JP2003066016A - Measuring method for depth of defect in structure - Google Patents

Measuring method for depth of defect in structure

Info

Publication number
JP2003066016A
JP2003066016A JP2001253006A JP2001253006A JP2003066016A JP 2003066016 A JP2003066016 A JP 2003066016A JP 2001253006 A JP2001253006 A JP 2001253006A JP 2001253006 A JP2001253006 A JP 2001253006A JP 2003066016 A JP2003066016 A JP 2003066016A
Authority
JP
Japan
Prior art keywords
defect
depth
external force
generated
measuring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001253006A
Other languages
Japanese (ja)
Other versions
JP4373627B2 (en
Inventor
Junichi Takabayashi
順一 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001253006A priority Critical patent/JP4373627B2/en
Publication of JP2003066016A publication Critical patent/JP2003066016A/en
Application granted granted Critical
Publication of JP4373627B2 publication Critical patent/JP4373627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method capable of accurately measuring the depth of a defect in a structure. SOLUTION: In this measuring method for the depth of the defect in the structure, the defect is delicately advanced by partially applying external force to the defect in the structure, and the depth of the structure is measured by detecting the sound of destruction generated by the defect. Therefore, the depth of the defect such as a stress corrosion crack, a fatigue crack and the like which are easily produced in a welding heat influencing part can be very accurately measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は構造物に存在する欠
陥の寿命評価を行う上で必要となる欠陥の深さを測定す
る構造物欠陥深さ測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure defect depth measuring method for measuring a defect depth necessary for evaluating a life of a defect existing in a structure.

【0002】[0002]

【従来の技術】構造物の非破壊検査においては、検出さ
れた欠陥の深さと強度上許容される模擬欠陥の深さとを
比較して欠陥の検出感度及び合否を決定している。しか
し、重要な構造物において合格範囲ではあるが欠陥が発
見された場合、及び欠陥として検出されてもすぐに補修
できない場合などにおいて、構造物の寿命評価を行うた
めに欠陥の深さを測定する必要があった。
2. Description of the Related Art In non-destructive inspection of structures, the defect detection sensitivity and pass / fail are determined by comparing the detected defect depth with the simulated defect depth allowed in terms of strength. However, if a defect is found in an important structure within the acceptable range, but it cannot be repaired immediately even if it is detected as a defect, the depth of the defect is measured in order to evaluate the life of the structure. There was a need.

【0003】この欠陥深さ測定方法としては、渦流探傷
法、電気抵抗法、超音波探傷における端部エコー法など
があるが、渦流探傷法や電気抵抗法では探傷面側に欠陥
がなければ測定できない上に測定誤差も大きかった。ま
た、超音波探傷における端部エコー法は探傷面と反対側
から発生した欠陥でも測定できるものの、欠陥端部で発
生する回析波は極めて微弱であるため、結晶粒界ノイズ
等との分離判別が非常に困難であり,特にオーステナイ
ト系等減衰の大きな材料の溶接熱影響部に発生した応力
腐食割れ(SCC)では欠陥が結晶粒界に沿って樹枝状
に微細に進展していることもあって確実に欠陥深さを検
出することは困難であった。
The defect depth measuring method includes an eddy current flaw detection method, an electric resistance method, and an end echo method in ultrasonic flaw detection. In the eddy current flaw detection method and the electric resistance method, if there is no defect on the flaw detection surface side, the measurement is performed. It was not possible and the measurement error was large. In addition, although the edge echo method in ultrasonic flaw detection can measure even defects generated from the side opposite to the flaw detection surface, the diffraction wave generated at the edge of the defect is extremely weak, so it can be separated and distinguished from grain boundary noise, etc. Is very difficult, especially in stress corrosion cracking (SCC) that occurs in the weld heat-affected zone of materials such as austenite with large damping, defects may develop finely in a dendritic manner along grain boundaries. It has been difficult to reliably detect the defect depth.

【0004】また、他の方法として構造物の保全技術の
一つとして、構造物の複数箇所に音響センサを配置し、
構造物を使用している期間中継続して構造物内で発生し
ている微細な音を監視することにより、欠陥が発生、進
展したとき発する破壊音を検知して、各センサが破壊音
を捕らえた時間差等より、地震の震源地計測と同じ三角
測量によって欠陥の位置を同定するアコースティックエ
ミッション(以下、AEと略す)法がある。しかしこの
AE方法では欠陥が発生、進展する瞬間しか欠陥を検出
することができず、また、継続監視中外部からの雑音が
常に入るため、欠陥信号とノイズの分離が難しい上、長
期間に渡る監視が必要であった。
As another method for maintaining a structure, as another method, acoustic sensors are arranged at a plurality of locations on the structure,
By monitoring the minute sound generated in the structure continuously while the structure is in use, the destruction sound generated when a defect occurs or progresses is detected, and each sensor detects the destruction sound. There is an acoustic emission (hereinafter abbreviated as AE) method that identifies the position of the defect by the same triangulation as the epicenter measurement of the earthquake based on the captured time difference. However, with this AE method, the defect can be detected only at the moment when the defect is generated and propagates, and noise from outside always enters during continuous monitoring. Therefore, it is difficult to separate the defect signal and the noise, and it takes a long time. Monitoring was needed.

