JPH09229734A - Ultrasonic doppler flowmeter - Google Patents

Ultrasonic doppler flowmeter

Info

Publication number
JPH09229734A
JPH09229734A JP8039243A JP3924396A JPH09229734A JP H09229734 A JPH09229734 A JP H09229734A JP 8039243 A JP8039243 A JP 8039243A JP 3924396 A JP3924396 A JP 3924396A JP H09229734 A JPH09229734 A JP H09229734A
Authority
JP
Japan
Prior art keywords
frequency
signal
peak
flow
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8039243A
Other languages
Japanese (ja)
Inventor
Yukihisa Shikita
幸久 敷田
Yutaka Yoshida
豊 吉田
Akihiro Okumura
彰啓 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP8039243A priority Critical patent/JPH09229734A/en
Publication of JPH09229734A publication Critical patent/JPH09229734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform flow measurement even if a water level sensor does not exist. SOLUTION: An ultrasonic beam of a constant frequency is transmitted from a transmission element 4 provided at the center of the bottom part of a pipe passage with a wave angle in the direction of flow. An emission wave is received with a receiving element 5, and the frequency of Doppler shift is obtained in a heterodyne detection part 14. A signal except for noise is passed with a band pass filter 15. After AD conversion is performed with an AD converter, a frequency spectrum of the Doppler shift frequency is found with a high speed Fourier conversion part 17. The frequency of a peak is found in a peak detection part 18, and average flow velocity and flow are calculated in a flow operation part on the basis of the frequency. The flow of fluid naturally flowing down in the pipe passage is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超音波ドップラー効
果を利用した流量計に係わり、特に開水路に好適な超音
波ドップラー流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter utilizing the ultrasonic Doppler effect, and more particularly to an ultrasonic Doppler flow meter suitable for an open channel.

【0002】[0002]

【従来の技術】超音波ドップラー方式の流体速度測定方
法およびその装置として、特開平5−87608号公報
に開示されたものがある。
2. Description of the Related Art As an ultrasonic Doppler type fluid velocity measuring method and its apparatus, there is one disclosed in Japanese Unexamined Patent Publication No. 5-87608.

【0003】このものは、信号発生器において発生され
た特定周波数の電気信号を発信用トランスデューサを介
して流路内を流れる流体に発信し、流体中の物体から発
射される反射波を受信用トランスデューサで受信し、発
信用トランスデューサから発信された発信信号の周波数
と受信用トランスデューサで受信された受信信号の周波
数との差信号に基づいて前記流体の速度を測定するドッ
プラーシフトを利用した流体速度測定方法において、発
信用トランスデューサおよび受信用トランスデューサを
互いに近接した状態で流路の底部に設けると共に、前記
差信号を、一定の周波数幅をもった所定の周波数帯でス
キャンすることにより各周波数帯の強度を求めた後、加
重平均法を適用することにより前記流体の平均流速を求
めると共に、前記特定周波数の電気信号を90°位相し
て得られる90°移相信号の周波数と前記受信信号の周
波数との差信号を前記差信号と比較することにより前記
流体の流れる方向を検出するようにしている。
This is a transducer for transmitting an electric signal of a specific frequency generated by a signal generator to a fluid flowing in a flow path through a transmitting transducer and receiving a reflected wave emitted from an object in the fluid. And a fluid velocity measuring method using Doppler shift for measuring the velocity of the fluid based on a difference signal between the frequency of the transmission signal transmitted from the transmission transducer and the frequency of the reception signal received by the reception transducer. In the above, the transmitting transducer and the receiving transducer are provided in the bottom portion of the flow path in a state of being close to each other, and the difference signal is scanned in a predetermined frequency band having a constant frequency width to determine the intensity of each frequency band. After obtaining the average velocity of the fluid by applying the weighted average method, A direction in which the fluid flows is detected by comparing a difference signal between the frequency of the 90 ° phase shift signal obtained by phase-shifting an electric signal of a constant frequency by 90 ° and the frequency of the reception signal with the difference signal. There is.

【0004】また、この公報では、上記流体速度測定装
置を水位センサと組み合わせることにより、流体の流量
を測定できることを示唆している。また、開水路の流れ
に対する平均流速を求める式として、中小河川や、水路
に対し、かなり良く一致する次のマニング(Manni
ng)の式がよく使用されている。
This publication also suggests that the fluid flow rate can be measured by combining the fluid velocity measuring device with a water level sensor. In addition, the following Manning (Manni), which agrees fairly well with small and medium rivers and canals, is used as an equation for calculating the average flow velocity with respect to the flow of open canals.
The formula of ng) is often used.

【0005】 V=(1/n)R2/3 ・I 1/2 ・・・(1) V:平均流速(m/s)。 R:径深(m)、水流断面積A/潤辺長Pで定義され
る。ただし潤辺長は、水流に接している水路壁の長さを
いう。
V = (1 / n) R 2/3 · I 1/2 (1) V: Average flow velocity (m / s). R: Diameter (m), defined by water flow cross-sectional area A / water-side length P. However, the wet side length refers to the length of the waterway wall in contact with the water flow.

【0006】I:水面勾配。 n:マニングの粗度係数。 このマニングの式を用いた平均流速公式法では、水面勾
配と水流の断面形状を実測し、上式を利用して平均流速
を求め、さらに流量を算出することができる(日刊工業
新聞社、昭和54年発行、流量計測ハンドブック、40
7頁)。
I: Water surface gradient. n: Manning's roughness coefficient. In the average velocity formula method using this Manning's formula, the water surface gradient and the cross-sectional shape of the water flow are measured, the average velocity is calculated using the above formula, and the flow rate can be calculated (Nikkan Kogyo Shimbun, Showa). Issued in 1954, Flow Measurement Handbook, 40
7).

【0007】[0007]

【発明が解決しようとする課題】前記従来の技術のう
ち、前者は掃引同調形の周波数スペクトル分析を用いて
いるため、過渡応答を求められないという問題点があっ
た。
Among the above-mentioned conventional techniques, the former has a problem that a transient response cannot be obtained because it uses a sweep tuning type frequency spectrum analysis.

【0008】また、流量を求めるには、水位センサを必
要とし、構造が複雑になるという問題点もあった。前記
従来の技術のうち、後者は、水流の断面形状を実測する
に当り、やはり水位センサに相当するセンサを要し、こ
の点では前者と同様の問題点があった。
Further, there is a problem that a water level sensor is required to obtain the flow rate and the structure becomes complicated. Of the above-mentioned conventional techniques, the latter also requires a sensor corresponding to the water level sensor when actually measuring the cross-sectional shape of the water flow, and there is a problem similar to the former in this respect.

