JP3752340B2 - Ultrasonic Doppler flow velocity / flow meter - Google Patents

Ultrasonic Doppler flow velocity / flow meter Download PDF

Info

Publication number
JP3752340B2
JP3752340B2 JP02466297A JP2466297A JP3752340B2 JP 3752340 B2 JP3752340 B2 JP 3752340B2 JP 02466297 A JP02466297 A JP 02466297A JP 2466297 A JP2466297 A JP 2466297A JP 3752340 B2 JP3752340 B2 JP 3752340B2
Authority
JP
Japan
Prior art keywords
frequency
peak
fft
signal
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02466297A
Other languages
Japanese (ja)
Other versions
JPH10221141A (en
Inventor
裕晃 福岡
能章 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP02466297A priority Critical patent/JP3752340B2/en
Publication of JPH10221141A publication Critical patent/JPH10221141A/en
Application granted granted Critical
Publication of JP3752340B2 publication Critical patent/JP3752340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は超音波ドップラー効果を利用して流体の流速や流量を計測する流速・流量計に係わり、特に開水路に好適な超音波流速・流量計に関する。
【0002】
【従来の技術】
超音波ドップラー方式の流体速度測定方法およびその装置として、特公平7−3350号の従来技術が公知である。以下これを第1の従来技術と言う。
【0003】
このものは、信号発生器において発生された特定周波数の電気信号を発信用トランスデューサ(発信子)を介して流路内を流れる流体に発信し、流体中の物体から発射される反射波を受信用トランスデューサ(受信子)で受信し、発信用トランスデューサから発信信号の周波数と受信用トランスデューサで受信された受信信号の周波数との差信号(シフト信号)に基づいて前記流体の速度を測定するドップラーシフトを利用した流体速度測定法において、発信用トランスデューサおよび受信用トランスデューサを互いに近接した状態で流路の底部に設けると共に、前記差信号を、一定の周波数幅をもった所定の周波数帯でスキャンすることにより各周波数帯の強度を求めた後、加重平均法を適用することにより前記流体の平均流速を求めると共に、前記特定周波数の電気信号を90°移相して得られる90°移相信号の周波数と前記受信信号の周波数との差信号を前記差信号と比較することにより前記流体の流れる方向を検出するようにしている。
【0004】
また、この第1の従来技術では、上記流体速度測定装置を水位センサと組み合わせることにより、流体の流量を測定できることを示唆している。
この第1の従来技術では、流量を求めるには水位センサを必要とし、構造が複雑になる。そこで本願出願人は、水位センサを要しない超音波ドップラー流量計を特願平8−39243号で提案した。以下これを第2の従来技術と言う。
【0005】
この第2の従来技術の超音波ドップラー流量計は、開水路の底面中央部に流体の流れ方向に対して一定の仰角θで超音波信号を送信する送信素子と、該送信素子に隣接してほぼ同じ方向に向けて配設され、流体中の固体粒子又は気泡等からの超音波の反射信号を受信して電気信号に変換する受信素子と、送信素子に連続して高周波信号を供給する送信回路部と、前記送信素子の送信信号の周波数と受信素子の受信信号の周波数の差の周波数をとるヘテロダイン検波部と、該ヘテロダイン検波部で得た差信号をデジタル信号に変換するADコンバーターと、その信号を周波数スペクトルに変換する高速フーリエ変換部(FFT部)と、該高速フーリエ変換部で得た周波数スペクトルのピーク山の周波数を求めるピーク山検出部と、該ピーク山検出部で求めたピーク山の周波数に基づいて流量を演算する流量演算部とを有する受信演算部とを備えたものである。
【0006】
そして、この第2の従来技術では、受信信号をヘテロダイン検波する際、混合する信号を送信信号より一定だけ高い周波数又は低い周波数でヘテロダイン検波を行い、高速フーリエ変換部で得た周波数スペクトルのピーク山を検出することによって、受信信号の周波数が送信信号の周波数より大きいか小さいかにより流体の流れの方向を判別するようにしている。
【0007】
送信信号の周波数をf0 、仰角をθ、流体の流速をV、流体中の音速をCとすると、ドップラーシフトΔfは、
|Δf|=(V/C)・2f0 cosθ ・・・(1)
であらわされ、流速Vに比例する。
【0008】
周波数スペクトルのピーク山の周波数をピーク山検出部で求め、このピーク山の周波数を数式(1)を変形した下記数式(2)のΔfに代入して流速Vを求める。
【0009】
V=C・Δf/(2f0 cosθ) ・・・(2)
こうして求めた流速Vが、いわゆるマニングの式で求めた流路の平均流速Vに良く対応していることから、開水路の断面形状寸法、水面勾配、壁面の粗度係数などが既知であれば、平均流速に関するマニングの式から水位が一つに定まり、流量を求められる。こうして流量を求める演算は、流量演算部で行っている。
【0010】
マニング(Manning)の式は、開水路に対する平均流速を求める式として、中小河川や水路に対し、かなり良く一致するものとしてよく使用されている次の数式(3)として周知である(日刊工業新聞社、昭和54年発行、流量計測ハンドブック、407頁)。
【0011】
V=(1/n)R2/3 /I 1/2 ・・・(3)
V:平均流速(m/s)。
R:径深(m)、水流断面積A/潤辺長Pで定義される。ただし潤辺長は、水流に接している水路壁の長さを言う。
【0012】
I:水面勾配。
n:マニングの粗度係数。
なお、第2の従来技術では、周波数スペクトルのピーク山の検出は、周波数スペクトルの低周波域から最大周波数までの各点数におけるパワー値を1つずつ比較して、単に最大パワー値をもつ点の周波数をピーク山の周波数として求めていた。
【0013】
【発明が解決しようとする課題】
出願人は、第2の従来技術を提案した後、更に研究を進めた結果、次のような問題点を見出した。
【0014】
流れによるドップラー移周波数Δfは、流路による流れの分布の乱れとか、泡やごみからの反射が離散的であることなどから、FFTで得られた結果を単純に加算平均するだけでは、突発的なパワー値を持つ周波数が発生して、図4に示すように周波数スペクトルの分布がなめらかな曲線ではない。そのためにドップラー変移周波数のピーク山を判定しにくく、流速や流量を測定するのに誤動作を生じるという問題点があった。