【0005】さらに、欠陥のある構造物の欠陥先端に対
して縦波超音波を入射すると欠陥先端の進展方向に対し
て45°下方向にモード変換した横波超音波が発生する
(特願平6−119833号参照)が、SCCのように
結晶粒界に沿って欠陥が進展している先端の進展方向が
明確でない欠陥では、発生した横波を検知することが困
難な上に音の伝播ルートが明確でないことから、算出さ
れた欠陥先端位置の精度もかなり悪かった。
Further, when a longitudinal ultrasonic wave is incident on the defect tip of a defective structure, a transverse ultrasonic wave whose mode is converted downward by 45 ° with respect to the propagation direction of the defect tip is generated. -1119833), it is difficult to detect the transverse wave generated and the sound propagation route is found in a defect such as SCC in which the direction of the tip of the defect is not clear along the grain boundary. Since it is not clear, the accuracy of the calculated defect tip position was also very poor.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
の構造物欠陥深さ測定方法では、欠陥の深さを測定する
ことは困難であり、特にオーステナイト系等減衰の大き
な材料の溶接熱影響部に発生したSCCの結晶粒界に沿
って樹枝状に進展した欠陥先端は結晶粒界との識別が困
難なためほとんど判別不可能であった。
As described above, it is difficult to measure the depth of a defect by the conventional method of measuring the depth of a structure defect, and in particular, the effect of welding heat on a material such as an austenitic material having large attenuation is considered. It was almost impossible to distinguish the tip of the defect, which developed in a dendritic manner along the crystal grain boundary of the SCC generated in the part, because it was difficult to distinguish it from the crystal grain boundary.

【0007】本発明はこのような事情を鑑みてなされた
ものであり、その課題は、強制的に欠陥を微細に進展さ
せることにより、継続監視すること無しに欠陥の深さを
正確に測定できる構造物欠陥深さ測定方法を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and its problem is that by forcibly advancing a defect finely, the depth of the defect can be accurately measured without continuous monitoring. It is to provide a method for measuring the depth of a structure defect.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の構造物欠陥深さ測定方法の発明は、
構造物の欠陥に対して局所的に外力を加えることによっ
て欠陥を微細に進展させ、前記欠陥より発生する破壊音
を検出することにより前記欠陥の深さを測定することを
特徴とする。
In order to solve the above-mentioned problems, the invention of a structure defect depth measuring method according to claim 1 is
The depth of the defect is measured by locally applying an external force to the defect of the structure to finely propagate the defect and detecting a breaking sound generated from the defect.

【0009】請求項2記載の発明は、請求項1記載の構
造物欠陥深さ測定方法において、欠陥の近傍に3個以上
の音響センサを配置し、外力を発生させた時間と各々の
音響センサが破壊音信号を受信した時間との差及び各々
の音響センサの位置とから計算することで破壊音発生位
置を特定することを特徴とする。
According to a second aspect of the present invention, in the structure defect depth measuring method according to the first aspect, three or more acoustic sensors are arranged in the vicinity of the defect, the time when the external force is generated, and each acoustic sensor. Is characterized in that the position where the destructive sound is generated is specified by calculating from the difference between the time when the destructive sound signal is received and the position of each acoustic sensor.

【0010】請求項3記載の発明は、請求項1記載の構
造物欠陥深さ測定方法において、欠陥に加える外力は、
打撃等による機械的外力、温度差による熱的歪による外
力または試験体に振動を加え共振させる外力のいずれか
であることを特徴とする。
According to a third aspect of the present invention, in the structure defect depth measuring method according to the first aspect, the external force applied to the defect is
It is characterized in that it is either a mechanical external force due to impact or the like, an external force due to thermal strain due to a temperature difference, or an external force that resonates by adding vibration to the test body.

【0011】請求項1ないし請求項3によれば、溶接熱
影響部に発生しやすい応力腐食割れや疲労割れ等の欠陥
深さを極めて精度良く測定することが可能となる。
According to the first to third aspects, it becomes possible to measure the depth of defects such as stress corrosion cracking and fatigue cracking which are likely to occur in the weld heat affected zone with extremely high accuracy.