【0009】そこで、本発明はこれらの問題点を解消で
きる超音波ドップラー流量計を提供することを目的とす
る。
Therefore, an object of the present invention is to provide an ultrasonic Doppler flowmeter capable of solving these problems.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の超音波ドップラー流量計は、開水路の底
面中央部に流体の流れ方向に対して一定の仰角で超音波
信号を送信する送信素子(4)と、該送信素子(4)に
隣接してほぼ同じ方向に向けて配設され、流体中の固体
粒子又は気泡等からの超音波の反射信号を受信して電気
信号に変換する受信素子(5)と、送信素子(4)に連
続して高周波信号を供給する送信回路部(9)と、前記
送信素子(4)の送信信号の周波数と受信素子(5)の
受信信号の周波数の差の周波数をとるヘテロダイン検波
部(14)と、該ヘテロダイン検波部(14)で得た差
信号をデジタル信号に変換するADコンバーター(1
6)と、その信号を周波数スペクトルに変換する高速フ
ーリエ変換部(17)と、該高速フーリエ変換部(1
7)で得た周波数スペクトルのピーク山の周波数を求め
るピーク山検出部(18)と、該ピーク山検出部(1
8)で求めたピーク山の周波数に基づいて流量を演算す
る流量演算部(19)とを有する受信演算部(12)と
を具備したことを特徴とするものである。
In order to achieve the above-mentioned object, the ultrasonic Doppler flowmeter according to claim 1 transmits an ultrasonic signal at a constant elevation angle to the fluid flow direction at the center of the bottom surface of the open channel. The transmitting element (4) for transmitting and the transmitting element (4) are arranged adjacent to the transmitting element (4) in substantially the same direction and receive the reflected signal of ultrasonic waves from solid particles or bubbles in the fluid and receive an electric signal. Of the receiving element (5) for converting into the transmitting element (4), the transmitting circuit section (9) for continuously supplying a high frequency signal to the transmitting element (4), the frequency of the transmitting signal of the transmitting element (4) and the receiving element (5). A heterodyne detection unit (14) that takes the frequency difference of the received signals, and an AD converter (1 that converts the difference signal obtained by the heterodyne detection unit (14) into a digital signal.
6), a fast Fourier transform unit (17) for converting the signal into a frequency spectrum, and the fast Fourier transform unit (1)
The peak crest detection unit (18) for obtaining the frequency of the peak crest of the frequency spectrum obtained in 7), and the peak crest detection unit (1)
And a reception calculation unit (12) having a flow rate calculation unit (19) for calculating the flow rate based on the peak mountain frequency obtained in 8).

【0011】そして、請求項2の発明は、請求項1の超
音波ドップラー流量計において、受信信号をヘテロダイ
ン検波する際、混合する信号を送信信号より一定だけ高
い周波数又は低い周波数でヘテロダイン検波を行い、高
速フーリエ変換部で得た周波数スペクトルのピーク山を
検出することによって、受信信号の周波数が送信信号の
周波数より大きいか小さいかにより流体の流れの方向を
判別することを特徴とするものである。
According to the invention of claim 2, in the ultrasonic Doppler flowmeter according to claim 1, when heterodyne detection of a received signal is performed, heterodyne detection of a mixed signal is performed at a frequency higher or lower than a transmission signal by a certain amount. By detecting the peak crest of the frequency spectrum obtained by the fast Fourier transform unit, the direction of the fluid flow is determined by whether the frequency of the received signal is higher or lower than the frequency of the transmitted signal. .

【0012】[0012]

【発明の実施の形態】次に、図面に従って、本発明の好
ましい実施の形態を説明する。図2〜図4において、1
は内径が1.8mで、勾配が1/1000の管路で、下
水が非満水状態で図2の矢印で示すように、右から左方
に向かって自然流下している。
BEST MODE FOR CARRYING OUT THE INVENTION Next, preferred embodiments of the present invention will be described with reference to the drawings. 2 to 4, 1
Is a pipeline with an inner diameter of 1.8 m and a gradient of 1/1000, and the sewage naturally flows down from the right to the left as shown by the arrow in FIG.

【0013】2は流体、3は超音波センサ部で管路1の
底面中央部に装着され、その傾斜部には流体2の流れ方
向に対して一定の仰角θで超音波信号を送信するPZT
からなる送信素子4と、該送信素子4に隣接してほぼ同
じ方向に向けて配設され、流体中の固体粒子又は気泡等
からなる物体6からの超音波の反射信号を受信して電気
信号に変換する受信素子5とを有している。
Reference numeral 2 is a fluid, and 3 is an ultrasonic sensor portion which is attached to the central portion of the bottom surface of the pipe line 1, and the PZT which transmits an ultrasonic signal to the inclined portion at a constant elevation angle θ with respect to the flow direction of the fluid 2.
And a transmission element 4 formed of the same and arranged in the same direction adjacent to the transmission element 4 to receive an ultrasonic reflection signal from an object 6 formed of solid particles or bubbles in a fluid and receive an electric signal. It has a receiving element 5 for converting into.

【0014】超音波センサ部3は図5に示すように、半
円状に曲げた金属板7の中心に取付けられ、金属板7を
図2〜4の管路2の内壁面に沿わせて、両端を図示され
てないボルトで管路2に固定することで装着されてい
る。
As shown in FIG. 5, the ultrasonic sensor unit 3 is attached to the center of a metal plate 7 bent in a semicircular shape, and the metal plate 7 is placed along the inner wall surface of the conduit 2 of FIGS. , Both ends are fixed to the conduit 2 with bolts (not shown).

【0015】送信素子4と受信素子5は、何れも直径1
5mmのPZTからなる振動子で、互いに横に22mm
離して取付けられ、仰角θは30°、両素子の指向性は
半値角が2°である。図2で符号8で示すのは送信素子
4の指向性の軸線である。
Each of the transmitting element 4 and the receiving element 5 has a diameter of 1
Transducer made of 5 mm PZT, 22 mm beside each other
Mounted separately, the elevation angle θ is 30 °, and the directivity of both elements has a half-value angle of 2 °. Reference numeral 8 in FIG. 2 denotes an axis of directivity of the transmitting element 4.

【0016】図1は信号処理回路のブロック図で、9は
送信回路部で、2MHzの高周波発振器10と、該高周
波発振器10からの高周波信号を増幅して送信素子4を
連続的に励振する増幅器11とからなる。
FIG. 1 is a block diagram of a signal processing circuit. Reference numeral 9 denotes a transmission circuit section, and a high frequency oscillator 10 of 2 MHz and an amplifier for amplifying a high frequency signal from the high frequency oscillator 10 to continuously excite a transmission element 4. It consists of 11.

【0017】12は受信演算部で、受信素子5の受信信
号を1000倍に増幅する増幅器13と、該増幅器13
の出力と発振器10の信号を混合して受信信号の周波数
と送信信号の周波数(2MHz)の差の周波数(Δf)
をとるヘテロダイン検波部14と、ヘテロダイン検波部
14の出力に含まれている送信信号の直接の回り込みや
商用電源ノイズ及び高周波のノイズを除くための流速測
定に悪影響が出ない帯域幅の200Hz〜3kHzを通
過させるバンドパスフィルタ15と、該バンドパスフィ
ルタ15の出力をディジタル信号に変換するA−D変換
器16と、該A−D変換器16でディジタル信号に変換
された差信号の周波数スペクトルを得る高速フーリエ変
換(以降FFTともいう)部17と、該FFT部17で
得た周波数スペクトルのピーク山の周波数を求めるピー
ク山検出部18と、該ピーク山検出部18で求めたピー
ク山の周波数に基づいて流量を演算する流量演算部19
とからなる。
Reference numeral 12 denotes a reception calculation section, which is an amplifier 13 for amplifying the reception signal of the reception element 5 by a factor of 1000, and the amplifier 13.
Frequency (Δf) of the difference between the frequency of the received signal and the frequency of the transmitted signal (2 MHz)
200 Hz to 3 kHz of a bandwidth that does not adversely affect the flow velocity measurement for removing the direct sneak of the transmission signal included in the output of the heterodyne detection unit 14 and the commercial power supply noise and the high frequency noise. A band-pass filter 15 that passes the signal, an A-D converter 16 that converts the output of the band-pass filter 15 into a digital signal, and a frequency spectrum of the difference signal that is converted into a digital signal by the A-D converter 16. A fast Fourier transform (hereinafter also referred to as FFT) unit 17 to obtain, a peak crest detection unit 18 that obtains a frequency of a peak crest of the frequency spectrum obtained by the FFT unit 17, and a frequency of the peak crest obtained by the peak crest detection unit 18. Flow rate calculation unit 19 for calculating the flow rate based on
Consists of