【0015】
また、下水排水路のように多量のごみや泥が含まれている場合は、送信子、受信子などの超音波振動子の前面にごみや泥が堆積したり、高濃度のものが超音波振動子の近くをゆっくり移動するため、近くからの反射波は強く、遠くからの受信波は強度が相当に低下して受信される。従って、図5に点線で示すように、本来の全体の流体からの反射波によるピーク山fD が、同図に実線で示すように、流速の低い信号P(f0 )より小さな値fD ′になり、ピーク山検出が低い方になってしまい、本来のピーク山fD を正しく検出できなくて、流速や流量測定に誤動作を生じることがあるという問題点があった。
【0016】
このことは、超音波振動子の前面に付着堆積したごみを除去すると直ちに誤動作がなくなって正常な動作に回復するという現象が確認されていることからも明らかである。
【0017】
また、前記第2の従来技術において、開水路又は非満管路では、ドップラー移(ドップラーシフト)のパワースペクトルのピーク周波数(ピーク山の周波数)は、実測データでは最大流速の周波数より20〜25%低い値、即ちほぼ平均流速に対応する値になっているが、水位が非常に低くなった場合には、流れによって生じる表面波によるドップラーシフトが発生し、これは、本来の平均流速を示すピーク山fD よりも低速側に発生し、その周波数fwは零から平均流速のピーク山fD の間で不定であり、パワーのピーク値も平均流速のピーク山fD のピーク値(ピークパワー値)を越えることがある。
【0018】
その為、表面波のパワースペクトルのピーク山fwを平均流速のピーク山fD として検出してしまうという誤動作をおこすことがあるという問題点もあった(図6参照)。
【0019】
従来は、受信信号の周波数の移(シフト)をFFT変換して得られたスペクトルを低周波域から高周波域に向けて単純に検索し、最大パワー値をもつ周波数をもって流速に換算するものであったため、上述のように正確な流速を計測できないと言う問題点が発生していた。
【0020】
そこで、本発明はかかる問題点を解消できる超音波ドップラー流速・流量計を提供することを目的とする。
【0021】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、
液体が流れる水路(1)と、該水路(1)の底面、中央またはごみや泥を避けるために底面、中央より側面方向に寄ったところに設置された超音波の送信子と受信子とからなるセンサ(2)と、送信子に高周波を供給する駆動回路(3)と、受信信号の増幅部(4)と、受信信号と送信信号を検波する検波回路(5)と、受信信号と送信信号の差信号としての偏移周波数信号を取り出すフィルタ部(6)と、偏移周波数信号をスペクトル変換するスペクトル変換部としてのFFT部(7)と、FFT部(7)で得たスペクトルから流速換算する演算部(8)と、必要に応じて設けられる測定結果の表示部(9)とを具備し、
FFT部(7)でフーリエ変換した結果を単純加算平均したスペクトルのパワー値をfft(N)とする周波数fnのある点Nの前後に幅MnをもってN−MnからN+Mnの間で周波数のパワーの平均値Mean・fft(N)を取り、その点Nの元来のパワー値fft(N)に置き換え、
【0022】
Nを零と最大値Nmaxとの間で同様にして平均値に置き換えて移動平均すると共に、こうして移動平均したスペクトルのピーク山に基づいて流速換算する超音波流速・流量計において、
ピーク山の検出のための比較を周波数の最大値Nmaxより始め、第1のピーク山Np 1 を検出した後、パワー値Mean・fft(N)がピーク山Np 1 のパワー値Mean・fft(Np 1 )に対する比率で一定値以下になったところで比較を中止し、第1のピーク山Np 1 の周波数を流速に換算することを特徴とする超音波ドップラー流速・流量計である。
【0023】
この発明では、Nの零から最大値Nmaxまでのパワー値を平均値Mean・fft(N)に置き換えること(移動平均)により、変移周波数の分布を滑らかにして突発的なパワー値をもつ周波数を除去し、スペクトルのピークを容易に検出できるようにしている(図1(b)参照)。
【0025】
第2の従来技術では、スペクトルのパワーピーク値の検出はN=0の低周波域より始めてNmaxまで各点のパワー値を1つずつ比較し、単に最大パワー値をもつ点Npを探していたが、ごみ、泥、表面波によるスペクトルを誤って検出してしまっていた。
【0026】
水路内では流水より早く動くものが無いため、この請求項の発明では、ピークの検出動作をNmaxから始めて周波数が小さくなる方向に行い、第1のピークNp1 を検出したあと、パワー値Mean・fft(N)とMean・fft(Np1 )の比率が一定値以下になったところで比較を中止し、このときのピーク山Np1 を流速によるスペクトルのピーク山と判断してそのときの周波数fNP1 を流速に換算する(図1(c)参照)。
【0027】
こうすることで、表面波スペクトルのピークNp2 、ごみや泥によるスペクトルのピークNp3 等を誤って検出しないようにした。
なお、ピーク検出動作としての比較の中止を判定するための比率Mean・fft(N)/Mean・fft(Np1 )は測定場所の条件に応じて値を変えても良い。
【0028】
請求項の発明は、請求項の超音波ドップラー流速・流量計において、
前記一定値を1/4〜3/4の間に定めたことを特徴とするものである。
そして、請求項の発明は、
液体が流れる水路(1)と、該水路(1)の底面、中央またはごみや泥を避けるために底面、中央より側面方向に寄ったところに設置された超音波の送信子と受信子とからなるセンサ(2)と、送信子に高周波を供給する駆動回路(3)と、受信信号の増幅部(4)と、受信信号と送信信号を検波する検波回路(5)と、受信信号と送信信号の差信号としての移周波数信号を取り出すフィルタ部(6)と、移周波数信号をスペクトル変換するスペクトル変換部としてのFFT部(7)と、FFT部(7)で得たスペクトルから流速換算する演算部(8)と、必要に応じて設けられる測定結果の表示部(9)とを具備し、
FFT部(7)でフーリエ変換した結果を単純加算平均したスペクトルのパワー値をfft(N)とする周波数fnのある点Nの前後に幅MnをもってN−MnからN+Mnの間で周波数のパワーの平均値Mean・fft(N)を取り、その点Nの元来のパワー値fft(N)に置き換える。
【0029】
Nを零と最大値Nmaxとの間で同様にして平均値に置き換えて移動平均すると共に、こうして移動平均したスペクトルの分布曲線を微分または差分し、曲線が上に凸の変曲点のうち、Nが最大のNp1 を流速スペクトルのピーク山と判断して、該ピーク山の周波数を流速に換算することを特徴とする超音波ドップラー流速・流量計である。
【0030】
差分をNmaxとNmax−1より始めて、次々にN=1とN=0まで行うと図1(b)の実線の曲線から図2に示す微分曲線が得られる。すなわち、差分をNmaxより行い、始めてプラスから零をクロスする点Np1 を流速によるスペクトルのピーク山と判断してこのときの変移周波数ΔfNP1 を流速に換算する。