【0012】請求項4記載の発明は、請求項2記載の構
造物欠陥深さ測定方法において、あらかじめ外力発生器
と複数の音響センサが配置してある一体化モジュールと
したことを特徴とする。請求項4によると、外力発生器
と複数の音響センサが一体化モジュールされているの
で、音響センサの位置確認が必要なくなる。
According to a fourth aspect of the present invention, in the structure defect depth measuring method according to the second aspect, it is an integrated module in which an external force generator and a plurality of acoustic sensors are arranged in advance. According to the fourth aspect, since the external force generator and the plurality of acoustic sensors are integrated into a module, it is not necessary to confirm the position of the acoustic sensors.

【0013】請求項5記載の発明は、構造物の欠陥先端
部に対して縦波超音波を入射し、前記欠陥先端部でモー
ド変換を起こして発生した横波を、前記欠陥の近傍に複
数個配置した音響センサで検出し、縦波超音波を発生さ
せた時間と各々の音響センサが横波超音波を受信した時
間との差及び各々の音響センサの位置とから計算するこ
とで前記欠陥先端位置を特定することを特徴とする。請
求項5によると、複数個の音響センサにより欠陥先端で
モード変換し、任意の方向へ伝播する横波を検知し、欠
陥位置を検出できる。
According to a fifth aspect of the present invention, longitudinal ultrasonic waves are incident on the defect tip of the structure, and a plurality of transverse waves generated by mode conversion at the defect tip are generated in the vicinity of the defect. The defect tip position is detected by the acoustic sensor placed and is calculated from the difference between the time when the longitudinal ultrasonic wave is generated and the time when each acoustic sensor receives the transverse ultrasonic wave and the position of each acoustic sensor. Is specified. According to the fifth aspect, the position of the defect can be detected by performing mode conversion at the defect tip with a plurality of acoustic sensors, detecting transverse waves propagating in an arbitrary direction.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は、本発明の第1実施形態(請
求項1および請求項2対応)である構造物欠陥深さ測定
方法を実施する構成図であり、同図(a)は基本的配置
図、同図(b)はその断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram for carrying out a structure defect depth measuring method according to a first embodiment (corresponding to claim 1 and claim 2) of the present invention. FIG. Figure (b) is a sectional view thereof.

【0015】図に示すように、本実施形態では、事前の
非破壊検査等で検知された構造物4のひびや割れ等の欠
陥3の直上に、欠陥3を強制的に進展させる外力発生器
1がセットされ、この外力発生器1を取り囲むように複
数個の音響センサ2がセットされている。
As shown in the figure, in this embodiment, an external force generator forcibly propagating the defect 3 directly above the defect 3 such as a crack or a crack of the structure 4 detected by a prior nondestructive inspection or the like. 1 is set, and a plurality of acoustic sensors 2 are set so as to surround the external force generator 1.

【0016】本発明は上述したAE法の原理を利用し、
AE法の課題である欠陥の進展を長期に渡って待つこと
をなくすため、外力によって強制的に欠陥を微細進展さ
せるものである。従って任意のときに外力を加えること
で、欠陥先端からの破壊音を検知してAE法に基づいて
欠陥サイズ、特に欠陥深さが測定可能となり、SCCの
ように形状が複雑で検出しづらい欠陥の深さ測定を精度
良く実施できる。
The present invention utilizes the principle of the AE method described above,
In order to avoid waiting for a long time for the progress of defects, which is a problem of the AE method, the defects are forcibly finely propagated by an external force. Therefore, by applying an external force at any time, it is possible to detect the destructive sound from the defect tip and measure the defect size, especially the defect depth, based on the AE method. The depth measurement can be performed accurately.

【0017】次に、本発明で使用される外力発生器(請
求項3対応)の各種形式について図2ないし図6を参照
して説明する。図2は爆破式打撃型外力発生器であり、
上部に電極11を配置した筒状容器10内に凸部13a
を有するピストン13を設け、筒状容器10とピストン
13とで作る空間に火薬12がつめられている。
Next, various types of external force generators (corresponding to claim 3) used in the present invention will be described with reference to FIGS. 2 to 6. Figure 2 shows a blast type impact type external force generator,
The convex portion 13a is provided in the cylindrical container 10 in which the electrode 11 is arranged on the upper portion.
A piston 13 having a cylinder is provided, and an explosive 12 is packed in a space formed by the cylindrical container 10 and the piston 13.

【0018】図3はエアノック式打撃型外力発生器であ
り、筒状容器18内にピストン17が設けられ、このピ
ストン17と円筒容器18の天上との間にスプリング1
4を取り付けたシャフト15を設けている。スプリング
14は下部のリリースバルブ16から加圧エアが吹き込
まれると、ピストン17が上方に移動する。
FIG. 3 shows an air knock type striking type external force generator in which a piston 17 is provided in a cylindrical container 18 and a spring 1 is provided between the piston 17 and the top of the cylindrical container 18.
A shaft 15 to which 4 is attached is provided. When pressurized air is blown from the lower release valve 16 of the spring 14, the piston 17 moves upward.

