, the position of the defect is obtained from the beam path of the defect echo obtained at that time and the refraction angle θ of the transverse wave bevel probe 2 obtained in advance.

【0027】そして、横波斜角探触子2の位置が変化し
ないようにしながら、UT装置および本欠陥深さ測定装
置の斜角探触子駆動用モータ12を駆動させ、縦波垂直探
触子1を欠陥4の直上に位置決めさせる。
Then, while keeping the position of the transverse wave oblique angle probe 2 unchanged, the oblique wave probe driving motor 12 of the UT device and the defect depth measuring apparatus is driven to drive the longitudinal wave vertical probe. Position 1 directly above defect 4.

【0028】つぎに、UT装置をパルスエコーからピッ
チキャッチに切り換え、縦波垂直探触子1を送信側、横
波斜角探触子2を受信側に、UT装置に接続し直す。こ
の後、斜角探触子駆動用モータ12を駆動して横波斜角探
触子2を縦波垂直探触子1から離れる方向に移動させ、
欠陥先端部に縦波入射ビーム5が当り、ここでモード変
換して発生する横波超音波6bのエネルギーが最大とな
る位置にUT装置のCRT上のエコーを監視しながら横
波斜角探触子2を位置決めさせる。
Next, the UT device is switched from the pulse echo to the pitch catch, and the longitudinal wave vertical probe 1 is reconnected to the transmitting side, and the transverse wave oblique angle probe 2 is reconnected to the UT device. Thereafter, the bevel probe driving motor 12 is driven to move the transverse wave bevel probe 2 in a direction away from the longitudinal wave vertical probe 1,
The longitudinal wave incident beam 5 hits the tip of the defect, and the transverse wave oblique probe 2 is monitored while monitoring the echo on the CRT of the UT device at a position where the energy of the transverse ultrasonic wave 6b generated by mode conversion is maximized. To position.

【0029】この時の縦波垂直探触子1の入射点と横波
斜角探触子2の入射点間の距離はポテンショメータ等を
用いた位置検出器13により検出される。この検出された
入射点間距離から計算することにより、欠陥深さを求め
ることができる。
The distance between the incident point of the longitudinal wave vertical probe 1 and the incident point of the transverse wave oblique angle probe 2 at this time is detected by the position detector 13 using a potentiometer or the like. The defect depth can be obtained by calculating from the detected distance between the incident points.

【0030】なお、UT装置のパルスエコーからピッチ
キャッチへの切り換え,エコーの最大高さの検知および
これに連動した横波斜角探触子2の駆動位置決め,入射
点間距離の検知と、この値からの欠陥深さ算出等は電子
的にコントロールすることも可能である。
The switching from the pulse echo of the UT device to the pitch catch, the detection of the maximum height of the echo, the drive positioning of the transverse wave bevel probe 2, and the detection of the distance between the incident points, and this value. It is also possible to electronically control the defect depth calculation and the like.

【0031】つぎに図4により本発明に係る欠陥深さ測
定装置の第2の実施の形態を説明する。本第2の実施の
形態は第1の実施の形態に準じたものであるので、図4
中図3と同一部分には同一符号を付して重複する部分の
説明は省略する。
Next, a second embodiment of the defect depth measuring device according to the present invention will be described with reference to FIG. Since the second embodiment is based on the first embodiment, FIG.
The same parts as those in FIG. 3 are denoted by the same reference numerals, and the description of the overlapping parts will be omitted.

【0032】本実施の形態が第1の実施の形態と異なる
部分は縦波垂直探触子1を固定した先端部取付部材9を
第2のガイドスクリュー16に取り付け、この第2のガイ
ドスクリュー16を垂直探触子駆動用モータ12aに直結
し、縦波垂直探触子1と横波斜角探触子2との間のセン
サホルダ8に位置検出器13を取り付けている。垂直探触
子駆動用モータ17はセンサホルダ8の端部に設けられて
いる。
The difference of the present embodiment from the first embodiment is that the tip end mounting member 9 to which the longitudinal wave vertical probe 1 is fixed is attached to the second guide screw 16, and the second guide screw 16 is attached. Is directly connected to the vertical probe driving motor 12a, and the position detector 13 is attached to the sensor holder 8 between the longitudinal wave vertical probe 1 and the transverse wave oblique angle probe 2. The vertical probe driving motor 17 is provided at the end of the sensor holder 8.