【0031】
こうすることで、表面波によるピーク山Np2 とか、ごみ、泥によるNp3 を誤って流速によるピーク山と認識することを避けるようにした。
請求項1〜の本願発明では、受信信号(ドップラー信号)の移周波数の周波数スペクトルから検出したピーク山の周波数を数式(2)のΔfに代入して、第2の従来技術の場合と同様に流速Vを求める。つまり流速Vに換算する。
【0032】
こうして求めた流速Vは平均流速に相当するので、これとマニングの式などの平均流速公式から水位が定まり、流量を求める。
なお、上記の説明は送信周波数と同じかまたは低い周波数でヘテロダイン検波を行った場合であり、高い周波数で行った場合は流速が大きくなれば偏移周波数は低くなり、ピーク周波数検出は低周波側から高周波側に向けて行うこととなり逆になる。
【0033】
【発明の実施の形態】
次に本発明の好ましい実施の形態を図面の実施例に基づいて説明する。
〔実施例1〕
図1(a)(b)(c)と図3に示す実施例1で、水路1を流れる液体中へセンサ2の超音波送信子から仰角θで超音波信号を送信する。センサ2には前記送信子に隣接してほぼ同じ方向を向けた受信子が配設され、液体中のごみや気泡などからの超音波の返射信号を受信して電気信号に変換する。駆動回路3は送信子に高周波を供給する。
【0034】
受信子の電気信号(受信信号)は増幅部4で増幅され、混合部11へ供給されて、前記駆動回路3からの送信信号と混合された後、検波回路5で検波され、更にフィルタ部6で受信信号と送信信号の差信号としての移周波数(ドップラーシフト周波数)信号を取り出す。
【0035】
FFT部(高速フーリエ変換部)7は前記移周波数信号を高速フーリエ変換してスペクトル変換する。この実施例ではフーリエ変換の結果出力されるデータのポイント数は1024であり、周波数範囲を5kHzとすると、周波数の分解能は4.88Hzとなる。
【0036】
1).スペクトルの移動平均
FFT部7で得たスペクトルのデータはMPUからなるCPUを備えた演算部8で流速換算されて、表示部9に測定結果が表示される。
【0037】
1回のFFTのスペクトル値は1/25されて演算部9の第1レジスタ(図3参照、以後第2,第3レジスタについても図3参照)に0から順にNmaxまで格納され、同様に次のFFT結果を1/25にして第1レジスタに加算し、これを25回まで行うと25回の単純加算平均となる。
【0038】
更に、第1レジスタのNx点の前後にそれぞれ20ポイントの幅Mnの間で平均を取り、第2レジスタのNx点に格納する。N=0からN=Nmaxまで順に同じ様な方法で平均(移動平均)をして行く。但し、N−Mn<0の場合は0〜N+Mnの間で、N+Mn>Nmaxの場合はN−Mn〜Nmaxの間で平均(移動平均)を行う(図1(b)参照)。
【0039】
なお、上記具体的にあげられた値、FFTのデータ数、その加算平均回数、移動平均の個数の組み合わせは、実際の測定場所の条件に応じて決められるものである。
【0040】
2).ピーク検出
次に演算部9で行うスペクトルのピーク検出(ピーク山の検出)は、ごみ、泥、表面波によるスペクトルピークが流速に基づく流速スペクトルピークよりも低周波域に発生するため、高周波域から行う。
【0041】
そのピーク検出方法は、図3の第2レジスタのNmaxとNmax−1の比較から始め、その大きい方のN0 とMean・fft(N0 )を第3レジスタに格納し、順にN=0に向かって第3レジスタのMean・fft(N0 )とMean・fft(Nx)を比較し、パワー値の大きい方を第3レジスタに書き替えて行く。
【0042】
このようにして得られた最初の大きなパワー値Mean・fft(Np1 )がそれ以後のNxとの比較を行う中でMean・fft(Nx)が例えば2倍されてもMean・fft(Np1 )よりも小さくなったとき、即ち、
Mean・fft(Nx)<(1/2)Mean・fft(Np1
となったとき、Mean・fft(Np1 )をスペクトルの最高周波数側にある極大値と見做し、点Np1 における移周波数ΔfNP1 を流速スペクトルのピーク周波数とする(図1(c)参照)。
【0043】
そして、ΔfNP1 を流速に換算し、流量を演算する。
なお、上記ピーク検出を中止するときの比率
Mean・fft(Nx)/Mean・fft(Np1
の値は、実際の測定場所の条件に応じて1/4〜3/4の間で変化させる。
【0044】
〔実施例2〕
差分をNmaxとNmax−1から始めて、次々にN=1とN=0まで行うと図1(b)の実線の曲線から図2に示す微分曲線が得られる。
【0045】
そこで、差分をNmaxから行い、始めてプラスから零をクロスする点Np1を流速スペクトルのピークと見做して、このときの変移周波数ΔfNP1 を流速スペクトルのピーク周波数とする。
【0046】
そしてΔfNP1 を流速に換算し、流量を演算する。
こうすることで、表面波によるピーク山Np2 とか、ごみ、泥によるNp3 を誤って流速によるピーク山と認識することを避ける。
【0047】
【発明の効果】
本発明は上述のように構成されているので、FFTによって得られたスペクトルを移動平均して滑らかな周波数分布曲線にすることで、水路の流速分布の乱れや泡によって生じる突発的なパワー値をもつ周波数のデータを除去して、正確な平均流速を求めることができる。
【0048】
また、FFT結果を単純に加算平均する場合に比較して、移動平均を行うことで短時間に周波数分布曲線を滑らかにでき、計測時間を減らすことができる。
に、水路の表面波によるスペクトルピークを検出しないようにして、表面波による誤動作を防止し、平均流速を正確に求められ、計測精度が向上する。そのうえ、センサの前面に下水路では避けて通ることのできないごみや泥が堆積しても、短期間のうちに計測が中断する虞れがなく、長期間安定に測定ができ、その面からも流速・流量計の信頼性が向上する。
【図面の簡単な説明】
【図1】本発明の実施例で、(a)はブロック図、(b)はFFTデータのパワー値を示す図、(c)は流速スペクトルのピークを検出する方法を説明するための周波数分布曲線である。
【図2】図1(c)の周波数分布曲線を差分した微分曲線である。
【図3】図1の演算部8に含まれるレジスタを示す図である。
【図4】従来技術のFFT結果のパワー値を示す図である。
【図5】超音波振動子の前面に付着したごみや泥による周波数分布曲線の変化を説明する線図である。
【図6】流れによって生じる表面波によるパワースペクトルのピーク山を説明する線図である。
【符号の説明】
1 水路
2 センサ
3 駆動回路
4 増幅部
5 検波回路
6 フィルタ部
7 FFT部
8 演算部
9 表示部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow velocity / flow meter that measures the flow velocity and flow rate of a fluid using an ultrasonic Doppler effect, and more particularly to an ultrasonic flow velocity / flow meter suitable for an open channel.