【0019】図2及び図3に示す外力発生器1は、火薬
またはスプリングによりピストンを急激に押し下げ、ピ
ストンの中心部に取り付けた凸部またはシャフト15の
先端による打撃により欠陥部3に衝撃を加え、この時に
欠陥3先端に応力がかかるため欠陥3が微細に進展す
る。
In the external force generator 1 shown in FIGS. 2 and 3, the piston is abruptly pushed down by the explosive or the spring, and the convex portion attached to the central portion of the piston or the tip of the shaft 15 strikes the defective portion 3 to impact it. At this time, since stress is applied to the tip of the defect 3, the defect 3 progresses finely.

【0020】図4は圧電素子式振動型外力発生器であ
り、プレート20に圧電素子21とダンパ22が取付け
られている。図5は機械式振動型外力発生器であり、プ
レート25にモータ23と偏芯ホイール24が取付けら
れている。
FIG. 4 shows a piezoelectric element type vibration type external force generator, in which a piezoelectric element 21 and a damper 22 are attached to a plate 20. FIG. 5 shows a mechanical vibration type external force generator, in which a motor 23 and an eccentric wheel 24 are attached to a plate 25.

【0021】図4および図5に示す外力発生器は、圧電
素子21によるピエゾ効果もしくは偏芯ホイール24に
よる機械的な振動を発生させ、欠陥3を有する材料を共
振周波数で振動させる。これにより材料に大きな衝撃力
を与えることなく欠陥3の先端に応力を加え、欠陥3を
微細に進展させることとなる。
The external force generator shown in FIGS. 4 and 5 causes the piezoelectric effect by the piezoelectric element 21 or mechanical vibration by the eccentric wheel 24 to vibrate the material having the defect 3 at the resonance frequency. As a result, stress is applied to the tip of the defect 3 without exerting a large impact force on the material, and the defect 3 is allowed to progress finely.

【0022】図6はレーザ式熱歪外力発生器であり、プ
レート30にレーザ発振器31、レンズ32及び冷却ノ
ズル33が取付けられている。この外力発生器はレーザ
等を用いて材料表面を急加熱させ、このとき発生する熱
歪により同様に欠陥3を微細進展させるものである。
FIG. 6 shows a laser type thermal strain external force generator, in which a laser oscillator 31, a lens 32 and a cooling nozzle 33 are attached to a plate 30. This external force generator uses a laser or the like to rapidly heat the surface of the material, and the thermal strain generated at this time similarly causes the defects 3 to finely propagate.

【0023】上述したように、本発明は外力発生器によ
る外力を構造物の欠陥部に与えることで、欠陥3が微細
に進展し、欠陥3先端の進展部から破壊に伴い音が発生
する。この時発生する破壊音を、欠陥周囲に配置した音
響センサ2で受信し、各々の音響センサ2の受信時間差
等より地震の震源場所を求めるのと同じ方法で計算する
ことにより、音の発生位置つまり欠陥3の先端部位置を
検知することが可能となる。
As described above, according to the present invention, the external force generated by the external force generator is applied to the defective portion of the structure, so that the defect 3 progresses minutely, and a sound is generated from the developed portion at the tip of the defect 3 due to the destruction. The destruction sound generated at this time is received by the acoustic sensors 2 arranged around the defect, and the sound generation position is calculated by the same method as obtaining the epicenter location from the reception time difference of each acoustic sensor 2 and the like. That is, the position of the tip of the defect 3 can be detected.

【0024】また、欠陥の先端位置を正確に検知するた
めには、各受信用音響センサ2の位置関係を精度良く把
握しておく必要がある。音響センサ2は通常圧電素子で
構成されているため、電気的に励起させれば音を発生す
る。したがって各々のセンサ2を順に励起して音を発生
させ、他のセンサ2でこの音を受信して音発生位置を解
析すれば、お互いの位置関係を正確に把握することが可
能となる。
Further, in order to accurately detect the tip position of the defect, it is necessary to accurately grasp the positional relationship between the receiving acoustic sensors 2. Since the acoustic sensor 2 is usually composed of a piezoelectric element, it produces a sound when electrically excited. Therefore, if each sensor 2 is sequentially excited to generate a sound and the other sensor 2 receives this sound and analyzes the sound generation position, it is possible to accurately grasp the mutual positional relationship.

【0025】この欠陥検知方法によれば、検査装置側か
ら発信した音の反射を捕らえる超音波探傷試験方法と異
なり、音の発生源が欠陥先端部のみで結晶粒界や形状等
の擬似エコー源が無いので、欠陥の先端位置の誤認が少
なくなる。
According to this defect detection method, unlike the ultrasonic flaw detection test method in which the reflection of the sound transmitted from the inspection device side is captured, the sound source is only the defect tip portion and the pseudo echo source such as a grain boundary or a shape is generated. Since there is no defect, misidentification of the tip position of the defect is reduced.