【0033】本実施の形態によれば、縦波垂直探触子1
側にもその探触子1の位置を前後に移動させて微調整す
るための垂直探触子駆動用モータ12aを設けて欠陥深さ
測定精度を向上させることができる。
According to this embodiment, the longitudinal wave vertical probe 1 is used.
A vertical probe drive motor 12a for finely adjusting the position of the probe 1 by moving it back and forth can also be provided on the side to improve the defect depth measurement accuracy.

【0034】すなわち、前記第1の実施の形態で説明し
た手順と同様に欠陥深さ測定動作を行った後、さらに垂
直探触子駆動用モータ12aを駆動させて縦波垂直探触子
1を前後に動かし、欠陥頂部でモード変換したエコーが
さらに高くなる位置に微調整する。これにより、計算上
求めていた欠陥頂部位置が正しい位置に補正されるた
め、より精度のよい欠陥深さの値を得ることができるよ
うになる。
That is, after the defect depth measuring operation is performed in the same manner as the procedure described in the first embodiment, the vertical probe driving motor 12a is further driven to move the vertical wave vertical probe 1 to the vertical wave vertical probe 1. It is moved back and forth, and finely adjusted to a position where the echo whose mode is converted at the top of the defect becomes higher. As a result, the calculated defect top position is corrected to the correct position, so that a more accurate defect depth value can be obtained.

【0035】つぎに図5により本発明に係る欠陥深さ測
定装置の第3の実施の形態を説明する。本実施の形態は
前記各実施の形態における横波斜角探触子2の代りにリ
ニアアレイ型探触子16を設け、このリニアアレイ型探触
子16を電気的にスキャンさせることによって図3および
図4に示したスクリュー10や駆動用モータ等の機械的駆
動部を削除したことにある。
Next, a third embodiment of the defect depth measuring device according to the present invention will be described with reference to FIG. In the present embodiment, a linear array type probe 16 is provided in place of the transverse wave bevel probe 2 in each of the above-described embodiments, and the linear array type probe 16 is electrically scanned to obtain the structure shown in FIG. This is because the mechanical drive parts such as the screw 10 and the drive motor shown in FIG. 4 are deleted.

【0036】すなわち、センサホルダ8の先端部取付部
材9に縦波垂直探触子1を取り付け、中間部駆動部材17
と後端部取付部材18にリニアアレイ型探触子16を取り付
ける。センサホルダ8は押付機構14を介してスキャナア
ーム15に取り付けられる。
That is, the longitudinal wave vertical probe 1 is attached to the tip end attachment member 9 of the sensor holder 8, and the intermediate portion drive member 17
The linear array type probe 16 is attached to the rear end attachment member 18. The sensor holder 8 is attached to the scanner arm 15 via the pressing mechanism 14.

【0037】リニアアレイ型探触子16は図6および図7
に示したように微細な振動子19を複数個一列に配列した
もので、各振動子19はそれぞれの遅延回路20に電気的に
接続している。図6はリニアアレイ型探触子16の電子偏
向,集束の原理を示しており、図7は走査方式を示して
いる。
The linear array type probe 16 is shown in FIGS.
As shown in FIG. 2, a plurality of fine vibrators 19 are arranged in a line, and each vibrator 19 is electrically connected to each delay circuit 20. FIG. 6 shows the principle of electron deflection and focusing of the linear array type probe 16, and FIG. 7 shows the scanning method.

【0038】各振動子に与える超音波送信パルスのタイ
ミングを変えることにより、超音波の屈折角を自由に設
定できる上、複数配列された振動子19群の一部にこのタ
イミングを変えた送信パルスを送信して、超音波を送信
(または逆に受信)し、つぎに一振動子分隣にずらして
同様のことを繰り返すと、あたかも探触子を動かしたか
のように電気的操作のみで超音波を移動させることが可
能となる。
By changing the timing of the ultrasonic transmission pulse given to each transducer, the refraction angle of the ultrasonic wave can be freely set, and the transmission pulse in which the timing is changed to a part of the group of transducers 19 arranged in plural. , The ultrasonic wave is transmitted (or, conversely, received), and then the same element is moved to the adjacent position and repeated, and the same operation is repeated. Can be moved.