[0002]
[Prior art]
The prior art of Japanese Patent Publication No. 7-3350 is known as an ultrasonic Doppler type fluid velocity measuring method and apparatus. Hereinafter, this is referred to as the first prior art.
[0003]
This device transmits an electrical signal of a specific frequency generated in a signal generator to a fluid flowing in a flow path via a transmitting transducer (transmitter), and receives a reflected wave emitted from an object in the fluid. A Doppler shift that measures the fluid velocity based on the difference signal (shift signal) received by the transducer (receiver) and the frequency of the transmission signal from the transmission transducer and the frequency of the reception signal received by the reception transducer. In the fluid velocity measurement method used, the transmitting transducer and the receiving transducer are provided close to each other at the bottom of the flow path, and the difference signal is scanned in a predetermined frequency band having a certain frequency width. After obtaining the intensity of each frequency band, when calculating the average flow velocity of the fluid by applying a weighted average method Further, the flow direction of the fluid is detected by comparing the difference signal between the frequency of the 90 ° phase-shifted signal obtained by shifting the electrical signal of the specific frequency by 90 ° and the frequency of the received signal with the difference signal. Like to do.
[0004]
The first prior art suggests that the fluid flow rate can be measured by combining the fluid velocity measuring device with a water level sensor.
In this first prior art, a water level sensor is required to obtain the flow rate, and the structure becomes complicated. Therefore, the present applicant has proposed an ultrasonic Doppler flowmeter that does not require a water level sensor in Japanese Patent Application No. 8-39243. This is hereinafter referred to as the second prior art.
[0005]
The ultrasonic Doppler flowmeter according to the second prior art includes a transmitting element that transmits an ultrasonic signal at a constant elevation angle θ with respect to the fluid flow direction at the center of the bottom surface of the open channel, and adjacent to the transmitting element. A receiving element that is arranged in almost the same direction and receives an ultrasonic reflection signal from solid particles or bubbles in the fluid and converts it into an electrical signal, and a transmission that continuously supplies a high-frequency signal to the transmitting element A circuit unit, a heterodyne detection unit that takes a frequency difference between a transmission signal frequency of the transmission element and a reception signal frequency of the reception element, an AD converter that converts the difference signal obtained by the heterodyne detection unit into a digital signal, A fast Fourier transform unit (FFT unit) that converts the signal into a frequency spectrum, a peak peak detection unit that obtains a peak peak frequency of the frequency spectrum obtained by the fast Fourier transform unit, and the peak peak detection It is obtained by a reception operation unit and a flow rate calculation unit for calculating a flow rate based on the frequency of the peak mountain calculated in parts.
[0006]
In the second prior art, when the received signal is heterodyne-detected, the signal to be mixed is subjected to heterodyne detection at a certain frequency higher or lower than the transmission signal, and the peak of the frequency spectrum obtained by the fast Fourier transform unit is obtained. By detecting this, the direction of fluid flow is discriminated based on whether the frequency of the received signal is larger or smaller than the frequency of the transmitted signal.
[0007]
When the frequency of the transmission signal is f 0 , the elevation angle is θ, the fluid flow velocity is V, and the sound velocity in the fluid is C, the Doppler shift Δf is
| Δf | = (V / C) · 2f 0 cos θ (1)
And is proportional to the flow velocity V.
[0008]
The frequency of the peak peak of the frequency spectrum is obtained by the peak peak detecting unit, and the flow velocity V is obtained by substituting the peak peak frequency into Δf of the following formula (2) obtained by modifying the formula (1).
[0009]
V = C · Δf / (2f 0 cos θ) (2)
Since the flow velocity V thus obtained corresponds well to the average flow velocity V of the flow path obtained by the so-called Manning's equation, if the cross-sectional shape dimensions, water surface gradient, wall roughness coefficient, etc. of the open channel are known. The water level is determined from the Manning's formula for the average flow velocity, and the flow rate is obtained. The calculation for determining the flow rate is performed by the flow rate calculation unit.
[0010]
The Manning formula is well known as the following formula (3), which is often used as a formula for obtaining an average flow velocity for an open channel, and is well matched for small and medium rivers and channels (Nikkan Kogyo Shimbun) Company, published in 1979, flow measurement handbook, page 407).
[0011]
V = (1 / n) R 2/3 / I 1/2 (3)
V: Average flow velocity (m / s).