【0026】図7は本発明の第2実施形態(請求項4対
応)の斜視図である。図に示すように、本実施形態はあ
らかじめプレート5上に外力発生器1と音響センサ2を
既知の位置に配置して一体化モジュールとしているの
で、このプレート5ごと検査位置にセットすることによ
り音響センサ2の位置確認は必要無くなる。また構造物
内の欠陥位置同定は図1の第1実施形態と同様であるの
で、その説明は省略する。
FIG. 7 is a perspective view of a second embodiment (corresponding to claim 4) of the present invention. As shown in the figure, in this embodiment, the external force generator 1 and the acoustic sensor 2 are previously arranged on the plate 5 at known positions to form an integrated module. It is not necessary to confirm the position of the sensor 2. Since the defect position identification in the structure is the same as that of the first embodiment of FIG. 1, the description thereof will be omitted.

【0027】図8は本発明の第3実施形態(請求項5対
応)の構成図であり、同図(a)は断面図、同図(b)
は同図(a)のA部分の拡大図である。同図に示すよう
に、欠陥3のある構造物40に縦波超音波探触子41を
載置し、それを囲むように横波用音響センサ42を配置
している。縦波超音波探触子41より欠陥先端に対して
縦波超音波43を入射すると、欠陥先端の進展方向に対
して45゜下方向にモード変換した強い横波超音波44
が発生する。
FIG. 8 is a constitutional view of a third embodiment (corresponding to claim 5) of the present invention, wherein FIG. 8A is a sectional view and FIG.
FIG. 7 is an enlarged view of a portion A of FIG. As shown in the same figure, a longitudinal ultrasonic probe 41 is placed on a structure 40 having a defect 3, and a transverse wave acoustic sensor 42 is arranged so as to surround it. When a longitudinal ultrasonic wave 43 is incident on the defect tip from the longitudinal ultrasonic probe 41, a strong transverse ultrasonic wave 44 which is mode-converted downward by 45 ° with respect to the propagation direction of the defect tip.
Occurs.

【0028】しかし本実施形態によれば欠陥3の周囲に
複数個の音響センサ42を配置しているため、欠陥先端
でモード変換し、任意の方向へ伝播する横波44を検知
することが可能な上、各音響センサ42で音を受信した
時間の差から欠陥位置を検出するため、精度も向上す
る。
However, according to the present embodiment, since the plurality of acoustic sensors 42 are arranged around the defect 3, it is possible to detect the transverse wave 44 propagating in an arbitrary direction by performing mode conversion at the defect tip. Moreover, since the defect position is detected from the difference in the time when the sound is received by each acoustic sensor 42, the accuracy is also improved.

【0029】以上に述べたような計算された欠陥先端位
置は、通常計算された数値として提供されることとな
る。しかし特にSCC等の場合欠陥先端が一つとは限ら
ない上、数値だけでは欠陥の分布状況など判り難い点が
あることより、計算結果に基づき検出した欠陥位置を検
査体計上に重ね合せて三次元的に表示させることによ
り、第三者等にも感覚的にもわかりやすく欠陥の状況を
明示することが可能となる。
The calculated defect tip position as described above is usually provided as a calculated numerical value. However, especially in the case of SCC etc., the number of defects is not limited to one, and it is difficult to understand the distribution of defects with numerical values alone. Therefore, the defect position detected based on the calculation results is superimposed on the inspection body and three-dimensional. Such a display makes it possible to clearly indicate the status of the defect so that it can be intuitively understood by a third party.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、溶
接熱影響部に発生しやすい応力腐食割れや疲労割れ等の
欠陥深さを極めて精度良く測定することが可能となるの
で、容器や構造物等の安全評価、残寿命の推定、補修量
の検出を行うことが可能となる。
As described above, according to the present invention, it is possible to measure the depth of defects such as stress corrosion cracking and fatigue cracking which are likely to occur in the weld heat affected zone with extremely high accuracy. It is possible to evaluate the safety of structures, estimate the remaining life, and detect the repair amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態の構成図であり、同図
(a)は基本的配置図、同図(b)は同図(a)の断面
図。
FIG. 1 is a configuration diagram of a first embodiment of the present invention, in which FIG. 1A is a basic layout diagram and FIG. 1B is a cross-sectional view of FIG. 1A.

【図2】本発明で使用される爆破式打撃型外力発生器の
概略図。
FIG. 2 is a schematic view of a blast type impact type external force generator used in the present invention.

【図3】本発明で使用されるエアノック式打撃型外力発
生器の概略図。
FIG. 3 is a schematic view of an air knock type impact type external force generator used in the present invention.

【図4】本発明で使用される圧電素子式振動型外力発生
器の概略図。
FIG. 4 is a schematic view of a piezoelectric element type vibration external force generator used in the present invention.

【図5】本発明で使用される機械式振動型外力発生器の
概略図。
FIG. 5 is a schematic view of a mechanical vibration type external force generator used in the present invention.

【図6】本発明で使用されるレーザ式熱歪型外力発生器
の概略図。
FIG. 6 is a schematic view of a laser type thermal strain type external force generator used in the present invention.

【図7】本発明の第2実施形態の構成図。FIG. 7 is a configuration diagram of a second embodiment of the present invention.

【図8】本発明の第3実施形態の構成図であり、同図
(a)は断面図、同図(b)は同図(a)のA部分の拡
大図。
8A and 8B are configuration diagrams of a third embodiment of the present invention, in which FIG. 8A is a sectional view and FIG. 8B is an enlarged view of a portion A in FIG. 8A.

【符号の説明】[Explanation of symbols]

1…外力発生器、2…音響センサ、3…欠陥、4…構造
物、5…固定プレート、10…筒形容器、11…電極、
12…火薬、13,17…ピストン、14…スプリン
グ、15…シャフト、16…リリースバルブ、18…同
筒容器、20,25,30…プレート、21…圧電素
子、22…ダンパ、23…モータ、24…偏芯ホイー
ル、31…レーザ発信器、32…レンズ、33…冷却ノ
ズル、40…構造物、41…縦波超音波探触子、42…
横波用音響センサ、43…縦波、44…モード変換した
横波。
DESCRIPTION OF SYMBOLS 1 ... External force generator, 2 ... Acoustic sensor, 3 ... Defect, 4 ... Structure, 5 ... Fixed plate, 10 ... Cylindrical container, 11 ... Electrode,
12 ... Explosive, 13, 17 ... Piston, 14 ... Spring, 15 ... Shaft, 16 ... Release valve, 18 ... Cylindrical container, 20, 25, 30 ... Plate, 21 ... Piezoelectric element, 22 ... Damper, 23 ... Motor, 24 ... Eccentric wheel, 31 ... Laser oscillator, 32 ... Lens, 33 ... Cooling nozzle, 40 ... Structure, 41 ... Longitudinal wave ultrasonic probe, 42 ...
Transverse wave acoustic sensor, 43 ... Longitudinal wave, 44 ... Mode-converted transverse wave.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 構造物の欠陥に対して局所的に外力を加
えることによって欠陥を微細に進展させ、前記欠陥より
発生する破壊音を検出することにより前記欠陥の深さを
測定することを特徴とする構造物欠陥深さ測定方法。
1. The depth of the defect is measured by locally applying an external force to the defect of the structure to finely propagate the defect and detecting a breaking sound generated from the defect. Measuring method of structure defect depth.
【請求項2】 請求項1記載の構造物欠陥深さ測定方法
において、欠陥の近傍に3個以上の音響センサを配置
し、外力を発生させた時間と各々の音響センサが破壊音
信号を受信した時間との差及び各々の音響センサの位置
とから計算することで破壊音発生位置を特定することを
特徴とする構造物欠陥深さ測定方法。
2. The structure defect depth measuring method according to claim 1, wherein three or more acoustic sensors are arranged in the vicinity of the defect, and a time when external force is generated and each acoustic sensor receives a destructive sound signal. A method for measuring the depth of a defect in a structure, characterized in that the position where the destruction sound is generated is specified by calculating it from the difference between the time and the position of each acoustic sensor.
【請求項3】 請求項1記載の構造物欠陥深さ測定方法
において、欠陥に加える外力は、打撃等による機械的外
力、温度差による熱的歪による外力または試験体に振動
を加え共振させる外力のいずれかであることを特徴とす
る構造物欠陥深さ測定方法。
3. The structure defect depth measuring method according to claim 1, wherein the external force applied to the defect is a mechanical external force due to impact or the like, an external force due to thermal strain due to a temperature difference, or an external force for vibrating and resonating the test body. A method for measuring the depth of a structure defect, which is characterized in that
【請求項4】 請求項2記載の構造物欠陥深さ測定方法
において、あらかじめ外力発生器と複数の音響センサが
配置してある一体化モジュールとしたことを特徴とする
構造物欠陥深さ測定方法。
4. The structure defect depth measuring method according to claim 2, wherein the module is an integrated module in which an external force generator and a plurality of acoustic sensors are arranged in advance. .
【請求項5】 構造物の欠陥先端部に対して縦波超音波
を入射し、前記欠陥先端部でモード変換を起こして発生
した横波を、前記欠陥の近傍に複数個配置した音響セン
サで検出し、縦波超音波を発生させた時間と各々の音響
センサが横波超音波を受信した時間との差及び各々の音
響センサの位置とから計算することで、欠陥先端位置を
特定することを特徴とする構造物欠陥深さ測定方法。
5. A longitudinal wave ultrasonic wave is incident on the defect tip of a structure, and a transverse wave generated by mode conversion at the defect tip is detected by a plurality of acoustic sensors arranged near the defect. The defect tip position is specified by calculating from the difference between the time when the longitudinal ultrasonic wave is generated and the time when each acoustic sensor receives the transverse ultrasonic wave and the position of each acoustic sensor. Measuring method of structure defect depth.
JP2001253006A 2001-08-23 2001-08-23 Defect depth measurement method for structures Expired - Fee Related JP4373627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253006A JP4373627B2 (en) 2001-08-23 2001-08-23 Defect depth measurement method for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253006A JP4373627B2 (en) 2001-08-23 2001-08-23 Defect depth measurement method for structures

Publications (2)

Publication Number Publication Date
JP2003066016A true JP2003066016A (en) 2003-03-05
JP4373627B2 JP4373627B2 (en) 2009-11-25

Family

ID=19081395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253006A Expired - Fee Related JP4373627B2 (en) 2001-08-23 2001-08-23 Defect depth measurement method for structures

Country Status (1)

Country Link
JP (1) JP4373627B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2005070017A (en) * 2003-08-28 2005-03-17 Hajime Hatano Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
JP2015055559A (en) * 2013-09-12 2015-03-23 横河電機株式会社 Ultrasonic piping measuring device
KR101738948B1 (en) * 2015-12-11 2017-06-08 전남대학교산학협력단 Apparatus for detecting impact and damages applying asymmetrical arrangement of sensors and method for same
JP2017138177A (en) * 2016-02-03 2017-08-10 Jfe物流株式会社 Striking device
KR20180071090A (en) * 2016-12-19 2018-06-27 (주) 다인 Nondestructive defect inspecting apparatus and press process apparatus having the same
JP2021181970A (en) * 2020-05-20 2021-11-25 東京瓦斯株式会社 Ae wave detection device, corrosion detection system, and corrosion detection method for structure
JP2021181969A (en) * 2020-05-20 2021-11-25 東京瓦斯株式会社 Corrosion detection system and corrosion detection method for structure

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150090A (en) * 1976-06-08 1977-12-13 Babcock Hitachi Kk Device for detecting action of crack by using ae sensor
JPS54150188A (en) * 1978-05-17 1979-11-26 Hitachi Ltd Cracking inspecting apparatus by ultrasonic waves
JPS5621059A (en) * 1979-07-31 1981-02-27 Mitsubishi Heavy Ind Ltd Method and device for determining position in ae measurement
JPS5790156A (en) * 1980-09-30 1982-06-04 Kraftwerk Union Ag Inspection of acoustic emission for vessel or pipeline
JPS59221661A (en) * 1983-05-31 1984-12-13 Toshiba Corp Method for inspecting defect of ceramic joint part
JPS59221658A (en) * 1983-05-31 1984-12-13 Toshiba Corp Method for inspecting defect in process for producing ceramics
JPS59221657A (en) * 1983-05-31 1984-12-13 Toshiba Corp Method for inspecting quality of ceramic product
JPS62115361A (en) * 1985-11-14 1987-05-27 Toshiba Corp Ultrasonic flaw detecting device
JPS62133350A (en) * 1985-12-05 1987-06-16 Nippon Steel Corp Detecting method for welding defect in welded zone of seam welded pipe
JPS62291560A (en) * 1986-06-11 1987-12-18 Toshiba Corp Ultrasonic flaw detecting apparatus
JPH04310857A (en) * 1991-04-09 1992-11-02 Pub Works Res Inst Ministry Of Constr Method for detecting development of crack of steel bridge structure using ae method
JPH06242083A (en) * 1993-02-22 1994-09-02 Mitsubishi Heavy Ind Ltd Crack detection method for outer board and structure therefor
JPH07260651A (en) * 1994-03-28 1995-10-13 Toppan Printing Co Ltd Cracking developing rate measuring apparatus for film
JPH07325070A (en) * 1994-06-01 1995-12-12 Toshiba Corp Ultrasonic method for measuring depth of defect
JPH09218182A (en) * 1996-02-09 1997-08-19 Tobishima Corp Method for examining damage of structure support pile