【0018】20は流量演算部19で求めた流量を積算
して積算流量(体積)を表示する積算表示部である。送
信素子4は2MHz−15Wの高周波電力で励振され
て、半値角2°の超音波ビームを仰角30°で送信す
る。水中に送信された2MHzの超音波は水中の固体粒
子や気泡6に当たって反射し、受信素子5で受信されて
電気信号に変換される。受信信号は送信信号の周波数2
MHzからΔfだけドップラーシフトした周波数になっ
ている。
Reference numeral 20 denotes an integrated display unit for integrating the flow rates calculated by the flow rate calculation unit 19 and displaying the integrated flow rate (volume). The transmitting element 4 is excited by a high frequency power of 2 MHz-15 W and transmits an ultrasonic beam having a half value angle of 2 ° at an elevation angle of 30 °. The 2 MHz ultrasonic wave transmitted into the water hits the solid particles and bubbles 6 in the water, is reflected, is received by the receiving element 5, and is converted into an electric signal. Received signal is frequency 2 of transmitted signal
The frequency is Doppler-shifted by Δf from MHz.

【0019】一般的に、送信信号の周波数がf0 、仰角
がθ、流体(水)の流速をV、水中の音速をCとする
と、ドップラーシフトΔfは、 |Δf|=(V/C)・2f0 cosθ ・・・(2) であらわされ、流速Vに比例する。
Generally, assuming that the frequency of the transmission signal is f 0 , the elevation angle is θ, the flow velocity of the fluid (water) is V, and the sound velocity in water is C, the Doppler shift Δf is | Δf | = (V / C) 2f 0 cos θ (2), which is proportional to the flow velocity V.

【0020】なお、超音波の発射方向が流れと逆になっ
ている図1の場合には、受信信号の周波数は送信信号の
周波数より高い方向にシフトし、超音波の発射方向が流
れの方向になっているときは、受信信号の周波数は送信
信号の周波数より低い方向にシフトする。
In the case of FIG. 1 in which the ultrasonic wave emitting direction is opposite to the flow direction, the frequency of the received signal is shifted to a direction higher than the frequency of the transmitted signal, and the ultrasonic wave emitting direction is the flow direction. , The frequency of the received signal shifts in the direction lower than the frequency of the transmitted signal.

【0021】送信信号と受信信号はヘテロダイン検波部
14で混合されて、両信号のビートをとり、差信号を得
る。つまりドップラーシフトした周波数のみの信号が取
り出される。送信素子4からの超音波ビームは、流れに
対して一定の仰角θで発射されるので、水位が変化して
も常に流路の底面から水面までに浮遊する固体粒子や気
泡6に照射されている。粒子や気泡はそれぞれの水深の
流速に乗っているので、各深さの粒子や気泡からの反射
波はそれぞれの流速に対応したドップラーシフトを生じ
ている。
The transmission signal and the reception signal are mixed in the heterodyne detection section 14 to obtain beats of both signals and obtain a difference signal. That is, only the frequency-shifted signals are extracted. Since the ultrasonic beam from the transmitting element 4 is emitted at a constant elevation angle θ with respect to the flow, even if the water level changes, the solid particles and bubbles 6 floating from the bottom surface of the channel to the water surface are always irradiated. There is. Since the particles and bubbles are on the flow velocity at each water depth, the reflected waves from the particles and bubbles at each depth generate a Doppler shift corresponding to each flow velocity.

【0022】つまり、水深の深いところは流速が遅く小
さなドップラーシフトの近くからの反射波となり、水深
の浅いところは流速が速く大きなドップラーシフトの遠
くからの反射波となる。
That is, a deep water depth is a reflected wave near the small Doppler shift with a slow flow velocity, and a shallow water depth is a reflected wave from a long distance with a fast flow velocity and a large Doppler shift.

【0023】送信信号は連続して発射されているので、
受信素子5には水深の違う各点からの反射波が合成して
受信される。送信素子4と受信素子5はわずかに離れて
設置されているので、遠くの反射波は指向性の強い軸の
部分で、近くの反射波は指向性の弱い指向性の軸から離
れた部分で受信することになる。
Since the transmitted signal is continuously emitted,
The reception element 5 receives the combined reflected waves from the different water depths. Since the transmitting element 4 and the receiving element 5 are installed slightly apart from each other, the far reflected wave is a portion of the axis having a strong directivity, and the nearby reflected wave is a portion apart from the axis of the weak directivity. You will receive it.

【0024】また、送信のビームは遠くで指向角分開
き、反射面積が増大するが、超音波はその分減衰するの
で、反射波の距離に対する強度は一定になるか穏やかに
減少する程度になる。水中での吸収による超音波の減衰
はあまりない。
Further, the transmitted beam is widened by the directional angle at a distance and the reflection area increases, but the ultrasonic wave is attenuated by that amount, so that the intensity of the reflected wave with respect to the distance becomes constant or gently decreases. . There is not much attenuation of ultrasonic waves due to absorption in water.

【0025】ところで、図2〜4の管路で、自然流下す
る流体の水位を色々変えて開水路の真ん中、即ち図4に
おけるY軸上の水深と流速の関係を実測した各水深にお
ける流速の分布を図6に示す。図6で、横軸は水深を%
で示す。
By the way, in the conduits of FIGS. 2 to 4, the water level of the fluid that naturally flows down is variously changed, and the relationship between the water depth on the Y axis in FIG. The distribution is shown in FIG. In Fig. 6, the horizontal axis is water depth
Indicated by

【0026】また、図6で折線イ、ロ、ハ、ニ、ホ、ヘ
は、それぞれ水位が22.5〜23.5cm、23.8
〜24.0cm、25〜26.3cm、33.5〜3
6.5cm、40〜42.5cm、45.5〜47.5
cmで順に水位が大きくなっていて、水位に応じて流速
も順に速くなっている。流速は水深(%)の違いであま
り変わらず、また水位が変わってもそのプロフィール
(輪郭)は相似形をしていた。
Further, in FIG. 6, the water levels of the broken lines a, b, c, d, e, and f are 22.5 to 23.5 cm and 23.8, respectively.
~ 24.0 cm, 25-26.3 cm, 33.5-3
6.5 cm, 40-42.5 cm, 45.5-47.5
The water level increases in order of cm, and the flow velocity also increases in accordance with the water level. The flow velocity did not change much depending on the water depth (%), and even if the water level changed, the profile (contour) was similar.

【0027】図6のように、開水路における水深ごとの
流速が、深さ方向で変化が少なく、水位の変化に対して
相似形である場合について、図1のFFT部17で得た
周波数スペクトルを図7〜9に示す。
As shown in FIG. 6, the frequency spectrum obtained by the FFT section 17 of FIG. 1 in the case where the flow velocity at each water depth in the open channel has little change in the depth direction and has a similar shape to the change of the water level. Are shown in FIGS.

【0028】図7〜9は、それぞれ水位が26.3c
m、35.3cm及び46.5cmで、図6の折線ハ、
ニ及びヘにほぼ対応する条件での周波数スペクトルで、
横軸は差信号の周波数Δf(Hz)、縦軸は差信号の振
幅である。
7-9, the water level is 26.3c, respectively.
m, 35.3 cm and 46.5 cm, and the broken line c in FIG.
In the frequency spectrum under the conditions corresponding to D and F,
The horizontal axis represents the frequency Δf (Hz) of the difference signal, and the vertical axis represents the amplitude of the difference signal.

【0029】また、図7〜9はそれぞれ、20回のデー
タを記憶させて平均化したもので、更に平滑なカーブを
得るには、より多くの回数のデータを平均化すれば良い
が、流量計の応答速度が低下する不利がある。
Further, FIGS. 7 to 9 each store 20 times of data and average them. To obtain a smoother curve, it is sufficient to average more times of data. There is a disadvantage that the response speed of the meter decreases.

【0030】図7〜9で、各周波数スペクトルには、周
波数の比較的高いところでピーク山を生じている。この
ピーク山の周波数は図7では1.5kHz、図8では
1.92kHz、図9では2.3kHzである。このよ
うにドップラーシフトΔfの周波数スペクトルで最大流
速付近でピーク山を生じるのは、図6で説明したよう
に、管路2の中心(Y軸)付近の流速が深さ方向ではあ
まり変化せず、水位の変化に対して相似形であるからで
ある。
7 to 9, each frequency spectrum has a peak peak at a relatively high frequency. The frequency of this peak is 1.5 kHz in FIG. 7, 1.92 kHz in FIG. 8, and 2.3 kHz in FIG. As described with reference to FIG. 6, the peak of the frequency spectrum of the Doppler shift Δf near the maximum flow velocity does not change much in the depth direction of the flow velocity near the center (Y axis) of the conduit 2. , Because it is similar to changes in water level.

【0031】流路の流速分布が、これらの条件を満足し
ない場合は、ドップラーシフトの周波数スペクトルにピ
ーク山が生じないため、本発明のようにピーク山の周波
数に基づいて流速・流量を計測することはできない。
If the flow velocity distribution in the flow path does not satisfy these conditions, peak peaks do not occur in the frequency spectrum of the Doppler shift, so that the flow velocity / flow rate is measured based on the frequency of peak peaks as in the present invention. It is not possible.

【0032】図7〜9の周波数スペクトルのピーク山の
周波数を図1のピーク山検出部で求め、このピーク山の
周波数を前記数式(2)を変形した下記数式(3)のΔ
fに代入して流速Vを求めることができる。
The peak peak frequencies of the frequency spectra of FIGS. 7 to 9 are obtained by the peak peak detection section of FIG. 1, and the peak peak frequency is expressed by Δ in the following expression (3) obtained by modifying the expression (2).
The flow velocity V can be obtained by substituting for f.

【0033】 V=C・Δf/(2f0 cosθ) ・・・(3) このようにして、図7〜9の周波数スペクトルのピーク
山の周波数から数式(3)を用いて算出した各流速Vを
図10の点P1 、P2 及びP3 に示す。図10で折線又
は点P1 、P2 及びP3 を結んだものである。
V = C · Δf / (2f 0 cos θ) (3) In this way, each flow velocity V calculated from the frequency of the peak peak of the frequency spectrum of FIGS. Are shown at points P 1 , P 2 and P 3 in FIG. In FIG. 10, the broken line or points P 1 , P 2 and P 3 are connected.

【0034】なお、図10で、曲線ト、チは、図2〜4
に示す断面円形の管路で、数式(1)のマニングの式か
ら求めた開水路の水位と平均流速Vとの関係を示す曲線
で、流路(管路)の条件として、内径1.8m、水面勾
配は図2〜4の場合と同じ1/1000としている。そ
して、曲線トは粗度係数nが0.015、曲線チは粗度
係数nが0.013である。
In FIG. 10, the curves G and C are shown in FIGS.
In the pipe having a circular cross section shown in Fig. 4, a curve showing the relationship between the water level of the open water channel and the average flow velocity V obtained from the Manning's equation of the mathematical formula (1), and the inner diameter of 1.8 m as the condition of the flow channel (pipe). The water surface gradient is 1/1000, which is the same as in FIGS. The curve G has a roughness coefficient n of 0.015, and the curve J has a roughness coefficient n of 0.013.

【0035】図2〜4の管路2の粗度係数はこの程度と
考えられるので、図10から、点P 1 、P2 、P3 は、
マニングの式で求めた平均流速Vに良く対応しているこ
とが判る。つまり、ドップラーシフトの周波数スペクト
ルのピーク山の周波数が流路の平均流速に対応している
と言える。
The roughness coefficient of the conduit 2 shown in FIGS.
Since it is considered, from FIG. 1, PTwo, PThreeIs
It corresponds well to the average flow velocity V calculated by Manning's formula.
I understand. That is, the frequency spectrum of the Doppler shift
The frequency of the peak of Le corresponds to the average flow velocity in the channel
It can be said.

【0036】従って、周波数スペクトルのピーク山の周
波数に基づいて平均流速を、また、開水路の断面形状寸
法、勾配、壁面の粗度係数などが既知であれば、平均流
速の公式(数式)(1)から水位が一つに定まり、流量
を求めることができる。こうして流量を求める演算は、
図1の流量演算部19で行う。
Therefore, if the average flow velocity is known on the basis of the frequency of the peak of the frequency spectrum, and if the cross-sectional shape dimension of the open channel, the slope, the roughness coefficient of the wall surface, etc. are known, the formula (expression) of the average flow velocity (mathematical formula) ( The water level can be determined from 1) and the flow rate can be calculated. In this way, the calculation to obtain the flow rate is
This is performed by the flow rate calculation unit 19 in FIG.

【0037】なお、本発明では、送信素子4からの超音
波ビームは流速分布の中心に底面から水面までにわたっ
て伝播する構造になっていることが重要なポイントであ
る。超音波ビームは送信素子から出た後、伝播中に広が
っていくため、厳密に管路の底面中央に設ける必要はな
いが、側壁の近くや側壁に設置すると平均流速を検出す
ることは期待できないため好ましくない。
In the present invention, it is an important point that the ultrasonic beam from the transmitting element 4 has a structure that propagates from the bottom surface to the water surface at the center of the flow velocity distribution. Since the ultrasonic beam spreads during propagation after exiting from the transmitting element, it is not necessary to strictly install it in the center of the bottom of the pipeline, but if it is installed near or on the side wall, it is not possible to detect the average flow velocity. Therefore, it is not preferable.

【0038】また本発明で、流体の流れ方向を検知する
には、ヘテロダイン検波を行う基準周波数を送信周波数
より一定だけ高くか又は低くする。液体の流速にもよる
が3〜5kHz程度が良い。
Further, in the present invention, in order to detect the flow direction of the fluid, the reference frequency for performing the heterodyne detection is set higher or lower than the transmission frequency by a certain amount. Although it depends on the flow velocity of the liquid, about 3 to 5 kHz is preferable.

【0039】ヘテロダイン検波で送信波f0 に対して、
受信波f′0 が±Δfの時、ビート信号は低くf′(0)
−f(0)= Δfとなって、周波数の大小は判明できない
が基準信号をf1 だけにすると、ビート信号はf′(0)
−(f(0) −f1 )=±Δf+f1 となって、このピー
ク山を検出し流れ方向を判別する(図12参照)。
With respect to the transmission wave f 0 by the heterodyne detection,
'When 0 is ± Delta] f, the beat signal is low f' received wave f (0)
-F (0) = Δf, the magnitude of the frequency cannot be determined, but if the reference signal is f 1 only, the beat signal is f ′ (0)
− (F (0) −f 1 ) = ± Δf + f 1 and the peak direction is detected to determine the flow direction (see FIG. 12).

【0040】次に平均流速検出と、流れ方向検出を交互
に行う場合の動作を説明する。 [ステップ1]コントローラ21は始めに、ヘテロダイ
ン検波部14にf0 を送る様に命ずる。又ピーク山検出
部18の出力は流量演算部19へ出力されている。 [ステップ2]高周波発振器10はf0 を発振する。 [ステップ3]増幅器11はf0 を電力増幅してf0
電力を送信子を振動させ、超音波を液中に送出する。 [ステップ4]増幅器13は連続的な反射波f′0 を増
幅する。 [ステップ5]ヘテロダイン検波部14は、f′0 の受
信信号と送信の周波数f 0 の基準信号を混合、増幅して f′0 −f0 =Δf のドップラーシフト信号のみを取り出す。
Next, the average flow velocity detection and the flow direction detection are alternately performed.
The operation when the above is performed will be described. [Step 1] First, the controller 21 starts the heterodie
F to the detector 140Order to send. Peak peak detection
The output of the section 18 is output to the flow rate calculation section 19. [Step 2] The high frequency oscillator 10 is f0Oscillates. [Step 3] The amplifier 11 f0Power to f0of
Electric power vibrates the transmitter to send ultrasonic waves into the liquid. [Step 4] The amplifier 13 causes the continuous reflected wave f '.0Increase
Width. [Step 5] The heterodyne detection unit 14 uses f '.0Receiving
Frequency f of signal and transmission 0F'is mixed and amplified by the reference signal of0−f0Only the Doppler shift signal of = Δf is taken out.

【0041】(注1)このΔfはf′0 がf0 より大き
くても、f0 より小さくても、交流の特性上区別はつけ
られない。 (注2)f′0 からΔf(数kHz)に変換する理由
は、ドップラーシフトを高速フーリエ変換する場合、数
MHzの信号から数100〜数kHzのFFTを行うに
は、その周波数分のデジタルデータ、即ち、200Hz
〜2MHzでは、1万点以上のデータが必要になり、と
ても計算が対応できないこと、又、高速のADコンバー
ターが必要となるが、とても追従できないことによる。
[0041] (Note 1) Even if the Δf is larger f '0 is higher than f 0, be less than f 0, characteristic on the distinction of the alternating current is not attached. (Note 2) The reason for converting from f ′ 0 to Δf (several kHz) is that, when performing Doppler shift fast Fourier transform, in order to perform FFT of several 100 to several kHz from a signal of several MHz, a digital signal of that frequency is used. Data, ie 200Hz
At ~ 2MHz, more than 10,000 points of data are required, which is very difficult to calculate, and a high-speed AD converter is required, but it is very difficult to follow.

【0042】即ち、FFTを行う為、データの周波数を
下げて、信号処理をやりやすくする為である。 [ステップ6]バンドパスフィルタ15は、ドップラー
シフト信号Δfが、0Hz近くで含んでいるノイズを抑
制する。 [ステップ7]A−D変換器16は、これまでアナログ
信号であったΔfをデジタルの各ポイントの電圧信号に
変換する。 [ステップ8]FFT部17では、デジタルデータを一
定の数、例えば0.1msec間隔で2048点記録
し、これを高速フーリエ変換する。高速フーリエ変換で
は、この時最高周波数は0.1msecの2倍即ち5k
Hzまでの分析ができる(図11参照)。高速フーリエ
変換が一回では、スペクトル分布がでこぼこするので、
数10回くり返し、平均化するのが良い。 [ステップ9]ピーク山検出部18では、FFT信号
(平均化された)の各ポイントを比較してピーク山の周
波数の信号を送り出す。 [ステップ10]流量演算部19は、ピーク山の周波数
が判明するとこのデータと流路の要素から平均流速を算
出し、流量を計算する。
That is, since the FFT is performed, the frequency of the data is lowered to facilitate the signal processing. [Step 6] The bandpass filter 15 suppresses noise included in the Doppler shift signal Δf near 0 Hz. [Step 7] The AD converter 16 converts Δf which has been an analog signal up to now into a digital voltage signal at each point. [Step 8] The FFT unit 17 records a fixed number of digital data, for example, 2048 points at intervals of 0.1 msec, and fast Fourier transforms the digital data. In the fast Fourier transform, the maximum frequency at this time is twice 0.1 msec, that is, 5 k.
Analysis up to Hz is possible (see FIG. 11). Since the spectrum distribution will be uneven after one fast Fourier transform,
It is good to repeat several times and average. [Step 9] The peak crest detector 18 compares each point of the FFT signal (averaged) and sends out the signal of the frequency of the peak crest. [Step 10] When the frequency of the peak is found, the flow rate calculation unit 19 calculates the average flow rate from this data and the flow path element to calculate the flow rate.

【0043】平均流速は、前記(3)式、V=C・Δf
/(2fO cosθ)で求められる。次に、流れ方向の
判定の場合。 [ステップ11]コントローラー21は、ヘテロダイン
検出部14へ、例えばf 0 −3kHzの基準波を送る様
に基準信号部22を駆動させる。 [ステップ12]高周波発振器10は、前と同じくf0
を発振している。 [ステップ13]送信回路11も、前と同じくf0 を送
出する。 [ステップ14]受信増幅部13も、前と同じくf′0
を増幅する。 [ステップ15]ヘテロダイン検波部14では、f′0
と(f0 −3kHz)のヘテロダイン検波が行われ、流
れが順方向では3kHz+Δfの信号が得られ、逆方向
では3kHz−Δfの信号が得られる。 [ステップ16]バンドパスフィルタ15も、前と同じ
くノイズを抑制する。 [ステップ17]A−D変換器16も、前と同じく変換
する。 [ステップ18]FFT部17は、3kHz+Δfを高
速フーリエ変換して、周波数スペクトルの表示をさせる
と周波数スペクトルは、図12の様に3kHzを区切り
に上流側にピーク山が出る場合と、3kHzより下流側
にピーク山が出る場合がある。 [ステップ19]ピーク山検出部18は前と同じ。 [ステップ20]流れ方向検出部23では、ピーク山検
出を上記ステップ9と同様に行うが、それは正確にピー
ク山を求める必要はなく、図12のように3kHz以上
に山があるか否かと言った程度で、流れ方向を判明させ
る。
The average flow velocity is calculated by the equation (3), V = C · Δf
/ (2fO cos θ). Then in the flow direction
In case of judgment. [Step 11] Controller 21 is heterodyne
To the detection unit 14, for example, f 0Sending a reference wave of -3 kHz
Then, the reference signal section 22 is driven. [Step 12] The high frequency oscillator 10 has the same frequency f as before.0
Is oscillating. [Step 13] The transmission circuit 11 is also f0Send
Put out. [Step 14] The reception amplifying unit 13 is also f ′ as before.0
To amplify. [Step 15] In the heterodyne detector 14, f '0
And (f0-3 kHz) heterodyne detection
In the forward direction, a signal of 3 kHz + Δf is obtained, and in the reverse direction
Gives a signal of 3 kHz-Δf. [Step 16] The bandpass filter 15 is also the same as before.
Suppress noise. [Step 17] The A / D converter 16 is also converted as before.
I do. [Step 18] The FFT unit 17 raises 3 kHz + Δf.
Fast Fourier transform to display the frequency spectrum
The frequency spectrum is divided into 3 kHz as shown in Fig. 12.
When peak peak appears on the upstream side, and on the downstream side from 3 kHz
There may be peak mountains at. [Step 19] The peak crest detector 18 is the same as before. [Step 20] In the flow direction detection unit 23, the peak mountain inspection is performed.
Same as step 9 above, but exactly
It is not necessary to find the peak, 3kHz or more as shown in Figure 12.
To determine the flow direction by just saying whether there is a mountain in
You.

【0044】こうして、3kHzより大か否かを判定し
て、流れ方向の表示を流れ方向表示部24で行う。 [ステップ21]流量表示部20では、流量積算が必要
な場合は流れ方向により、瞬間流量の積算、減算を行う
か又は逆方向の積算停止を行う。
In this way, it is determined whether the frequency is higher than 3 kHz and the flow direction is displayed on the flow direction display section 24. [Step 21] When it is necessary to integrate the flow rate, the flow rate display unit 20 integrates or subtracts the instantaneous flow rate or stops the integration in the opposite direction depending on the flow direction.

【0045】次に、ステップ1に戻る。ステップ1〜1
0を数10回くり返し、平均化された値を求め、流れ方
向の検出は、その間に1回程度で良い。
Then, the process returns to step 1. Steps 1 to 1
0 is repeated several tens of times to obtain an averaged value, and the detection of the flow direction may be performed about once during that time.

【0046】以上、この流れ方向の検出は、ヘテロダイ
ン検波、FFT処理において、ヘテロダインの基準周波
数を数kHz変えるだけで行えるという、極めて簡単な
方法である。
As described above, the detection of the flow direction is a very simple method that can be performed in the heterodyne detection and FFT processing by only changing the reference frequency of the heterodyne by several kHz.

【0047】[0047]

【発明の効果】本発明の超音波ドップラー流量計は上述
のように構成されているので、水位センサを用いること
なく、ドップラーシフトに基づいて流量を計測でき、ま
た流れの方向も判別できるので、排水路の逆流など緊急
事態の発見に好都合である。
Since the ultrasonic Doppler flow meter of the present invention is configured as described above, the flow rate can be measured based on the Doppler shift without using the water level sensor, and the flow direction can be determined. It is convenient for finding emergencies such as reverse drainage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】本発明の実施形態の管路の縦断面正面図であ
る。
FIG. 2 is a vertical cross-sectional front view of the conduit according to the embodiment of the present invention.

【図3】本発明の実施形態の管路の縦断面平面図であ
る。
FIG. 3 is a vertical cross-sectional plan view of the pipeline according to the embodiment of the present invention.

【図4】本発明の実施形態の管路の横断面図である。FIG. 4 is a cross-sectional view of a conduit according to an embodiment of the present invention.

【図5】本発明の実施形態の速度センサまわりの斜視図
である。
FIG. 5 is a perspective view around a speed sensor according to the embodiment of the present invention.

【図6】図2〜4の管路の水深と流速の関係を示す線図
である。
FIG. 6 is a diagram showing the relationship between the water depth and the flow velocity of the pipelines of FIGS.

【図7】本発明の実施形態における差信号の周波数スペ
クトルである。
FIG. 7 is a frequency spectrum of the difference signal according to the embodiment of the present invention.

【図8】本発明の実施形態における差信号の周波数スペ
クトルである。
FIG. 8 is a frequency spectrum of the difference signal according to the embodiment of the present invention.

【図9】本発明の実施形態における差信号の周波数スペ
クトルである。
FIG. 9 is a frequency spectrum of the difference signal according to the embodiment of the present invention.

【図10】水位と平均流速の関係を示す線図である。FIG. 10 is a diagram showing the relationship between water level and average flow velocity.

【図11】周波数スペクトルを示す説明図である。FIG. 11 is an explanatory diagram showing a frequency spectrum.

【図12】周波数スペクトルを示す説明図である。FIG. 12 is an explanatory diagram showing a frequency spectrum.

【符号の説明】[Explanation of symbols]

1 管路(流路) 3 速度センサ 4 送信素子 5 受信素子 9 送信回路部 12 受信演算部 14 ヘテロダイン検波部 17 高速フーリエ変換部 18 ピーク山検出部 19 流量演算部 1 Pipeline (Flow Path) 3 Speed Sensor 4 Transmitting Element 5 Receiving Element 9 Transmitting Circuit Section 12 Reception Computing Section 14 Heterodyne Detection Section 17 Fast Fourier Transform Section 18 Peak Mountain Detection Section 19 Flow Rate Calculation Section

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年9月11日[Submission date] September 11, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】このものは、信号発生器において発生され
た特定周波数の電気信号を発信用トランスデューサを介
して流路内を流れる流体に発信し、流体中の物体から発
射される反射波を受信用トランスデューサで受信し、発
信用トランスデューサから発信された発信信号の周波数
と受信用トランスデューサで受信された受信信号の周波
数との差信号に基づいて前記流体の速度を測定するドッ
プラーシフトを利用した流体速度測定方法において、発
信用トランスデューサおよび受信用トランスデューサを
互いに近接した状態で流路の底部に設けると共に、前記
差信号を、一定の周波数幅をもった所定の周波数帯でス
キャンすることにより各周波数帯の強度を求めた後、加
重平均法を適用することにより前記流体の平均流速を求
めると共に、前記特定周波数の電気信号を90°相し
て得られる90°移相信号の周波数と前記受信信号の周
波数との差信号を前記差信号と比較することにより前記
流体の流れる方向を検出するようにしている。
This is a transducer for transmitting an electric signal of a specific frequency generated by a signal generator to a fluid flowing in a flow path through a transmitting transducer and receiving a reflected wave emitted from an object in the fluid. And a fluid velocity measuring method using Doppler shift for measuring the velocity of the fluid based on a difference signal between the frequency of the transmission signal transmitted from the transmission transducer and the frequency of the reception signal received by the reception transducer. In the above, the transmitting transducer and the receiving transducer are provided in the bottom portion of the flow path in a state of being close to each other, and the difference signal is scanned in a predetermined frequency band having a constant frequency width to determine the intensity of each frequency band. After obtaining the average velocity of the fluid by applying the weighted average method, The electric signal of a constant frequency so as to detect the direction of flow of the fluid by a difference signal between the frequency of the received signal and the frequency of the 90 ° phase signal obtained by 90 ° phase shift compared with said difference signal ing.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】送信素子4と受信素子5は、何れも直径1
5mmのPZTからなる振動子で、互いに横に22mm
離して取付けられ、仰角θは30°、両素子の指向性は
半値角が2°である。図2で符号8で示すのは送信素子
4の音源の中心軸である。
Each of the transmitting element 4 and the receiving element 5 has a diameter of 1
Transducer made of 5 mm PZT, 22 mm beside each other
Mounted separately, the elevation angle θ is 30 °, and the directivity of both elements has a half-value angle of 2 °. In FIG. 2, reference numeral 8 indicates the central axis of the sound source of the transmitting element 4.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】12は受信演算部で、受信素子5の受信信
号を1000倍に増幅する増幅器13と、該増幅器13
の出力と発振器10の信号を混合してローパスフィルタ
ーを通し、受信信号の周波数と送信信号の周波数(2M
Hz)の差の周波数(Δf)をとるヘテロダイン検波部
14と、ヘテロダイン検波部14の出力に含まれている
送信信号の直接の回り込みや商用電源ノイズ及び高周波
のノイズを除くための流速測定に悪影響が出ない帯域幅
の200Hz〜3kHzを通過させるバンドパスフィル
タ15と、該バンドパスフィルタ15の出力をディジタ
ル信号に変換するA−D変換器16と、該A−D変換器
16でディジタル信号に変換された差信号の周波数スペ
クトルを得る高速フーリエ変換(以降FFTともいう)
部17と、該FFT部17で得た周波数スペクトルのピ
ーク山の周波数を求めるピーク山検出部18と、該ピー
ク山検出部18で求めたピーク山の周波数に基づいて流
量を演算する流量演算部19とからなる。
Reference numeral 12 denotes a reception calculation section, which is an amplifier 13 for amplifying the reception signal of the reception element 5 by a factor of 1000, and the amplifier 13.
Low pass filter by mixing the output of
The frequency of the received signal and the frequency of the transmitted signal (2M
The heterodyne detection unit 14 that takes the frequency (Δf) of the difference of Hz) and the flow velocity measurement for eliminating the direct wraparound of the transmission signal included in the output of the heterodyne detection unit 14 and commercial power supply noise and high frequency noise are adversely affected. Bandpass filter 15 that allows passage of 200 Hz to 3 kHz having a bandwidth that does not appear, an AD converter 16 that converts the output of the bandpass filter 15 into a digital signal, and an AD converter 16 that converts the output to a digital signal. Fast Fourier transform (hereinafter also referred to as FFT) to obtain the frequency spectrum of the transformed difference signal
Section 17, a peak crest detection section 18 for obtaining the frequency of peak crests of the frequency spectrum obtained by the FFT section 17, and a flow rate calculation section for computing a flow rate based on the frequency of the peak crests obtained by the peak crest detection section 18. It consists of 19 and.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】送信信号と受信信号はヘテロダイン検波部
14で混合されて、両信号のビートをとり、ローパスフ
ィルターを通して差信号を得る。つまりドップラーシフ
トした周波数のみの信号が取り出される。なお、このロ
ーパスフィルターは、すぐ後段に200Hz〜3Kzの
バンドパスフィルターを設けているので、省略すること
もできる。送信素子4からの超音波ビームは、流れに対
して一定の仰角θで発射されるので、水位が変化しても
常に流路の底面から水面までに浮遊する固体粒子や気泡
6に照射されている。粒子や気泡はそれぞれの水深の流
速に乗っているので、各深さの粒子や気泡からの反射波
はそれぞれの流速に対応したドップラーシフトを生じて
いる。
The transmission signal and the reception signal are mixed in the heterodyne detection section 14 to obtain the beats of both signals, and the low pass
Obtain the difference signal through the filter . That is, only the frequency-shifted signals are extracted. In addition, this
-The pass filter is 200Hz ~ 3Kz immediately after
Since a bandpass filter is provided, omit it.
Can also. Since the ultrasonic beam from the transmitting element 4 is emitted at a constant elevation angle θ with respect to the flow, even if the water level changes, the solid particles and bubbles 6 floating from the bottom surface of the channel to the water surface are always irradiated. There is. Since the particles and bubbles are on the flow velocity at each water depth, the reflected waves from the particles and bubbles at each depth generate a Doppler shift corresponding to each flow velocity.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】送信信号は連続して発射されているので、
受信素子5には水深の違う各点からの反射波が合成して
受信される。送信素子4と受信素子5はわずかに離れて
設置されているので、遠くの反射波は指向性の強い中心
軸の方向の信号を、近くの反射波は指向性の弱い中心軸
から離れた方向からの信号を受信する。つまり、受信の
指向性により、遠くの反射波は強く受信され、近くの反
射波は弱く受信されることになる。
Since the transmitted signal is continuously emitted,
The reception element 5 receives the combined reflected waves from the different water depths. Since the transmitting element 4 and the receiving element 5 are installed slightly apart, the reflected wave in the distance is a center with a strong directivity.
The signal in the direction of the axis, the reflected wave near is the central axis with weak directivity
Receives signals from directions away from. That is, the reception
Due to the directivity, reflected waves in the distance are strongly received, and
The waves will be received weakly.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】また、送信のビームは遠くで指向角分開
き、反射面積が増大するが、超音波はその分減衰するの
で、受信信号の反射物の距離に対する強度は一定になる
か穏やかに減少する程度になる。水中での吸収による超
音波の減衰はあまりない。
Further, although the transmitted beam is widened by the directivity angle at a distance and the reflection area is increased, the ultrasonic wave is attenuated by that amount, so that the intensity of the received signal with respect to the distance of the reflecting object is constant or gently decreases. It will be about. There is not much attenuation of ultrasonic waves due to absorption in water.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Correction target item name] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0040】次に平均流速検出と、流れ方向検出を交互
に行う場合の動作を説明する。 〔ステップ1〕コントローラ21は始めに、ヘテロダイ
ン検波部14にf0 を送る様に命ずる。又ピーク山検出
部18の出力は流量演算部19へ出力されている。 〔ステップ2〕高周波発振器10はf0 を発振する。 〔ステップ3〕増幅器11はf0 を電力増幅してf0
電力を送信子を振動させ、超音波を液中に送出する。 〔ステップ4〕増幅器13は連続的な反射波f′0 を増
幅する。 〔ステップ5〕ヘテロダイン検波部14は、f′0 の受
信信号と送信の周波数f 0 の基準信号を混合し、ローパ
スフィルターを通して f′0 −f0 =Δf のドップラーシフト信号のみを取り出す。
Next, the average flow velocity detection and the flow direction detection are alternately performed.
The operation when the above is performed will be described. [Step 1] First, the controller 21 starts the heterodie
F to the detector 140Order to send. Peak peak detection
The output of the section 18 is output to the flow rate calculation section 19. [Step 2] The high frequency oscillator 10 is f0Oscillates. [Step 3] The amplifier 11 f0Power to f0of
Electric power vibrates the transmitter to send ultrasonic waves into the liquid. [Step 4] The amplifier 13 causes the continuous reflected wave f '.0Increase
Width. [Step 5] The heterodyne detection unit 14 uses f '.0Receiving
Frequency f of signal and transmission 0Mix reference signalsAnd roper
Through the filter f ′0−f0Only the Doppler shift signal of = Δf is taken out.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 開水路の底面中央部に流体の流れ方向に
対して一定の仰角で超音波信号を送信する送信素子
(4)と、該送信素子(4)に隣接してほぼ同じ方向に
向けて配設され、流体中の固体粒子又は気泡等からの超
音波の反射信号を受信して電気信号に変換する受信素子
(5)と、 送信素子(4)に連続して高周波信号を供給する送信回
路部(9)と、 前記送信素子(4)の送信信号の周波数と受信素子
(5)の受信信号の周波数の差の周波数をとるヘテロダ
イン検波部(14)と、該ヘテロダイン検波部(14)
で得た差信号をデジタル信号に変換するADコンバータ
ー(16)と、その信号を周波数スペクトルに変換する
高速フーリエ変換部(17)と、該高速フーリエ変換部
(17)で得た周波数スペクトルのピーク山の周波数を
求めるピーク山検出部(18)と、該ピーク山検出部
(18)で求めたピーク山の周波数に基づいて流量を演
算する流量演算部(19)とを有する受信演算部(1
2)とを具備したことを特徴とする超音波ドップラー流
量計。
1. A transmission element (4) for transmitting an ultrasonic signal to a central portion of a bottom surface of an open water channel at a constant elevation angle with respect to a fluid flow direction, and adjacent to the transmission element (4) in substantially the same direction. High frequency signals are continuously supplied to the receiving element (5), which is arranged toward the receiving element (5) for receiving the reflected signal of ultrasonic waves from solid particles or bubbles in the fluid and converting it into an electric signal, and the transmitting element (4). A transmission circuit section (9), a heterodyne detection section (14) for taking a frequency of a difference between a transmission signal frequency of the transmission element (4) and a reception signal frequency of the reception element (5), and the heterodyne detection section ( 14)
AD converter (16) for converting the difference signal obtained in 1. into a digital signal, a fast Fourier transform unit (17) for converting the signal into a frequency spectrum, and a peak of the frequency spectrum obtained by the fast Fourier transform unit (17) A reception calculation section (1) having a peak crest detection section (18) for calculating a crest frequency and a flow rate calculation section (19) for calculating a flow rate based on the peak crest frequency calculated by the peak crest detection section (18).
2) An ultrasonic Doppler flowmeter, comprising:
【請求項2】 受信信号をヘテロダイン検波する際、混
合する信号を送信信号より一定だけ高い周波数又は低い
周波数でヘテロダイン検波を行い、高速フーリエ変換部
で得た周波数スペクトルのピーク山を検出することによ
って、受信信号の周波数が送信信号の周波数より大きい
か小さいかにより流体の流れの方向を判別することを特
徴とする請求項1記載の超音波ドップラー流量計。
2. When heterodyne detection of a received signal is performed, heterodyne detection is performed on a mixed signal at a frequency higher or lower than the transmission signal by a certain amount, and peak peaks of a frequency spectrum obtained by the fast Fourier transform unit are detected. The ultrasonic Doppler flowmeter according to claim 1, wherein the direction of the fluid flow is determined by whether the frequency of the reception signal is higher or lower than the frequency of the transmission signal.
JP8039243A 1996-02-27 1996-02-27 Ultrasonic doppler flowmeter Pending JPH09229734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8039243A JPH09229734A (en) 1996-02-27 1996-02-27 Ultrasonic doppler flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8039243A JPH09229734A (en) 1996-02-27 1996-02-27 Ultrasonic doppler flowmeter

Publications (1)

Publication Number Publication Date
JPH09229734A true JPH09229734A (en) 1997-09-05

Family

ID=12547699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8039243A Pending JPH09229734A (en) 1996-02-27 1996-02-27 Ultrasonic doppler flowmeter

Country Status (1)

Country Link
JP (1) JPH09229734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099732A1 (en) * 2003-05-06 2004-11-18 Keio University Ultrasonic flow-velocity distribution meter/flowmeter, method of ultrasonically measuring flow velocity distribution/flowrate, program for ultrasonically measuring flow velocity distribution/flowrate
EP2075552A2 (en) 2007-12-29 2009-07-01 Brother Kogyo Kabushiki Kaisha Ink flow velocity detector
KR101217888B1 (en) * 2012-04-24 2013-01-02 권종호 Ultrasonic correlation flowmeter using 16 scan layers digital pattern and floating apparatus having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099732A1 (en) * 2003-05-06 2004-11-18 Keio University Ultrasonic flow-velocity distribution meter/flowmeter, method of ultrasonically measuring flow velocity distribution/flowrate, program for ultrasonically measuring flow velocity distribution/flowrate
CN100405022C (en) * 2003-05-06 2008-07-23 学校法人庆应义塾 Ultrasonic flow-velocity distribution meter/flowmeter, method of ultrasonically measuring flow velocity distribution/flowrate, program for ultrasonically measuring flow velocity distribution/flowrate
US7409300B2 (en) 2003-05-06 2008-08-05 Keio University Ultrasonic flow-velocity distribution meter/flowmeter, method of ultrasonically measuring flow velocity distribution/flowrate, program for ultrasonically measuring flow velocity distribution/flowrate
EP2075552A2 (en) 2007-12-29 2009-07-01 Brother Kogyo Kabushiki Kaisha Ink flow velocity detector
US7633603B2 (en) 2007-12-29 2009-12-15 Brother Kogyo Kabushiki Kaisha Flow velocity detector and ink-jet printer
KR101217888B1 (en) * 2012-04-24 2013-01-02 권종호 Ultrasonic correlation flowmeter using 16 scan layers digital pattern and floating apparatus having the same

Similar Documents

Publication Publication Date Title
TW577978B (en) Doppler-type ultrasonic flowmeter
JP2003526101A (en) Method and apparatus for simultaneously measuring the flow rate and concentration of a multiphase liquid / gas mixture
JP3016511B1 (en) Ultrasonic flow velocity measuring method and device
US7806003B2 (en) Doppler type ultrasonic flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JPH09229734A (en) Ultrasonic doppler flowmeter
JPH039405B2 (en)
JPS6246812B2 (en)
JP3215847B2 (en) Flow velocity measurement method
JP3752340B2 (en) Ultrasonic Doppler flow velocity / flow meter
JPH073350B2 (en) Fluid velocity measuring method and device
JP2853508B2 (en) Gas flow meter
JP2685590B2 (en) Ultrasound transceiver
JPH0862007A (en) Ultrasonic doppler flowmeter
JP2723291B2 (en) Ultrasonic sensor
JPH01134213A (en) Flowmeter
JP3425667B2 (en) Flow velocity measuring device
JPS6018767A (en) Ultrasonic flowmeter
RU2169350C2 (en) Process measuring and controlling parameters of flow of liquid or gas in vessel with elastic walls
JPH07260651A (en) Cracking developing rate measuring apparatus for film
JP2000234946A (en) Pulse-doppler-type ultrasonic current meter and ultrasonic flowmeter
KR20010026502A (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
JP2005351753A (en) Method and instrument for measuring concentration of ice water by ultrasonic wave
JPS6326731Y2 (en)
JP3036800B2 (en) Vortex flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109