R: It is defined by the diameter depth (m), the water flow cross sectional area A / the wet side length P. However, Junbei length refers to the length of the channel wall in contact with the water flow.
[0012]
I: Water surface gradient.
n: Manning roughness coefficient.
In the second prior art, the peak of the frequency spectrum is detected by comparing the power values at the respective points from the low frequency region to the maximum frequency of the frequency spectrum one by one, and simply detecting the point having the maximum power value. The frequency was obtained as the peak mountain frequency.
[0013]
[Problems to be solved by the invention]
As a result of further research after the applicant proposed the second prior art, the following problems were found.
[0014]
Doppler polarized shift frequency Δf by flow Toka disturbance of the distribution of flow by the flow path, than from such that reflections from bubbles and dust are discrete, simply adding and averaging the results obtained by FFT, sudden As shown in FIG. 4, the frequency spectrum distribution is not a smooth curve. Therefore, it is difficult to determine the peak peak of the Doppler transition frequency, and there is a problem that malfunction occurs in measuring the flow velocity and flow rate.
[0015]
Also, if a large amount of dirt or mud is contained in the sewage drainage channel, dirt or mud accumulates on the front surface of ultrasonic transducers such as transmitters and receivers, and ultrasonic waves are highly concentrated. Since it moves slowly near the transducer, the reflected wave from near is strong, and the received wave from far is received with a considerably reduced intensity. Therefore, as shown by the dotted line in FIG. 5, the peak peak f D due to the reflected wave from the original whole fluid is a value f D smaller than the signal P (f 0 ) having a low flow velocity as shown by the solid line in FIG. The peak peak detection becomes lower, the original peak peak f D cannot be detected correctly, and malfunctions may occur in the flow velocity and flow rate measurement.
[0016]
This is also clear from the fact that when the dust deposited on the front surface of the ultrasonic transducer is removed, the malfunction immediately disappears and the normal operation is restored.
[0017]
Further, in the second prior art, the open channel or HiMitsurukan path, Doppler polarization shift (frequency peak mountain) peak frequency of the power spectrum of the (Doppler shift) is 20 than the frequency of the maximum flow rate was measured data The value is 25% lower, that is, a value corresponding to the average flow velocity, but when the water level becomes very low, a Doppler shift due to the surface wave caused by the flow occurs, occurs speed side than the peak mountain f D shown, the frequency fw is undetermined between peak mountain f D of the average flow velocity from zero, the peak value of the power the peak value of the peak mountain f D of the average flow velocity (peak (Power value) may be exceeded.
[0018]
For this reason, there is a problem in that a malfunction may occur in which the peak peak fw of the power spectrum of the surface wave is detected as the peak peak f D of the average flow velocity (see FIG. 6).
[0019]
Conventionally, simply search the spectrum obtained polarization shift (the shift) with FFT conversion of the frequency of the received signal from the low frequency range toward the high frequency range, intended to convert the flow rate with a frequency having a maximum power value Therefore, there has been a problem that the accurate flow velocity cannot be measured as described above.
[0020]
Therefore, an object of the present invention is to provide an ultrasonic Doppler flow velocity / flow meter capable of solving such problems.
[0021]
[Means for Solving the Problems]
In order to achieve the object, the invention of claim 1
From the water channel (1) through which the liquid flows and the transmitter and receiver of the ultrasonic wave installed at the bottom of the water channel (1), the center, or the bottom of the channel to avoid dust and mud A sensor (2), a drive circuit (3) for supplying a high frequency to the transmitter, an amplifier (4) for the received signal, a detection circuit (5) for detecting the received signal and the transmitted signal, and the received signal and the transmitted signal A filter unit (6) that extracts a shift frequency signal as a signal difference signal, an FFT unit (7) as a spectrum conversion unit that performs spectrum conversion of the shift frequency signal, and a flow velocity from a spectrum obtained by the FFT unit (7) A conversion unit (8) for conversion, and a display unit (9) for measurement results provided as necessary;
The power of the frequency between N−Mn and N + Mn has a width Mn before and after a point N having a frequency fn, where fft (N) is the spectrum power value obtained by simply averaging the Fourier transform results obtained by the FFT unit (7). taking the average value mean · fft (N), conversion example placed in the original power value fft (N) of the point N,
[0022]
Together with a similar manner between zero and the maximum value Nmax N to the moving average replaced with the average value, thus in the ultrasonic velocity, flow meter you flow rate converted based on the moving average spectral peak mountain
The comparison for detecting the peak peak is started from the maximum value Nmax of the frequency, and after detecting the first peak peak Np 1 , the power value Mean · fft (N) becomes the power value Mean · fft (Np of the peak peak Np 1. The ultrasonic Doppler flow velocity / flow meter is characterized in that the comparison is stopped when the ratio to 1 ) becomes a certain value or less and the frequency of the first peak peak Np 1 is converted into a flow velocity.
[0023]
In the present invention, by replacing the power value from zero of N to the maximum value Nmax with the average value Mean · fft (N) (moving average), the frequency having a sudden power value can be obtained by smoothing the distribution of the transition frequency. This is removed so that the peak of the spectrum can be easily detected (see FIG. 1B).
[0025]
In the second prior art, the detection of the power peak value of the spectrum starts from the low frequency range of N = 0 and compares the power value of each point one by one up to Nmax, and simply searches for the point Np having the maximum power value. However, the spectrum due to dust, mud, and surface waves was erroneously detected.
[0026]
Since there is nothing moving faster than running water in the water channel, in the invention of claim 1 , the peak detection operation is started from Nmax in the direction of decreasing frequency, and after detecting the first peak Np 1 , the power value Mean The comparison is stopped when the ratio of fft (N) and Mean · fft (Np 1 ) is below a certain value, and the peak peak Np 1 at this time is determined as the peak peak of the spectrum due to the flow velocity, and the frequency at that time f NP1 is converted into a flow velocity (see FIG. 1 (c)).
[0027]
By doing so, the peak Np 2 of the surface wave spectrum, the peak Np 3 of the spectrum due to dust and mud, and the like are not erroneously detected.
Note that the ratio Mean · fft (N) / Mean · fft (Np 1 ) for determining whether or not to stop the comparison as the peak detection operation may vary depending on the conditions of the measurement location.
[0028]
The invention of claim 2 is the ultrasonic Doppler flow velocity / flow meter according to claim 1 ,
The fixed value is defined between 1/4 and 3/4.
The invention of claim 3
From the water channel (1) through which the liquid flows and the transmitter and receiver of the ultrasonic wave installed at the bottom of the water channel (1), the center, or the bottom of the channel to avoid dust and mud A sensor (2), a drive circuit (3) for supplying a high frequency to the transmitter, an amplifier (4) for the received signal, a detection circuit (5) for detecting the received signal and the transmitted signal, and the received signal and the transmitted signal velocity filter section for taking out a polarization shift frequency signal as a difference signal of the signal (6), an FFT section of the orthogonal transform unit for spectral transformation of polarization shifted frequency signal (7), from the spectrum obtained by the FFT unit (7) A conversion unit (8) for conversion, and a display unit (9) for measurement results provided as necessary;
The power of the frequency between N−Mn and N + Mn has a width Mn before and after a point N having a frequency fn, where fft (N) is the spectrum power value obtained by simply averaging the Fourier transform results obtained by the FFT unit (7). The average value Mean · fft (N) is taken and replaced with the original power value fft (N) at that point N.
[0029]
In the same way, N is replaced with an average value between zero and the maximum value Nmax, the moving average is performed, and the distribution curve of the spectrum thus moving averaged is differentiated or subtracted, and among the inflection points where the curve is convex upward, The ultrasonic Doppler flow velocity / flowmeter is characterized in that Np 1 having the maximum N is determined as a peak peak of a flow velocity spectrum, and the frequency of the peak peak is converted into a flow velocity .
[0030]
When the difference starts from Nmax and Nmax−1 and is successively performed until N = 1 and N = 0, the differential curve shown in FIG. 2 is obtained from the solid curve in FIG. That is, the difference is calculated from Nmax, and the point Np 1 where the crossing from zero to zero is first determined as the peak peak of the spectrum due to the flow velocity, and the transition frequency Δf NP1 at this time is converted into the flow velocity.
[0031]
By doing so, the peak mountain Np 2 caused by surface waves, or the Np 3 caused by dust and mud was mistakenly recognized as the peak mountain caused by the flow velocity.
In the present invention according to claim 1 to 3, by substituting the frequency of the peak mountain detected from the frequency spectrum of the polarization shift frequency of the received signal (Doppler signal) to Δf of formula (2), in the second prior art and Similarly, the flow velocity V is obtained. That is, it is converted into the flow velocity V.
[0032]
Since the flow velocity V thus obtained corresponds to the average flow velocity, the water level is determined from this and the average flow velocity formula such as Manning's formula, and the flow rate is obtained.
In addition, the above description is a case where heterodyne detection is performed at the same or lower frequency as the transmission frequency. When performed at a higher frequency, the deviation frequency becomes lower as the flow velocity increases, and the peak frequency detection is performed on the lower frequency side. It will be reversed from the high frequency side.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described based on examples of the drawings.
[Example 1]
In the first embodiment shown in FIGS. 1A, 1 </ b> B, and 1 </ b> C and FIG. 3, an ultrasonic signal is transmitted at an elevation angle θ from the ultrasonic transmitter of the sensor 2 into the liquid flowing in the water channel 1. The sensor 2 is provided with a receiver directed in substantially the same direction adjacent to the transmitter, and receives an ultrasonic return signal from dust or bubbles in the liquid and converts it into an electrical signal. The drive circuit 3 supplies a high frequency to the transmitter.
[0034]
The electric signal (reception signal) of the receiver is amplified by the amplifying unit 4, supplied to the mixing unit 11, mixed with the transmission signal from the driving circuit 3, detected by the detection circuit 5, and further filtered by the filter unit 6. in taking out a polarization shift frequency (Doppler shift frequency) signal as a difference signal of the received and transmitted signals.
[0035]
FFT section (fast Fourier transform section) 7 is spectrum transform the polarization shift frequency signal by fast Fourier transform. In this embodiment, the number of points of data output as a result of the Fourier transform is 1024, and when the frequency range is 5 kHz, the frequency resolution is 4.88 Hz.
[0036]
1). The spectrum data obtained by the moving average FFT unit 7 of the spectrum is converted into a flow velocity by the calculation unit 8 including a CPU made of MPU, and the measurement result is displayed on the display unit 9.
[0037]
The spectrum value of one FFT is 1/25 and is stored from 0 to Nmax in order from 0 to the first register of the arithmetic unit 9 (refer to FIG. 3, hereinafter refer to FIG. 3 for the second and third registers). When the FFT result of 1/25 is added to the first register and this is performed up to 25 times, a simple addition average of 25 times is obtained.
[0038]
Further, an average is taken between the widths Mn of 20 points before and after the Nx point of the first register, and stored in the Nx point of the second register. The average (moving average) is performed in the same manner in order from N = 0 to N = Nmax. However, an average (moving average) is performed between 0 and N + Mn when N−Mn <0, and between N−Mn and Nmax when N + Mn> Nmax (see FIG. 1B).
[0039]
The combination of the above-described values, the number of FFT data, the number of addition averages, and the number of moving averages is determined according to the conditions of the actual measurement location.
[0040]
2). Peak detection Next, the peak detection of the spectrum (detection of peak peaks) performed by the calculation unit 9 occurs in a lower frequency region than the flow velocity spectrum peak based on the flow velocity because the spectrum peak due to dust, mud, and surface waves is generated from the high frequency region. Do.
[0041]
The peak detection method starts from the comparison between Nmax and Nmax-1 of the second register in FIG. 3, and the larger N 0 and Mean · fft (N 0 ) are stored in the third register, and N = 0 in order. Then, Mean · fft (N 0 ) and Mean · fft (Nx) of the third register are compared, and the one with the larger power value is rewritten to the third register.
[0042]
Even when the first large power value Mean · fft (Np 1 ) thus obtained is compared with Nx after that, Mean · fft (Np 1) ), That is,
Mean · fft (Nx) <(1/2) Mean · fft (Np 1 )
When he became, regarded as a maximum value in Mean · fft the (Np 1) to the highest frequency side of the spectrum, a polarization shift frequency Delta] f NP1 at point Np 1 and peak frequency of the velocity spectrum (FIG. 1 (c) reference).