【0039】本実施の形態では、このリニアアレイ型探
触子16の電気的スキャンを横波斜角探触子2の代りに使
用したため、機械的駆動部が必要なくなり、したがって
欠陥深さ測定装置自体が小型化できUT装置のスキャナ
アーム15に対する負荷が軽減できる上、適用できる部位
も拡大できる。
In the present embodiment, since the electrical scanning of the linear array type probe 16 is used in place of the transverse wave bevel probe 2, a mechanical drive unit is not required, and therefore the defect depth measuring apparatus itself. Can be downsized, the load on the scanner arm 15 of the UT device can be reduced, and the applicable parts can be expanded.

【0040】つぎに図8により本発明に係る欠陥深さ測
定装置の第4の実施の形態を説明する。本実施の形態は
第1の実施の形態における縦波垂直探触子1の代りにリ
ニアアレイ型探触子16を使用し、横波斜角探触子2は第
1の実施の形態と同様である。すなわち、図8に示した
ようにセンサホルダ8の先端部取付部材9と中間部取付
部材17にリニアアレイ型探触子16を取り付け、後端部取
付部材18に横波斜角探触子2を取り付けている。その他
の部分は第3の実施の形態と同様である。
Next, a fourth embodiment of the defect depth measuring device according to the present invention will be described with reference to FIG. In this embodiment, a linear array type probe 16 is used in place of the longitudinal wave vertical probe 1 in the first embodiment, and a transverse wave bevel probe 2 is the same as in the first embodiment. is there. That is, as shown in FIG. 8, the linear array type probe 16 is attached to the tip attachment member 9 and the intermediate attachment member 17 of the sensor holder 8, and the transverse wave bevel probe 2 is attached to the rear end attachment member 18. It is attached. The other parts are the same as in the third embodiment.

【0041】本実施の形態によれば、通常の欠陥有無の
探傷は通常の横波斜角探触子2で行って欠陥を検知し、
その深さ測定を行うまでは通常のシステムと同様に行う
ことができる。
According to the present embodiment, the normal flaw detection for the presence or absence of a defect is performed by the normal transverse wave bevel probe 2, and the defect is detected.
Until the depth measurement is performed, it can be performed in the same manner as an ordinary system.

【0042】つぎに図9により本発明に係る欠陥深さ測
定装置の第5の実施の形態を説明する。本実施の形態は
第1の実施の形態における縦波垂直探触子1と横波斜角
探触子2の代りにリニアアレイ型探触子16を使用したこ
とにある。すなわち、図9に示したように大型のリニア
アレイ型探触子16をセンサホルダ8に一体的に取り付
け、センサホルダ8を押付機構14を介してスキャナアー
ム15に取り付けたことにある。
Next, a fifth embodiment of the defect depth measuring device according to the present invention will be described with reference to FIG. In this embodiment, a linear array type probe 16 is used in place of the longitudinal wave vertical probe 1 and the transverse wave bevel probe 2 in the first embodiment. That is, as shown in FIG. 9, a large linear array type probe 16 is integrally attached to the sensor holder 8 and the sensor holder 8 is attached to the scanner arm 15 via the pressing mechanism 14.

【0043】この実施の形態ではUT装置スキャナアー
ム15の先端に取り付く欠陥深さ測定装置部が一個のリニ
アアレイ型探触子16ですみ、非常にコンパクトになり、
かつ通常の斜角探傷から欠陥頂部への縦波超音波5入射
欠陥長部でモード変換して発生した横波超音波6bの最
も強く検出できる位置の検出,縦波超音波5の最適入射
位置の微調整,縦波超音波5入射位置と横波超音波6b
検出位置間の距離検出およびこの距離からの欠陥深さ算
出をすべて電気的にコントロールできるため、機械的ロ
スがなく精度よい欠陥深さ測定が可能となる。
In this embodiment, the defect depth measuring device portion attached to the tip of the scanner arm 15 of the UT device is a single linear array type probe 16, which is very compact.
Also, the longitudinal ultrasonic wave 5 is incident on the top of the defect from the normal oblique flaw detection. The strongest detectable position of the transverse ultrasonic wave 6b generated by mode conversion at the defect length is detected, and the optimum incident position of the longitudinal ultrasonic wave 5 is detected. Fine adjustment, longitudinal wave ultrasonic wave 5 incident position and transverse wave ultrasonic wave 6b
Since the detection of the distance between the detection positions and the calculation of the defect depth from this distance can all be electrically controlled, the defect depth can be accurately measured without mechanical loss.

【0044】このようにリニアアレイ型探触子16を用い
ることにより超音波のスキャンや屈折角をいかようにも
電気的にコントロールできる点を効率よく行うことがで
きるため、通常の探触子を取り止め、すべて一つのリニ
アアレイ型探触子16でまかなうことができる。
By using the linear array type probe 16 in this way, it is possible to efficiently perform the point of electrically controlling the scanning of ultrasonic waves and the refraction angle. It can be stopped and all can be covered by one linear array type probe 16.

【0045】[0045]

【発明の効果】本発明によれば、欠陥先端にこの欠陥と
平行な縦波超音波を入射すると、この先端から下方向45
°方向に強い横波超音波が発生するので、底面で1回反
射したこの横波を横波斜角探触子で検出する。この時の
縦波垂直探触子と横波斜角探触子の入射点間距離を測定
して計算することにより、欠陥の深さを精度よく測定で
きる。この結果、容器や構造物などの安全性評価、存残
寿命の推定などを行うことができ、その効果は多大なも
のがある。
According to the present invention, when longitudinal ultrasonic waves parallel to the defect are incident on the tip of the defect, a downward direction 45
Since a strong transverse ultrasonic wave is generated in the direction of °, this transverse wave reflected once by the bottom surface is detected by the transverse wave oblique probe. The depth of the defect can be accurately measured by measuring and calculating the distance between the incident points of the longitudinal wave vertical probe and the transverse wave bevel probe at this time. As a result, it is possible to evaluate the safety of the container and the structure, estimate the remaining life, and the like, and the effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る欠陥深さ測定方法の原理を説明す
るための概略断面図。
FIG. 1 is a schematic sectional view for explaining the principle of a defect depth measuring method according to the present invention.

【図2】(a)は本発明に欠陥深さ測定方法の第1の実
施の形態を説明するための概略断面図、(b)は(a)
における他の例を示す概略断面図。
FIG. 2 (a) is a schematic cross-sectional view for explaining the first embodiment of the defect depth measuring method according to the present invention, and FIG. 2 (b) is (a).
Sectional drawing which shows the other example in FIG.

【図3】本発明に係る欠陥深さ測定装置の第1の実施の
形態を示す概略断面図。
FIG. 3 is a schematic sectional view showing a first embodiment of a defect depth measuring apparatus according to the present invention.

【図4】本発明に係る欠陥深さ測定装置の第2の実施の
形態を示す概略断面図。
FIG. 4 is a schematic cross-sectional view showing a second embodiment of the defect depth measuring apparatus according to the present invention.

【図5】本発明に係る欠陥深さ測定装置の第3の実施の
形態を示す概略断面図。
FIG. 5 is a schematic cross-sectional view showing a third embodiment of the defect depth measuring device according to the present invention.

【図6】図5におけるリニアアレイ型探触子の電子偏
向,集束の原理を説明するための模式図。
FIG. 6 is a schematic diagram for explaining the principle of electron deflection and focusing of the linear array type probe in FIG.

【図7】図5におけるリニアアレイ型探触子の走査方式
を説明するための模式図。
FIG. 7 is a schematic diagram for explaining a scanning method of the linear array type probe in FIG.

【図8】本発明に係る欠陥深さ測定装置の第4の実施の
形態を示す概略断面図。
FIG. 8 is a schematic sectional view showing a fourth embodiment of the defect depth measuring apparatus according to the present invention.

【図9】本発明に係る欠陥深さ測定装置の第5の実施の
形態を示す概略断面図。
FIG. 9 is a schematic cross-sectional view showing a fifth embodiment of the defect depth measuring device according to the present invention.