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150090A (en) * 1976-06-08 1977-12-13 Babcock Hitachi Kk Device for detecting action of crack by using ae sensor
JPS54150188A (en) * 1978-05-17 1979-11-26 Hitachi Ltd Cracking inspecting apparatus by ultrasonic waves
JPS5621059A (en) * 1979-07-31 1981-02-27 Mitsubishi Heavy Ind Ltd Method and device for determining position in ae measurement
JPS5790156A (en) * 1980-09-30 1982-06-04 Kraftwerk Union Ag Inspection of acoustic emission for vessel or pipeline
JPS59221661A (en) * 1983-05-31 1984-12-13 Toshiba Corp Method for inspecting defect of ceramic joint part
JPS59221658A (en) * 1983-05-31 1984-12-13 Toshiba Corp Method for inspecting defect in process for producing ceramics
JPS59221657A (en) * 1983-05-31 1984-12-13 Toshiba Corp Method for inspecting quality of ceramic product
JPS62115361A (en) * 1985-11-14 1987-05-27 Toshiba Corp Ultrasonic flaw detecting device
JPS62133350A (en) * 1985-12-05 1987-06-16 Nippon Steel Corp Detecting method for welding defect in welded zone of seam welded pipe
JPS62291560A (en) * 1986-06-11 1987-12-18 Toshiba Corp Ultrasonic flaw detecting apparatus
JPH04310857A (en) * 1991-04-09 1992-11-02 Pub Works Res Inst Ministry Of Constr Method for detecting development of crack of steel bridge structure using ae method
JPH06242083A (en) * 1993-02-22 1994-09-02 Mitsubishi Heavy Ind Ltd Crack detection method for outer board and structure therefor
JPH07260651A (en) * 1994-03-28 1995-10-13 Toppan Printing Co Ltd Cracking developing rate measuring apparatus for film
JPH07325070A (en) * 1994-06-01 1995-12-12 Toshiba Corp Ultrasonic method for measuring depth of defect
JPH09218182A (en) * 1996-02-09 1997-08-19 Tobishima Corp Method for examining damage of structure support pile

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2005070017A (en) * 2003-08-28 2005-03-17 Hajime Hatano Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
JP2015055559A (en) * 2013-09-12 2015-03-23 横河電機株式会社 Ultrasonic piping measuring device
KR101738948B1 (en) * 2015-12-11 2017-06-08 전남대학교산학협력단 Apparatus for detecting impact and damages applying asymmetrical arrangement of sensors and method for same
JP2017138177A (en) * 2016-02-03 2017-08-10 Jfe物流株式会社 Striking device
KR20180071090A (en) * 2016-12-19 2018-06-27 (주) 다인 Nondestructive defect inspecting apparatus and press process apparatus having the same
KR101960878B1 (en) * 2016-12-19 2019-03-21 (주)다인 Nondestructive defect inspecting apparatus and press process apparatus having the same
JP2021181970A (en) * 2020-05-20 2021-11-25 東京瓦斯株式会社 Ae wave detection device, corrosion detection system, and corrosion detection method for structure
JP2021181969A (en) * 2020-05-20 2021-11-25 東京瓦斯株式会社 Corrosion detection system and corrosion detection method for structure
JP7333915B2 (en) 2020-05-20 2023-08-28 東京瓦斯株式会社 Corrosion detection system and method for detecting corrosion in structures
JP7333916B2 (en) 2020-05-20 2023-08-28 東京瓦斯株式会社 AE wave detection device, corrosion detection system, and structure corrosion detection method

Also Published As

Publication number Publication date
JP4373627B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US6880379B2 (en) Method and device for detecting damage in materials or objects
US10048230B2 (en) Structural bond inspection
JP5403976B2 (en) Concrete structure quality inspection method
WO2007004303A1 (en) Method and instrument for measuring flaw height in ultrasonic testing
US6250163B1 (en) EMATS for spot weld examination
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
JP2013525803A (en) Methods and devices for nondestructive material testing by ultrasound
JP5920789B2 (en) Cryogenic ultrasonic fatigue nondestructive test evaluation system
JP5261949B2 (en) Ultrasonic inspection method for spot weld and ultrasonic inspection apparatus for spot weld
Giurgiutiu Embedded NDE with piezoelectric wafer active sensors in aerospace applications
JP4373627B2 (en) Defect depth measurement method for structures
JP2004069301A (en) Acoustic inspection method and acoustic inspection device
JP2002296244A (en) Method and device for diagnosing concrete structure
Salzburger EMAT's and its Potential for Modern NDE-State of the Art and Latest Applications
JP2002062281A (en) Flaw depth measuring method and its device
Fromme Guided wave testing
KR101865745B1 (en) Joining quality diagnosis device of panel element
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
CN106323207A (en) Composite billet weld fusion depth detecting device and method
JP4425011B2 (en) Inclusion detection method and apparatus using nonlinear ultrasonic waves
JP3761883B2 (en) Ultrasonic flaw detection method
Kamas et al. Quasi-Rayleigh waves in butt-welded thick steel plate
JP5421544B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
Ye et al. Welding induced residual stress evaluation using laser-generated Rayleigh waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees