JPH07260651A - Cracking developing rate measuring apparatus for film - Google Patents

Cracking developing rate measuring apparatus for film

Info

Publication number
JPH07260651A
JPH07260651A JP6056436A JP5643694A JPH07260651A JP H07260651 A JPH07260651 A JP H07260651A JP 6056436 A JP6056436 A JP 6056436A JP 5643694 A JP5643694 A JP 5643694A JP H07260651 A JPH07260651 A JP H07260651A
Authority
JP
Japan
Prior art keywords
fixed point
crack
film
sensor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6056436A
Other languages
Japanese (ja)
Inventor
Katsumi Ohira
克己 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP6056436A priority Critical patent/JPH07260651A/en
Publication of JPH07260651A publication Critical patent/JPH07260651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To provide an apparatus for measuring the cracking developing rate of a thin film accurately and automatically through a simple structure. CONSTITUTION:A first AE sensor 1 is disposed obliquely forward of a fixed point F in the spreading direction of a crack 5 made in a thin film 4. A second AE sensor 2 is disposed obliquely rearward of the fixed point F in the spreading direction of crack. Electric signals from the first and second AE sensors 1, 2 are fed to a signal operating section 3 where high and low frequencies f1, f2 are determined by a frequency analyzer 11 and crack spreading rate Vc is operated automatically by an operating unit 12 according to a specific theoretical formula.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜の評価のための測
定装置に係り、特に、膜亀裂の進行速度を求めて薄膜の
強度評価を行う膜亀裂速度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for evaluating a thin film, and more particularly to a film cracking speed measuring device for evaluating the strength of a thin film by obtaining a speed of film cracking.

【0002】[0002]

【従来の技術】薄膜の強度評価としては各種のパラメー
タがある。そのパラメータの1つとして、例えば、薄膜
を引張り、亀裂を発生させてその亀裂の進行速度から薄
膜の硬さ,強度を評価する方法が考えられる。しかしな
がら、従来技術ではこの膜亀裂速度計測に適する簡便構
造の測定装置がなかった。
2. Description of the Related Art There are various parameters for evaluating the strength of a thin film. As one of the parameters, for example, a method of pulling a thin film to generate a crack and evaluating the hardness and strength of the thin film from the progress speed of the crack can be considered. However, in the prior art, there was no measuring device having a simple structure suitable for measuring the film crack velocity.

【0003】[0003]

【発明が解決しようとする課題】薄膜の強度が高い場合
には当該薄膜を引っ張ると音響波(AE波)を伴って亀
裂が生じ、その亀裂の進行速度は比較的早い。一方、強
度の低い薄膜を同じ力で引っ張るとやはりAE波を伴っ
て比較的遅い速度で亀裂が進行することが観測される。
また、音の発生点を定点Fとした場合、定点Fよりも前
方の位置では定点Fにおける実際の音よりも高い音が観
測される。逆に定点Fよりも後方の位置では定点Fにお
ける実際の音よりも低い音が観測される。この現象はド
ップラーシフト現象として公知の事実である。
When the strength of the thin film is high, when the thin film is pulled, a crack is generated with an acoustic wave (AE wave), and the progress speed of the crack is relatively high. On the other hand, when a thin film having low strength is pulled by the same force, it is observed that the crack also progresses at a relatively slow speed with the AE wave.
When the sound generation point is the fixed point F, a sound higher than the actual sound at the fixed point F is observed at a position in front of the fixed point F. On the contrary, at a position behind the fixed point F, a sound lower than the actual sound at the fixed point F is observed. This phenomenon is a known fact as the Doppler shift phenomenon.

【0004】本発明は、ドップラーシフトを利用して定
点Fから発する音を一対のAEセンサで同時測定し、定
点Fを通過しようとする膜亀裂の進行速度を正確に、か
つ自動的に測定して薄膜の強度評価を可能とする膜亀裂
速度測定装置を提供することを目的とする。
The present invention utilizes Doppler shift to simultaneously measure the sound emitted from a fixed point F with a pair of AE sensors to accurately and automatically measure the speed of progress of a film crack trying to pass through the fixed point F. An object of the present invention is to provide a film crack velocity measuring device that enables strength evaluation of a thin film.

【0005】[0005]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、一対のAEセンサと信号演算器とを備
え、所定の進行方向に沿って与えられた定点を通過する
膜亀裂の進行速度を測定する装置であって、一方のAE
センサは、前記進行方向に沿って斜前方から前記定点を
指向し、膜亀裂が該定点を通過する際に正のドップラー
シフトを伴って発生するAE波を検出して第1の電気信
号を出力し、他方のAEセンサは、前記進行方向に沿っ
て斜後方から前記定点を指向し、膜亀裂が該定点を通過
する際に負のドップラーシフトを伴って発生するAE波
を検出して第2の電気信号を出力するものからなり、前
記信号演算器は、前記第1及び第2の電気信号を処理
し、正負のドップラーシフトと対応した周波数変化に基
づいて膜亀裂の進行速度を演算する膜亀裂速度測定装置
を構成するものである。
In order to achieve the above-mentioned object, the present invention comprises a pair of AE sensors and a signal calculator, and a film crack passing through a given fixed point along a predetermined traveling direction. Of the AE of one of the
The sensor directs the fixed point obliquely forward along the traveling direction, detects an AE wave generated with a positive Doppler shift when the film crack passes through the fixed point, and outputs a first electric signal. The other AE sensor points the fixed point from obliquely rearward along the traveling direction and detects the AE wave generated with a negative Doppler shift when the film crack passes through the fixed point. Of the film, the signal calculator processes the first and second electric signals, and calculates the progress speed of the film crack based on the frequency change corresponding to the positive and negative Doppler shifts. It constitutes a crack velocity measuring device.

【0006】[0006]

【作用】亀裂の進行方向に沿ってその前後に一対のAE
センサを設け、当該AEセンサで定点Fにおける音を同
時に計測し、その周波数−強度分布を求める。一対のA
Eセンサによって計測されるAE波が同一の音源から発
した場合には、亀裂の進行方向の前方のAEセンサは後
方のAEセンサよりもドップラーシフトにより高い周波
数の音を受信する。この一対のAEセンサにおける周波
数変化を求めることにより膜亀裂の進行速度を理論式に
より求めることが出来る。なお、本発明の測定装置は一
対のAEセンサを配置するだけの比較的簡便なもので、
容易に実施することが出来、かつ膜亀裂の進行速度を正
確に求めることが出来る。
[Function] A pair of AEs are provided in front of and behind the crack in the traveling direction.
A sensor is provided, the sound at the fixed point F is simultaneously measured by the AE sensor, and the frequency-intensity distribution is obtained. A pair of A
When the AE waves measured by the E sensor are emitted from the same sound source, the AE sensor in the front in the traveling direction of the crack receives a higher frequency sound due to the Doppler shift than the AE sensor in the rear. By calculating the frequency change in the pair of AE sensors, the progress rate of the film crack can be calculated by a theoretical formula. The measuring device of the present invention is a relatively simple device in which a pair of AE sensors are arranged.
It can be carried out easily, and the progress rate of the film crack can be accurately obtained.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面に基づき説明
する。図1は本実施例の全体構造を示す構成図、図2は
一対のAEセンサによる周波数−強度分布を示すスペク
トラム図、図3は本実施例における薄膜の亀裂発生状態
を説明する説明用平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the overall structure of this embodiment, FIG. 2 is a spectrum diagram showing the frequency-intensity distribution by a pair of AE sensors, and FIG. 3 is an explanatory plan view for explaining the crack generation state of the thin film in this embodiment. Is.

【0008】図1に示すように、本実施例の膜亀裂速度
測定装置は大別して一対のAEセンサと信号演算部3か
らなる。前記AEセンサを第1のAEセンサ1と第2の
AEセンサ2とする。薄膜4は図3に示すように、引っ
張り力Pにより上下に引っ張られ亀裂5が発生する。亀
裂5は一定方向に沿って進行するがその途中の定点Fを
考慮する。第1のAEセンサ1は亀裂5の進行方向に沿
って斜前方から定点Fを指向して配置される。また、第
2のAEセンサ2は亀裂5の進行方向に沿って斜後方か
ら定点Fを指向して配置される。第1および第2のAE
センサ1,2の構造は特に限定するものではないが定点
Fを指向する構造を必要とすることから図示のような形
状の超音波顕微鏡凹球面レンズが本実施例では採用され
る。第1および第2のAEセンサ1,2は、ガラス状の
遅延材6,6とそれに固着するトランスデューサ7,7
とからなり、遅延材6,6の下面には凹球面8,8が形
成される。図示のように定点FからのAE信号は発散球
面波として遅延材6,6内に入りトランスデューサ7,
7で受信される。図1に示すように、第1のAEセンサ
1は薄膜4の斜前方に配置され、その軸線は薄膜4の表
面と角度θ1だけ傾斜する。また、第2のAEセンサ2
は薄膜4の斜後方に配置され、その軸線は薄膜4の表面
と角度θ2だけ傾斜する。なお、この第1および第2の
AEセンサ1,2の場合、伝達媒体(カプラ)としては
水9が使用される。
As shown in FIG. 1, the film crack velocity measuring apparatus of this embodiment is roughly divided into a pair of AE sensors and a signal calculating section 3. The AE sensors are a first AE sensor 1 and a second AE sensor 2. As shown in FIG. 3, the thin film 4 is pulled up and down by the pulling force P to generate a crack 5. The crack 5 progresses along a fixed direction, but a fixed point F on the way is taken into consideration. The first AE sensor 1 is arranged along the traveling direction of the crack 5 with the fixed point F oriented obliquely from the front. Further, the second AE sensor 2 is arranged along the traveling direction of the crack 5 with the fixed point F oriented obliquely from the rear. First and second AE
The structures of the sensors 1 and 2 are not particularly limited, but a structure for directing the fixed point F is required, and therefore an ultrasonic microscope concave spherical lens having the shape shown in the drawing is adopted in this embodiment. The first and second AE sensors 1 and 2 are composed of glass-like delay materials 6 and 6 and transducers 7 and 7 fixed to them.
And concave spherical surfaces 8 are formed on the lower surfaces of the delay members 6 and 6. As shown in the figure, the AE signal from the fixed point F enters the delay members 6 and 6 as a divergent spherical wave, and the transducer 7 and
Received at 7. As shown in FIG. 1, the first AE sensor 1 is disposed obliquely in front of the thin film 4, and its axis is inclined with respect to the surface of the thin film 4 by an angle θ 1 . In addition, the second AE sensor 2
Is arranged obliquely behind the thin film 4, and its axis is inclined with respect to the surface of the thin film 4 by an angle θ 2 . In the case of the first and second AE sensors 1 and 2, water 9 is used as a transmission medium (coupler).

【0009】一方、信号演算部3は、第1および第2の
AEセンサ1,2からプリアンプ10,10を介して入
力される第1の電気信号および第2の電気信号を処理す
る周波数分析装置11(又は差分検出器11)と、当該
装置11によって求められた周波数f1,f2から膜亀裂
の進行速度Vcを求める演算装置12等から構成され
る。
On the other hand, the signal calculation unit 3 processes a first electric signal and a second electric signal input from the first and second AE sensors 1 and 2 through the preamplifiers 10 and 10, respectively. 11 (or the difference detector 11), and an arithmetic unit 12 and the like for obtaining the progress velocity Vc of the film crack from the frequencies f 1 and f 2 obtained by the device 11.

【0010】薄膜4に亀裂5が発生すると、亀裂5は図
3のように一定方向に沿って進行し、第1および第2の
AEセンサ1,2には図2に示す周波数−強度分布のA
E波形が計測される。すなわち、図2に示すように、第
1のAEセンサ1の計測したAE波形と第2のAEセン
サ2の計測した音量波形は同一形状のものからなるが、
最大の音響強度が生じるピーク周波数f1とf2は相異
し、ドップラーシフトにより第1のAEセンサ1の周波
数f1は第2のAEセンサ2の周波数f2よりも高い。以
上の第1および第2のAEセンサ1,2による検出結果
は第1および第2の電気信号としてプリアンプ10,1
0を介して信号演算部3に入力される。
When a crack 5 is generated in the thin film 4, the crack 5 propagates along a certain direction as shown in FIG. 3, and the first and second AE sensors 1 and 2 have the frequency-intensity distribution shown in FIG. A
The E waveform is measured. That is, as shown in FIG. 2, the AE waveform measured by the first AE sensor 1 and the volume waveform measured by the second AE sensor 2 have the same shape,
Maximum peak frequency f 1 and f 2 which acoustic intensity occurs of different and the frequency f 1 of the first AE sensor 1 due to the Doppler shift is higher than the frequency f 2 of the second AE sensor 2. The detection results obtained by the first and second AE sensors 1 and 2 are the preamplifiers 10 and 1 as the first and second electric signals.
It is input to the signal calculation unit 3 via 0.

【0011】次に、信号演算部3における周波数分析お
よび進行速度Vcの演算内容について説明する。亀裂進
行速度Vcはドップラーシフト効果に基づいて理論的に
下式により求められる。 Vc=Vw・{(1−f1/f2)/cosθ1+(f1
2)cosθ2} ここで、Vc:膜亀裂の進行速度 Vw:水の音速(一定) f1/f2:第1および第2のAEセンサによるピーク強
度における周波数の比 θ1,θ2:第1および第2のAEセンサの傾斜角度 以上により、定点Fを通過する瞬間における亀裂音を計
測し周波数−強度分布からピーク周波数f1,f2を求め
て前記理論式により演算装置12で所定の演算を行うこ
とにより進行速度Vcが求められる。
Next, the contents of the frequency analysis and the calculation of the traveling speed Vc in the signal calculation unit 3 will be described. The crack progress velocity Vc is theoretically obtained by the following equation based on the Doppler shift effect. Vc = Vw · {(1-f 1 / f 2 ) / cos θ 1 + (f 1 /
f 2 ) cos θ 2 } Here, Vc: moving speed of film crack Vw: sound velocity of water (constant) f 1 / f 2 : ratio of frequencies at peak intensity by the first and second AE sensors θ 1 , θ 2 : Inclination angle of the first and second AE sensors With the above, the crack sound at the moment of passing the fixed point F is measured, the peak frequencies f 1 and f 2 are obtained from the frequency-intensity distribution, and the arithmetic unit 12 is calculated by the theoretical formula. The traveling speed Vc is obtained by performing a predetermined calculation.

【0012】以上の説明において、第1および第2のA
Eセンサ1,2として超音波顕微鏡凹球面レンズを採用
したが、音の発生点の定点Fに指向する性質を有するも
のであれば以上のものに限定するものではない。
In the above description, the first and second A
An ultrasonic microscope concave spherical lens is adopted as the E sensors 1 and 2, but the present invention is not limited to the above as long as it has the property of directing to the fixed point F of the sound generation point.

【0013】[0013]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)定点Fの前後にAEセンサを配置し、ドップラーシ
フトを利用して亀裂音を測定する構造を採用するためピ
ーク周波数f1,f2を明確に求めることが出来る。これ
により、膜亀裂の進行速度Vcが正確に求められる。 2)信号演算部に第1および第2の電気信号が入力され
演算装置で理論式に基づいて自動的に亀裂進行速度が演
算されるため、薄膜の形状,材質に関係なく正確な進行
速度が自動的に、かつ瞬間的に求めることが出来る。こ
れにより、各種の薄膜の強度評価が多角的に行われる。 3)定点Fに対し指向性のある一対のAEセンサを定点
Fの前後に傾斜させて配置する比較的簡単な構造のもの
で容易に、かつ安価に実施出来る。 4)薄膜の強度評価のパラメータとしては亀裂の進行速
度は新規、かつ有用なものである。
According to the present invention, the following remarkable effects are obtained. 1) Since the AE sensors are arranged before and after the fixed point F and the structure for measuring the crack sound using the Doppler shift is adopted, the peak frequencies f 1 and f 2 can be clearly obtained. As a result, the speed Vc of progress of the film crack can be accurately obtained. 2) Since the first and second electric signals are input to the signal calculation unit and the crack progress speed is automatically calculated by the calculation device based on the theoretical formula, an accurate progress speed can be obtained regardless of the shape and material of the thin film. It can be calculated automatically and instantaneously. As a result, various thin film strength evaluations are performed. 3) A relatively simple structure in which a pair of AE sensors having directivity with respect to the fixed point F are arranged in front of and behind the fixed point F can be implemented easily and inexpensively. 4) The crack progress rate is a new and useful parameter for the strength evaluation of thin films.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体構造を示す構成図。FIG. 1 is a block diagram showing the overall structure of an embodiment of the present invention.

【図2】本実施例のAEセンサによって計測される音波
の周波数−強度分布の線図。
FIG. 2 is a diagram of frequency-intensity distribution of sound waves measured by the AE sensor of this embodiment.

【図3】本実施例の薄膜の亀裂進行状態を示す平面図。FIG. 3 is a plan view showing a crack progressing state of the thin film of this example.

【符号の説明】[Explanation of symbols]

1 第1のAEセンサ 2 第2のAEセンサ 3 信号演算部 4 薄膜 5 亀裂 6 遅延材 7 トランスデューサ 8 凹球面 9 水 10 プリアンプ 11 周波数分析装置 12 演算装置 1 1st AE sensor 2 2nd AE sensor 3 Signal calculation part 4 Thin film 5 Crack 6 Delay material 7 Transducer 8 Concave spherical surface 9 Water 10 Preamplifier 11 Frequency analysis device 12 Calculation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対のAEセンサと信号演算器とを備
え、所定の進行方向に沿って与えられた定点を通過する
膜亀裂の進行速度を測定する装置であって、一方のAE
センサは、前記進行方向に沿って斜前方から前記定点を
指向し、膜亀裂が該定点を通過する際に正のドップラー
シフトを伴って発生するAE波を検出して第1の電気信
号を出力し、他方のAEセンサは、前記進行方向に沿っ
て斜後方から前記定点を指向し、膜亀裂が該定点を通過
する際に負のドップラーシフトを伴って発生するAE波
を検出して第2の電気信号を出力するものからなり、前
記信号演算器は、前記第1及び第2の電気信号を処理
し、正負のドップラーシフトと対応した周波数変化に基
づいて膜亀裂の進行速度を演算することを特徴とする膜
亀裂速度測定装置。
1. An apparatus comprising a pair of AE sensors and a signal calculator, for measuring a moving speed of a film crack passing through a given fixed point along a predetermined moving direction, wherein one AE is used.
The sensor directs the fixed point obliquely forward along the traveling direction, detects an AE wave generated with a positive Doppler shift when the film crack passes through the fixed point, and outputs a first electric signal. The other AE sensor points the fixed point from obliquely rearward along the traveling direction and detects the AE wave generated with a negative Doppler shift when the film crack passes through the fixed point. The signal calculator processes the first and second electric signals, and calculates the progress speed of the film crack based on the frequency change corresponding to the positive and negative Doppler shifts. A film crack velocity measuring device characterized by.
JP6056436A 1994-03-28 1994-03-28 Cracking developing rate measuring apparatus for film Pending JPH07260651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6056436A JPH07260651A (en) 1994-03-28 1994-03-28 Cracking developing rate measuring apparatus for film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6056436A JPH07260651A (en) 1994-03-28 1994-03-28 Cracking developing rate measuring apparatus for film

Publications (1)

Publication Number Publication Date
JPH07260651A true JPH07260651A (en) 1995-10-13

Family

ID=13027043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6056436A Pending JPH07260651A (en) 1994-03-28 1994-03-28 Cracking developing rate measuring apparatus for film

Country Status (1)

Country Link
JP (1) JPH07260651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066016A (en) * 2001-08-23 2003-03-05 Toshiba Corp Measuring method for depth of defect in structure
CN110018063A (en) * 2019-04-22 2019-07-16 西南交通大学 Sample test method and device for material deformation analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066016A (en) * 2001-08-23 2003-03-05 Toshiba Corp Measuring method for depth of defect in structure
CN110018063A (en) * 2019-04-22 2019-07-16 西南交通大学 Sample test method and device for material deformation analysis

Similar Documents

Publication Publication Date Title
EP0400770A2 (en) Measuring the strength of a material within a moving web
EP0053034B1 (en) Method of determining stress distribution in a solid body
Wilcox et al. Long range Lamb wave inspection: the effect of dispersion and modal selectivity
JPH07260651A (en) Cracking developing rate measuring apparatus for film
JP4700475B2 (en) Elastic constant measuring device, elastic constant measuring method, program, and computer-readable storage medium
US5847281A (en) System for measuring ultrasonically the elastic properties of a moving paper web
JPH09504105A (en) Strength determination of sheet material by ultrasonic test
JP2000241397A (en) Method and apparatus for detecting surface defect
JPS60125513A (en) Device for measuring plate thickness from above coated film by ultrasonic wave
JPH10300565A (en) Method and device for measuring surface wave sound velocity
JP2007309850A5 (en)
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
JPH09243745A (en) Doppler speed meter
JP3079912B2 (en) Metal material inspection equipment
JPH09229734A (en) Ultrasonic doppler flowmeter
JP4617540B2 (en) Ultrasonic characteristic measuring method, acoustic anisotropy measuring method, and acoustic anisotropy measuring apparatus
JP2000193674A (en) Bevel type ultrasonic sensor, ultrasonic flow velocity measuring device using the same and flow velocity measuring method
JPS59122944A (en) Probe and ultrasonic wave flaw detecting method
JPS5965253A (en) Generation of surface wave to metal object
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPS61256255A (en) Ultrasonic flaw detection apparatus
JP2000266732A (en) Ultrasonic flaw detection method and flaw detection device for steel pipe
JP2005351753A (en) Method and instrument for measuring concentration of ice water by ultrasonic wave
JP2000234946A (en) Pulse-doppler-type ultrasonic current meter and ultrasonic flowmeter