【図10】(a)は従来の欠陥深さ測定方法を説明する
ための概略断面図、(b)は(a)における他の例を示
す概略断面図。
10A is a schematic sectional view for explaining a conventional defect depth measuring method, and FIG. 10B is a schematic sectional view showing another example in FIG. 10A.

【符号の説明】[Explanation of symbols]

1…縦波垂直探触子、2…横波斜角探触子、3…被検査
体、4…欠陥、5…縦波入射ビーム、6…端部エコー、
6a…端部エコーの反射成分、6b…モード変換した端
部エコー、7…横波入射ビーム、8…センサホルダ、9
…先端部取付部材、10…スクリュー、11…移動部材、12
…斜角探触子駆動用モータ、13…位置検出器、14…押付
機構、15…スキャナアーム、16…リニアアレイ型探触
子、17…中間部取付部材、18…後端部取付部材、19…振
動子、20…遅延回路。
DESCRIPTION OF SYMBOLS 1 ... Longitudinal wave vertical probe, 2 ... Transverse wave oblique angle probe, 3 ... Inspected object, 4 ... Defect, 5 ... Longitudinal wave incident beam, 6 ... End echo,
6a ... Reflection component of end echo, 6b ... End echo after mode conversion, 7 ... Transverse wave incident beam, 8 ... Sensor holder, 9
... Tip mounting member, 10 ... Screw, 11 ... Moving member, 12
... bevel probe driving motor, 13 ... position detector, 14 ... pressing mechanism, 15 ... scanner arm, 16 ... linear array type probe, 17 ... intermediate mounting member, 18 ... rear end mounting member, 19 ... Oscillator, 20 ... Delay circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査体に発生した欠陥の深さを超音波
法により測定する方法において、前記被検査体に発生し
た欠陥の真上に縦波垂直探触子を設けるとともに、この
縦波垂直探触子に対向して横波斜角探触子を設け、これ
らの探触子の一方を送信用とし、他方を受信用とし、前
記欠陥の先端部でモード変換して伝播する端部エコーが
最大エネルギーとなる位置に前記両探触子を位置決めさ
せ、この時の探触子の入射点間距離を測定し、この測定
結果を幾何学的に求めた超音波ビームの伝播ルートから
導き出した計算式にあてはめて計算することにより欠陥
の深さを求めることを特徴とする欠陥深さ測定方法。
1. A method of measuring the depth of a defect generated in an inspection object by an ultrasonic method, wherein a longitudinal wave vertical probe is provided directly above the defect generated in the inspection object, and the longitudinal wave is generated. A transverse wave bevel probe is provided opposite to the vertical probe, one of these probes is used for transmission, and the other is used for reception, and an end echo that propagates after mode conversion at the tip of the defect. Position the both probes at the position where the maximum energy is, measure the distance between the incident points of the probe at this time, and derive the measurement result from the propagation route of the ultrasonic beam obtained geometrically. A defect depth measuring method characterized in that a defect depth is obtained by applying a calculation formula to the calculation.
【請求項2】 被検査体上に設けられ縦波垂直振動子と
横波斜角振動子の少なくとも一方を取り付けるセンサホ
ルダと、前記両振動子の少なくとも一方を取り付けるガ
イドスクリューと、このガイドスクリューを駆動する駆
動用モータと、前記センサホルダまたはガイドスクリュ
ーに取り付ける位置検出器と、前記センサホルダに設け
た押付機構と、この押付機構を取り付けるスキャナアー
ムとを具備したことを特徴とする欠陥深さ測定装置。
2. A sensor holder, which is provided on an object to be inspected, for attaching at least one of a vertical wave vertical oscillator and a transverse wave oblique angle oscillator, a guide screw for attaching at least one of the both oscillators, and the guide screw is driven. Defect depth measuring device, comprising: a drive motor for driving, a position detector attached to the sensor holder or the guide screw, a pressing mechanism provided on the sensor holder, and a scanner arm to which the pressing mechanism is attached. .
【請求項3】 被検査体上に設けられ縦波垂直振動子ま
たは横波斜角振動子の少なくとも一方をリニアアレイ型
探触子で構成し、これらの振動子を取り付けるセンサホ
ルダと、このセンサホルダに設けた押付機構と、この押
付機構を取り付けるスキャナアームとを具備したことを
特徴とする欠陥深さ測定装置。
3. A sensor holder to which at least one of a vertical-wave vertical oscillator and a transverse-wave oblique-angle oscillator provided on an object to be inspected is composed of a linear array type probe, and these transducers are mounted, and this sensor holder. 2. A defect depth measuring device comprising: a pressing mechanism provided in the above and a scanner arm to which the pressing mechanism is attached.
JP7302679A 1995-11-21 1995-11-21 Method and apparatus for measuring depth of flaw Pending JPH09145696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7302679A JPH09145696A (en) 1995-11-21 1995-11-21 Method and apparatus for measuring depth of flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7302679A JPH09145696A (en) 1995-11-21 1995-11-21 Method and apparatus for measuring depth of flaw

Publications (1)

Publication Number Publication Date
JPH09145696A true JPH09145696A (en) 1997-06-06

Family

ID=17911887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7302679A Pending JPH09145696A (en) 1995-11-21 1995-11-21 Method and apparatus for measuring depth of flaw

Country Status (1)

Country Link
JP (1) JPH09145696A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214204A (en) * 2001-01-19 2002-07-31 Toshiba Corp Ultrasonic flaw detector and method using the same
JP2009156834A (en) * 2007-12-28 2009-07-16 Sumitomo Chemical Co Ltd Method for measuring depth of crack-like defect
JP2011007702A (en) * 2009-06-26 2011-01-13 Central Res Inst Of Electric Power Ind Ultrasonic flaw detection method and apparatus
JP2015081858A (en) * 2013-10-23 2015-04-27 株式会社東芝 Laser ultrasonic inspection device and method
CN112730615A (en) * 2020-12-24 2021-04-30 辛明斌 Observation device for steel structure detection
CN113960168A (en) * 2021-10-20 2022-01-21 邢台超拓科技开发有限公司 Method for detecting transverse cracks of rail bottom of steel rail

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214204A (en) * 2001-01-19 2002-07-31 Toshiba Corp Ultrasonic flaw detector and method using the same
JP2009156834A (en) * 2007-12-28 2009-07-16 Sumitomo Chemical Co Ltd Method for measuring depth of crack-like defect
JP2011007702A (en) * 2009-06-26 2011-01-13 Central Res Inst Of Electric Power Ind Ultrasonic flaw detection method and apparatus
JP2015081858A (en) * 2013-10-23 2015-04-27 株式会社東芝 Laser ultrasonic inspection device and method
CN112730615A (en) * 2020-12-24 2021-04-30 辛明斌 Observation device for steel structure detection
CN112730615B (en) * 2020-12-24 2022-11-25 广东雄炜建筑工程检测有限公司 Steel construction detects uses observation device
CN113960168A (en) * 2021-10-20 2022-01-21 邢台超拓科技开发有限公司 Method for detecting transverse cracks of rail bottom of steel rail

Similar Documents

Publication Publication Date Title
US4821575A (en) Ultrasonic flaw detecting method and apparatus
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
CN104535657B (en) A kind of sheet workpiece phased array supersonic guided wave image-forming detecting system and its detection method
US3895685A (en) Method and apparatus for ultrasonic inspection of weldments
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
WO1999034204A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
JP2009540311A (en) Ultrasonic testing equipment with array probe
JP2613654B2 (en) Ultrasonic testing
KR20100124242A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
US6588278B1 (en) Ultrasonic inspection device and ultrasonic probe
JPH09145696A (en) Method and apparatus for measuring depth of flaw
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JPS6321135B2 (en)
JP4633268B2 (en) Ultrasonic flaw detector
JP2005077320A (en) Ultrasonic probe, flaw detection device for turbine blade and its flaw detection method
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JP3497984B2 (en) Ultrasonic flaw detector
KR20150017407A (en) Apparatus for water immersion ultrasonic flaw detecting
JP4175762B2 (en) Ultrasonic flaw detector
US6681632B2 (en) Method for evaluating the resilience of a welded assembly and corresponding analysis apparatus measuring the speeds of ultrasonic surface waves
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JP3754555B2 (en) Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPH07325070A (en) Ultrasonic method for measuring depth of defect