[0043]
Then, Δf NP1 is converted into a flow velocity, and the flow rate is calculated.
It should be noted that the ratio Mean · fft (Nx) / Mean · fft (Np 1 ) when the peak detection is stopped.
The value of is changed between 1/4 and 3/4 according to the conditions of the actual measurement location.
[0044]
[Example 2]
When the difference is started from Nmax and Nmax−1 and is successively performed until N = 1 and N = 0, the differential curve shown in FIG. 2 is obtained from the solid curve in FIG.
[0045]
Therefore, the difference is performed from Nmax, and the point Np 1 that first crosses zero from plus is regarded as the peak of the flow velocity spectrum, and the deviation shift frequency Δf NP1 at this time is set as the peak frequency of the flow velocity spectrum.
[0046]
Then, Δf NP1 is converted into a flow velocity, and the flow rate is calculated.
By doing so, it is avoided that the peak mountain Np 2 due to the surface wave, or the Np 3 due to dust and mud is mistakenly recognized as the peak mountain due to the flow velocity.
[0047]
【The invention's effect】
Since the present invention is configured as described above, the sudden power value caused by disturbance in the flow velocity distribution of the water channel or bubbles can be obtained by moving and averaging the spectrum obtained by FFT into a smooth frequency distribution curve. It is possible to obtain an accurate average flow velocity by removing the data of the frequency possessed.
[0048]
Further, compared to the case where the FFT results are simply added and averaged, the frequency distribution curve can be smoothed in a short time by performing the moving average, and the measurement time can be reduced.
Further, the not to detect spectral peaks due to surface waves of water passage, and prevent malfunction due to surface waves accurately prompted average flow velocity, measurement accuracy is improved. In addition, even if dirt or mud that cannot be avoided in the sewer channel accumulates on the front of the sensor, there is no risk of interruption of measurement within a short period of time, and measurement can be performed stably for a long time. The reliability of the flow velocity / flow meter is improved.
[Brief description of the drawings]
1A is a block diagram, FIG. 1B is a diagram showing power values of FFT data, and FIG. 1C is a frequency distribution for explaining a method for detecting a peak of a flow velocity spectrum. It is a curve.
FIG. 2 is a differential curve obtained by subtracting the frequency distribution curve of FIG.
FIG. 3 is a diagram illustrating a register included in the calculation unit 8 of FIG. 1;
FIG. 4 is a diagram showing power values of FFT results of the prior art.
FIG. 5 is a diagram for explaining changes in a frequency distribution curve due to dust and mud adhering to the front surface of an ultrasonic transducer.
FIG. 6 is a diagram for explaining a peak peak of a power spectrum due to a surface wave generated by a flow.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waterway 2 Sensor 3 Drive circuit 4 Amplification part 5 Detection circuit 6 Filter part 7 FFT part 8 Calculation part 9 Display part

Claims (3)

液体が流れる水路(1)と、該水路(1)の底面、中央またはごみや泥を避けるために底面、中央より側面方向に寄ったところに設置された超音波の送信子と受信子とからなるセンサ(2)と、送信子に高周波を供給する駆動回路(3)と、受信信号の増幅部(4)と、受信信号と送信信号を検波する検波回路(5)と、受信信号と送信信号の差信号としての偏移周波数信号を取り出すフィルタ部(6)と、偏移周波数信号をスペクトル変換するスペクトル変換部としてのFFT部(7)と、FFT部(7)で得たスペクトルから流速換算する演算部(8)と、必要に応じて設けられる測定結果の表示部(9)とを具備し、
FFT部(7)でフーリエ変換した結果を単純加算平均したスペクトルのパワー値をfft(N)とする周波数fnのある点Nの前後に幅MnをもってN−MnからN+Mnの間で周波数のパワーの平均値Mean・fft(N)を取り、その点Nの元来のパワー値fft(N)に置き換え、
Nを零と最大値Nmaxとの間で同様にして平均値に置き換えて移動平均すると共に、こうして移動平均したスペクトルのピーク山に基づいて流速換算する超音波流速・流量計において、
ピーク山の検出のための比較を周波数の最大値Nmaxより始め、第1のピーク山Np 1 を検出した後、パワー値Mean・fft(N)がピーク山Np 1 のパワー値Mean・fft(Np 1 )に対する比率で一定値以下になったところで比較を中止し、第1のピーク山Np 1 の周波数を流速に換算することを特徴とする超音波ドップラー流速・流量計。
From the water channel (1) through which the liquid flows and the transmitter and receiver of the ultrasonic wave installed at the bottom of the water channel (1), the center, or the bottom of the channel to avoid dust and mud A sensor (2), a drive circuit (3) for supplying a high frequency to the transmitter, an amplifier (4) for the received signal, a detection circuit (5) for detecting the received signal and the transmitted signal, and the received signal and the transmitted signal A filter unit (6) that extracts a shift frequency signal as a signal difference signal, an FFT unit (7) as a spectrum conversion unit that performs spectrum conversion of the shift frequency signal, and a flow velocity from a spectrum obtained by the FFT unit (7) A conversion unit (8) for conversion, and a display unit (9) for measurement results provided as necessary;
The power of the frequency between N−Mn and N + Mn has a width Mn before and after a point N having a frequency fn, where fft (N) is the spectrum power value obtained by simply averaging the Fourier transform results obtained by the FFT unit (7). taking the average value mean · fft (N), conversion example placed in the original power value fft (N) of the point N,
Together with similarly between zero and the maximum value Nmax N to the moving average replaced with the average value, thus in the ultrasonic velocity, flow meter you flow rate converted based on the moving average spectral peak mountain
The comparison for detecting the peak peak is started from the maximum value Nmax of the frequency, and after detecting the first peak peak Np 1 , the power value Mean · fft (N) becomes the power value Mean · fft (Np of the peak peak Np 1. 1 ) The ultrasonic Doppler velocimeter / flowmeter is characterized in that the comparison is stopped when the ratio with respect to 1 ) falls below a certain value, and the frequency of the first peak peak Np1 is converted into a flow velocity.
前記一定値を1/4〜3/4の間に定めたことを特徴とする請求項1記載の超音波ドップラー流速・流量計。2. The ultrasonic Doppler flow velocity / flow meter according to claim 1, wherein the constant value is set between 1/4 and 3/4. 液体が流れる水路(1)と、該水路(1)の底面、中央またはごみや泥を避けるために底面、中央より側面方向に寄ったところに設置された超音波の送信子と受信子とからなるセンサ(2)と、送信子に高周波を供給する駆動回路(3)と、受信信号の増幅部(4)と、受信信号と送信信号を検波する検波回路(5)と、受信信号と送信信号の差信号としての偏移周波数信号を取り出すフィルタ部(6)と、偏移周波数信号をスペクトル変換するスペクトル変換部としてのFFT部(7)と、FFT部(7)で得たスペクトルから流速換算する演算部(8)と、必要に応じて設けられる測定結果の表示部(9)とを具備し、From the water channel (1) through which the liquid flows and the transmitter and receiver of the ultrasonic wave installed at the bottom of the water channel (1), the center or the bottom surface in order to avoid dust and mud Sensor (2), a drive circuit (3) for supplying a high frequency to the transmitter, an amplifying unit (4) for the received signal, a detection circuit (5) for detecting the received signal and the transmitted signal, and the received signal and the transmitted signal A filter unit (6) that extracts a shift frequency signal as a signal difference signal, an FFT unit (7) as a spectrum conversion unit that performs spectrum conversion of the shift frequency signal, and a flow velocity from a spectrum obtained by the FFT unit (7) A calculation unit (8) for conversion, and a display unit (9) for measurement results provided as necessary;
FFT部(7)でフーリエ変換した結果を単純加算平均したスペクトルのパワー値をfft(N)とする周波数fnのある点Nの前後に幅MnをもってN−MnからN+Mnの間で周波数のパワーの平均値Mean・fft(N)を取り、その点Nの元来のパワー値fft(N)に置き換える。The power of the frequency between N−Mn and N + Mn has a width Mn before and after a point N having a frequency fn, where fft (N) is the spectrum power value obtained by simply averaging the Fourier transform results obtained by the FFT unit (7). The average value Mean · fft (N) is taken and replaced with the original power value fft (N) at that point N.
Nを零と最大値Nmaxとの間で同様にして平均値に置き換えて移動平均すると共に、こうして移動平均したスペクトルの分布曲線を微分または差分し、曲線が上に凸の変曲点のうち、Nが最大のNpIn the same way, N is replaced with an average value between zero and the maximum value Nmax, the moving average is performed, and the distribution curve of the spectrum thus moving averaged is differentiated or subtracted, and among the inflection points where the curve is convex upward, Np is the largest Np 1 1 を流速スペクトルのピーク山と判断して、該ピーク山の周波数を流速に換算することを特徴とする超音波ドップラー流速・流量計。Is an ultrasonic Doppler flow velocity / flow meter, wherein the peak peak of the flow velocity spectrum is determined and the frequency of the peak peak is converted into a flow velocity.
JP02466297A 1997-02-07 1997-02-07 Ultrasonic Doppler flow velocity / flow meter Expired - Fee Related JP3752340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02466297A JP3752340B2 (en) 1997-02-07 1997-02-07 Ultrasonic Doppler flow velocity / flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02466297A JP3752340B2 (en) 1997-02-07 1997-02-07 Ultrasonic Doppler flow velocity / flow meter

Publications (2)

Publication Number Publication Date
JPH10221141A JPH10221141A (en) 1998-08-21
JP3752340B2 true JP3752340B2 (en) 2006-03-08

Family

ID=12144367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02466297A Expired - Fee Related JP3752340B2 (en) 1997-02-07 1997-02-07 Ultrasonic Doppler flow velocity / flow meter

Country Status (1)

Country Link
JP (1) JP3752340B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083372A1 (en) * 2004-02-27 2005-09-09 Fuji Electric Systems Co., Ltd. Ultrasonic flowmeter compatible with both of pulse doppler method and propagation time difference method, method and program for automatically selecting the measurement method in the flowmeter, and electronic device for the flowmeter
EP1791470A4 (en) * 2004-09-03 2009-09-02 Nephros Inc Doppler flow measurement apparatus
EP3940345B1 (en) * 2019-03-14 2024-02-14 Omron Corporation Flow rate measurement device

Also Published As

Publication number Publication date
JPH10221141A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
US6487916B1 (en) Ultrasonic flow metering system
WO2005083372A1 (en) Ultrasonic flowmeter compatible with both of pulse doppler method and propagation time difference method, method and program for automatically selecting the measurement method in the flowmeter, and electronic device for the flowmeter
KR20060134114A (en) Zero crossing detection of an ultrasound signal with a variable threshold
JPH0660832B2 (en) Vortex flowmeter
JP3752340B2 (en) Ultrasonic Doppler flow velocity / flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JPH039405B2 (en)
DK0762086T3 (en) Method for ultrasound measurement of flow rates of flowing fluids
JP5064097B2 (en) Ultrasonic vortex flowmeter
JP3215847B2 (en) Flow velocity measurement method
JPH09229734A (en) Ultrasonic doppler flowmeter
JPH073350B2 (en) Fluid velocity measuring method and device
KR100559139B1 (en) Ultrasonic wave flow meter using correlation
JP2723291B2 (en) Ultrasonic sensor
JP2000009508A (en) Ultrasonic wave doppler current meter
JP3244175B2 (en) Flow measurement device
JPH0324607B2 (en)
JP5043514B2 (en) Ultrasonic vortex flowmeter
JPS5852487Y2 (en) Flow rate measurement device using correlation technology
JP3036800B2 (en) Vortex flow meter
JP4447720B2 (en) Ultrasonic vortex flowmeter
JPS5914731Y2 (en) Flow velocity flow measuring device
JPH11183215A (en) Ultrasonic doppler current meter
GB2209218A (en) An ultrasonic fluid flow meter with anti-fraud means
JP3631477B2 (en) Densitometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees