JPS61256255A - Ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection apparatus

Info

Publication number
JPS61256255A
JPS61256255A JP60097823A JP9782385A JPS61256255A JP S61256255 A JPS61256255 A JP S61256255A JP 60097823 A JP60097823 A JP 60097823A JP 9782385 A JP9782385 A JP 9782385A JP S61256255 A JPS61256255 A JP S61256255A
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
plate
flaw
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60097823A
Other languages
Japanese (ja)
Inventor
Yoji Yoshida
吉田 洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP60097823A priority Critical patent/JPS61256255A/en
Publication of JPS61256255A publication Critical patent/JPS61256255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately estimate the size and property of a flaw, by making a wave receiving angle independently changeable regardless of the transmitting angle of an ultrasonic wave and measuring the mode kind and intensity distribution of the plate wave reflected from a flaw. CONSTITUTION:A transmitter 11 and a receiver 12 are provided to an ultrasonic flaw detector and an ultrasonic wedge 15 is integrally provided to the transmitter. Pulse voltage is oscillated from a pulser 41 and an ultrasonic wave is transmitted to a material at an angle alpha from the transmitter 11. The ultrasonic wave 32 reflected from the flaw 22 of the material 21 s received by the receiver 12 to be sent to a receiving amplifier 2 and a display apparatus 43. At this time, the receiving angle theta of the receiver is changed to receive plate waves having different modes are received corresponding to respective angles theta. Because plate waves of all modes are measured by changing the receiving angle, a flaw reflected wave reflected in a mode different from that of transmitted plate waves can be detected and the size and property of the flaw can be accurately estimated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波探傷装置に係り、材料欠陥部に於ける板
波のモード変換を測定して、材料欠陥寸法を推定できる
新しい探傷装置を提供するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ultrasonic flaw detection device, and provides a new flaw detection device that can estimate the size of a material defect by measuring the mode conversion of a plate wave in a material defect. It is something to do.

〔発明の背景〕[Background of the invention]

まず板波超音波探傷の概要を説明する。 First, an overview of plate wave ultrasonic flaw detection will be explained.

板波は、縦波(液体や固体媒質内を伝搬する音波の振動
モードの一種)や横波(同じく同体媒質内のみを伝搬で
きる一つの振動モード)と同様な音波の振動モードの一
つで2つの境界面が近傍した媒体つまり薄い板状媒体内
に発生し易く、境界面に平行な方向に能率良く伝搬でき
る音波である。
Plate waves are one of the vibration modes of sound waves, similar to longitudinal waves (a type of vibration mode of sound waves that propagate in liquid or solid media) and transverse waves (also a type of vibration mode that can only propagate in solid media). This is a sound wave that is likely to be generated in a medium with two boundary surfaces in close proximity, that is, a thin plate-like medium, and can efficiently propagate in a direction parallel to the boundary surfaces.

その性質については日刊工業社角「超音波探傷法」の6
5〜72ページ等に詳述されているが、その関係部分を
ここに概説すると、第5図に示すように振動による媒質
的各部分の変位の位相によってS−1ニード(対称モー
ド)とAモード(斜対象モードの二つの板波モードが存
在し、さらにそれぞれのモードは第6図に一例を示す如
く媒質の厚さ方向にできる振動のjfii(ノード)の
作り方によってSo、S工、s2・・・・・・、Ao+
A工、A2・・・・・・と言った多数の高次の振動モー
ドが存在する。
Regarding its properties, refer to Nikkan Kogyosha corner ``Ultrasonic Flaw Detection Method''
It is explained in detail on pages 5 to 72, etc., but to summarize the related parts here, as shown in Figure 5, the S-1 need (symmetrical mode) and A There are two plate wave modes (obliquely symmetric mode), and each mode can be divided into So, S, and S2 depending on how to create vibration jfii (nodes) in the thickness direction of the medium, as shown in an example in Figure 6.・・・・・・Ao+
There are many higher-order vibration modes such as A, A2, etc.

次に板波の送波と受波の方法を説明したのが第7図で、
超音波シュー15(中間媒質)を使って縦波を試料媒体
表面に斜めに入射させるこによって容易に板波を発生す
ることができる。但し、下式が成立する条件で最も能率
良く、強い板波を発生できる。
Next, Figure 7 explains the method of transmitting and receiving plate waves.
Plate waves can be easily generated by making longitudinal waves obliquely incident on the surface of the sample medium using the ultrasonic shoe 15 (intermediate medium). However, the most efficient and strong plate waves can be generated under the condition that the following formula holds true.

し 但  α:超音波シューから媒質への 超音波入射角 Cw:超音波シュー内の縦波30 の伝搬速度 C:媒質内の縦波33の伝搬速 度 板波の受波は送波の場合と同じ第7図の超音波シューの
組合せで行われ、式(1)の条件を満足するときに最も
感度良く受信される。
However, α: Ultrasonic incident angle from the ultrasonic shoe to the medium Cw: Propagation speed of the longitudinal wave 30 in the ultrasonic shoe C: Propagation speed of the longitudinal wave 33 in the medium Receiving a plate wave is the same as when transmitting a wave. This is done using the same combination of ultrasonic shoes shown in FIG. 7, and the most sensitive reception is achieved when the condition of equation (1) is satisfied.

ところでこの板波を使用して、材料中の傷などの欠陥を
検査するいわゆる超音波探傷装置を実施する場合には従
来次の点が問題点とされていた。
By the way, when implementing a so-called ultrasonic flaw detection device that uses this plate wave to inspect defects such as flaws in a material, the following points have conventionally been considered to be a problem.

即ち前述したように、板波はそれを発生したときと同じ
超音波シューの角度で最も能率良く受波されるが、実際
には、欠陥等で板波が反射するときにモード変換(欠陥
へ入射した板波のモードから先に述べたSo、S□Is
2・・・・・・A o y A t tA2・・・・・
・等の他のモードに変換)してしまうため、送波したと
きの探触子の状態では受波できないモードが多数発生し
てしまう、従って、送波と同じモードでのみ受波した信
号強度のみでは、欠陥の大きさや性状に関する情報とし
ては不充分であると言うことである。
In other words, as mentioned above, plate waves are most efficiently received at the same angle of the ultrasonic shoe as when they were generated, but in reality, when plate waves are reflected by defects etc., mode conversion (towards defects) occurs. From the mode of the incident plate wave, So, S□Is mentioned earlier
2...A o y A t tA2...
(converted to other modes such as This means that it is insufficient information regarding the size and properties of the defect.

なお、関連する技術に特開昭51− 124915号、間開50−122091号等がある。In addition, the related technology is disclosed in Japanese Unexamined Patent Application Publication No. There are No. 124915, No. 50-122091, etc.

〔発明の目的〕[Purpose of the invention]

本発明の目的は板波による超音波探傷に於て欠陥から反
射した板波のモードの種類とその強度分布を測定して、
その結果から検出した欠陥の大きさや性状を推定できる
ような板波探傷用の超音波探傷器を提供することにある
The purpose of the present invention is to measure the mode types and intensity distribution of plate waves reflected from defects in ultrasonic flaw detection using plate waves,
An object of the present invention is to provide an ultrasonic flaw detector for plate wave flaw detection, which allows the size and properties of detected defects to be estimated from the results.

〔発明の概要〕[Summary of the invention]

通常行われている超音波シュ一つまり超音波を材料中に
伝搬させて、欠陥部等の材料中の不連続部から反射する
超音波を検知して、材料欠陥を検出する方法では、欠陥
が超音波ビームの巾よりも充分小さな範囲では、欠陥の
大きさく面積)とその欠陥から反射する超音波の強さに
は相関があり欠陥が大きくなれば反射する超音波は強く
なる。
The conventional method of detecting material defects by propagating ultrasonic waves into the material and detecting the ultrasonic waves reflected from discontinuities in the material such as defects, does not detect defects. In a range sufficiently smaller than the width of the ultrasound beam, there is a correlation between the size and area of the defect and the strength of the ultrasound reflected from the defect, and the larger the defect, the stronger the reflected ultrasound.

しかるに第8図(A)のような方法でスリット状の人工
欠陥22の深さdを変化させながらその人工欠陥から反
射する特定のモードの板波の反射波32の強さを測定す
ると第8図(B)の如くなり人工欠陥の深さと信号の深
さは比例しない、つまり同図0部よりも深い人工欠陥で
ある0部に於て極小値を示すような欠陥規模特性を示す
ことが分った。これは、欠陥信号の強さから欠陥の規模
(深さ)を推定できないばかりか、探傷距離Qの大きさ
によっては0部よりも大きなω部の欠陥を検出できない
場合もあり得ることを意味する。
However, when measuring the strength of the reflected wave 32 of the plate wave in a specific mode reflected from the slit-shaped artificial defect 22 while changing the depth d of the slit-shaped artificial defect 22 using the method shown in FIG. As shown in Figure (B), the depth of the artificial defect and the depth of the signal are not proportional. In other words, the defect size characteristic is such that the artificial defect 0, which is deeper than the 0 part in the figure, shows a minimum value. I understand. This means that not only cannot the scale (depth) of a defect be estimated from the strength of the defect signal, but also that it may not be possible to detect defects in the ω section, which is larger than the 0 section, depending on the size of the flaw detection distance Q. .

このような現象が生ずる原因を探るために第8図(B)
のイおよび0部に於ける板波のモード分布を調べたもの
が第9図である。第9図(A)は送波子11からの超音
波の入射角αを一定にして特定のモードの板波(この図
ではA1モードの板波)を発生させて、これを超音波機
16を介して受波角度θを連続的に変えながら受波子1
2によって受信したもので、こうすることによってθを
αに置き換えた(1)式を満足する条件で種々のモード
の板波を検知することができ、送波子によって発生して
いる板波のモードを測定することができる。
In order to find out the cause of this phenomenon, Figure 8 (B)
FIG. 9 shows an investigation of the mode distribution of the plate wave in the A and 0 parts of . In FIG. 9(A), the incident angle α of the ultrasonic wave from the wave transmitter 11 is kept constant to generate a plate wave of a specific mode (A1 mode plate wave in this figure), and this is transmitted to the ultrasonic machine 16. While continuously changing the receiving angle θ through the wave receiving element 1,
By doing this, it is possible to detect various modes of plate waves under the conditions that satisfy equation (1) where θ is replaced by α, and the mode of the plate wave generated by the wave transmitter can be detected. can be measured.

この第9図(A)からは、送波子11と楔15によって
主として強度の強いA1モードの板波が発生してそれに
1強度は弱いがSlとA2の2つのモードを伴っている
ことが分る。
From FIG. 9(A), it can be seen that the transmitter 11 and the wedge 15 generate a plate wave mainly in the A1 mode with a strong intensity, which is accompanied by two modes, Sl and A2, although the intensity is weak. Ru.

第9図(B)は同図(A)で示した板波が欠陥で反射し
て生じた反射板波32のモード分布を第8図(B)の0
部で測定したもので送波板波の主成分であるA1モード
が著しく弱められていることが分る。
Figure 9 (B) shows the mode distribution of the reflected plate wave 32 caused by the plate wave shown in Figure 8 (A) being reflected by a defect.
It can be seen that the A1 mode, which is the main component of the wave plate wave, is significantly weakened.

第9図(C)は同じく第8図(B)の0部のモード分布
で、再びA1モードの強度が回復している。
FIG. 9(C) shows the mode distribution at part 0 of FIG. 8(B), and the intensity of the A1 mode has recovered again.

以上の結果から第8図(B)に示すように欠陥規模(深
さ)と板波の反射強度が比例しないのは板波の反射に伴
ってモード変換が生じ、変換のしかたが欠陥規模によっ
て異なるためであることが明らかになった。従って板波
探傷に於ては送波板波と同じモードの板波を受波したの
では不充分であり、できるだけ広い砺囲のモードを検出
する必要があることが分る。
From the above results, as shown in Figure 8 (B), the reason why the defect size (depth) and the reflection intensity of the plate wave are not proportional is that mode conversion occurs with the reflection of the plate wave, and the method of conversion depends on the defect size. It became clear that this was because they were different. Therefore, in plate wave flaw detection, it is insufficient to receive a plate wave in the same mode as the transmitting plate wave, and it is necessary to detect a mode with as wide a range as possible.

さらに−歩進めて、反射板波の、モード分布の特徴を抽
出することによって反射源である欠陥の大きさや種類の
判定も可能になると思われる。
Going a step further, it seems possible to determine the size and type of the defect that is the reflection source by extracting the characteristics of the mode distribution of the reflector wave.

ところで現在上記の目的に沿って、反射板波のモード分
布を測定しようとすると、第8図(A)に示す如く送波
用探触子(11と15の組合せ)と受波用探触子(12
と16の組合せ)を前後に配置して受信角度θを少しづ
つ変化させなから受波信号を測定することになり能率的
にも精度的にも実用性に乏しいものにならざるを得ない
Now, when trying to measure the mode distribution of a reflector wave for the above purpose, as shown in Fig. 8(A), a wave transmitting probe (a combination of 11 and 15) and a wave receiving probe are used. (12
and 16) are arranged in front and behind each other and the receiving angle θ is changed little by little to measure the received signal, which is inevitably impractical in terms of efficiency and accuracy.

そこで最近の超音波探触子の技術を応用して高速度、高
精度に板波モード分布を測定する方法を検討した。
Therefore, we investigated a method to measure the plate wave mode distribution at high speed and with high precision by applying recent ultrasonic probe technology.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第1図〜第4図いより説明する。 Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

第1図はパルサ41、受信増巾器42、表示装置43同
期信号発生器44を備えた基本的な構成の超音波探傷器
に送波子11と受波子12を一体の超音波楔15に設し
プたもので、受波子12の受波角度θを変化させること
によって、それぞれのθによって決定するモードの板波
を受波できるようにした。
FIG. 1 shows an ultrasonic flaw detector with a basic configuration including a pulser 41, a receiving amplifier 42, a display device 43, and a synchronizing signal generator 44, with a transmitter 11 and a receiver 12 installed in an integrated ultrasonic wedge 15. By changing the receiving angle θ of the wave receiving element 12, it is possible to receive a plate wave in a mode determined by each θ.

受波角度を変化させる方法としては機械的な方法と電気
的な方法がるが、第10図及び第11.l’6は機械的
な方法による実施例である。第10図は受波子を直接手
で移動させて受波角を変えろものであり第11図は小型
電動機51とその電動機で回転するプーリー52とリン
ク53によって受波子12を摺動させて受波角を変える
ものである。
There are mechanical methods and electrical methods for changing the reception angle, and the methods shown in Figs. 10 and 11. l'6 is an example using a mechanical method. In Fig. 10, the receiving angle is changed by moving the receiving element directly by hand, and in Fig. 11, the receiving angle is changed by moving the receiving element directly by hand, and in Fig. 11, the receiving angle is changed by sliding the receiving element 12 using a small electric motor 51, a pulley 52 rotated by the motor, and a link 53. It changes the angle.

第2図は第1図に於いて受波子12を機械的に摺動させ
る代りにスイッチ装[46によって多数配列した受波子
群を切替えて、それぞれの受波子に対応したモードの板
波を検出する。スイッチ装置46に電子スイッチを使用
すれば、高速化が図れる。
In Figure 2, instead of mechanically sliding the wave receiver 12 as shown in Figure 1, a switch device [46] is used to switch between a large number of arrayed wave receiver groups and detect plate waves in modes corresponding to each wave receiver. do. If an electronic switch is used as the switch device 46, the speed can be increased.

第3図は、送波子11の側もチャンネルかしたものでス
イッチ装置45の切替によって送波板波31のモードも
巾広く選択できるようにした。
In FIG. 3, the channel of the wave transmitter 11 is also changed, and the mode of the wave transmitter plate wave 31 can be selected from a wide range by switching the switch device 45.

第4図(A)は第3図に於ける送波子群11と受波子群
12を共通にしたものでスイッチ装置45と46をそれ
ぞれ別個に作動させることにより任意のモードの板波の
送波と受波を行う。
FIG. 4(A) shows a configuration in which the wave transmitter group 11 and the wave receiver group 12 in FIG. and receive waves.

第4図(B)はアレイ型超音波送受波子11と位相整合
技術を応用して平面状に配列した送受波子で板波を送受
波するものである。
FIG. 4(B) shows a configuration in which a plate wave is transmitted and received using the array type ultrasonic transducer 11 and the transducers arranged in a plane by applying phase matching technology.

第4図(C)は第4図(B)の如く平面上に配置したア
レイ型超音波送受波子11と位相整合技術によって超音
波の送波角αを任意に変えられることを説明したもので
ある。−列に配置された送波子を電気パルス40で励振
するタイミングを各送波子毎に順次ずらして行くと、各
送波子から送出された音波の波面は少しづつ直径の異な
る円弧を描くようになりある特定の面でそれらが合成。
FIG. 4(C) explains that the ultrasonic transmission angle α can be changed arbitrarily by using the array type ultrasonic transducer 11 arranged on a plane as shown in FIG. 4(B) and the phase matching technology. be. - If the timing of exciting the wave transmitters arranged in a row with the electric pulse 40 is sequentially shifted for each wave transmitter, the wavefront of the sound wave sent out from each wave transmitter will gradually draw an arc with a different diameter. They are synthesized in certain aspects.

強調し合って新たな音波の波面35を形成して36の方
向に伝搬するようになる。上記のタイミングを適度に調
整することによって音波の伝搬方向αは任意に変えるこ
とができる。
They emphasize each other to form a new wavefront 35 of sound waves, which propagate in the direction 36. By appropriately adjusting the above timing, the propagation direction α of the sound wave can be changed arbitrarily.

以上は送波の場合について説明したが、受波の場合も全
く同様にして各格受波子の受波のタイミングを順次ずら
して2受信した信号を合成することによって任意の受波
角の音波のみを受波することができる。
The above has been explained for the case of transmitting waves, but in the case of receiving waves, the timing of receiving waves of each wave element is sequentially shifted and the two received signals are combined, so that only sound waves at arbitrary receiving angles can be generated. can be received.

これらの装置はいずれの場合も送波角度αに無関係に受
波角度θを独立して変化できるようにした点に特徴があ
って、従来の装置の設計思想と根本的に異なる点である
In either case, these devices are characterized in that the receiving angle θ can be changed independently regardless of the transmitting angle α, and are fundamentally different from the design concept of conventional devices.

第4図(B)についてこの点を説明すると、従来の超音
波探傷装置の設ゴ1思想では、送波した超音波を如何に
して効率良く受波するかが技術的な関心事であり、従っ
て、第4図(B)の送波用遅延回路47−1と受波用遅
延回路47−2の各送受波子毎の遅延量は全く等しくな
るように設計されて、送波の指向性と受波の指向性が等
しくなるように図られた。このため制御部49(通常は
マイクロコンピュータが使用される)は送波側受波側共
通に使用されることが多く、遅延回路47−1.47−
2も共通に使われた。第4図(B)では送波側と受波側
の制御が独立して行なわれることを強調するため制御部
49−1.49−2.遅延回路4.7−1.4.7−2
、切替回路45.46とも送波側ど受波側に分けて書い
ていたが、両者を時間的にずらして制御することは可能
であり従来同様何れの部分も共通にすることは勿論可能
である。
To explain this point with reference to FIG. 4(B), in the first design concept of conventional ultrasonic flaw detection equipment, the technical concern is how to efficiently receive the transmitted ultrasonic waves. Therefore, the delay amount for each transmitting/receiving element in the transmitting delay circuit 47-1 and the receiving delay circuit 47-2 in FIG. 4(B) is designed to be completely equal, and the directivity of the transmitting wave and The directionality of the received waves was made to be equal. For this reason, the control unit 49 (usually a microcomputer is used) is often used for both the transmitting and receiving sides, and the delay circuit 47-1.47-
2 was also commonly used. In FIG. 4(B), the control units 49-1, 49-2. Delay circuit 4.7-1.4.7-2
, switching circuits 45 and 46 were written separately for the transmitting side and the receiving side, but it is possible to control both by shifting them in time, and it is of course possible to use both parts in common as in the past. be.

以上説明した方法により、送波板波とは独立して全ての
モードの板波を受波できる超音波探傷装置が実現する。
By the method described above, an ultrasonic flaw detection device capable of receiving plate waves of all modes independently of the transmitting plate wave is realized.

第12図には、受波モードの強度分布のパターンから割
れの深さを推定し、出現するモードの特徴マトリクスか
ら欠陥の種類を推定する例を示した。
FIG. 12 shows an example in which the depth of a crack is estimated from the pattern of the intensity distribution of the received wave mode, and the type of defect is estimated from the characteristic matrix of the mode that appears.

勿論これらを実際に適用するためにはデータの集積が必
要であるが、これらのマスターカー・ブあるいはマトリ
ク入パターンが決定すればコツピユータによる白め判定
も可能となる。
Of course, in order to actually apply these, data must be accumulated, but once these master curves or matrix input patterns are determined, it becomes possible to determine whiteness using a computer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、欠陥から反射する全てのモードの板波
が測定できるので。
According to the present invention, plate waves of all modes reflected from defects can be measured.

l) 送波板波と異なるモード反射した欠陥反射波の検
出洩れが防止できる。
l) Missing detection of defective reflected waves reflected in a mode different from the wave transmitting plate wave can be prevented.

2) 反射板波のモード分布を測定し、パターン化する
ことにより欠陥の大きさ、性状を推定する情報が得られ
る。
2) Information for estimating the size and properties of defects can be obtained by measuring and patterning the mode distribution of the reflector waves.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の板波超音波探傷装置の基本
的な構成図、第2図、第3図、第4図(A)、(B)、
(C)は実施例の説明図、第5図、第6図、第7図は板
波に関する説明図、第8図、第9図は本発明の背景とな
った欠陥による板波のモード変換の説明図6第10図は
受波子を手で動かして受波角を変える状態の説明図。第
11図は小型電動機で受波子を動して受波角を変える状
態の説明図。第12図は欠陥の種類と大きさの推定手法
として利用する例の説明図である。 11・・・送波子、12・・・受波子、14・・・摺動
片、15.16・・・超音波模、31・・・送波板波、
32・・・反射板波、33・・・板波、40・・・電気
的なパルス、4】・・・パルサ、42・・・プリアンプ
、43・・・表示部、44・・・同期回路、45.46
・・・切換回路、47−1.47−2・・・遅延回路。
Fig. 1 is a basic configuration diagram of a plate wave ultrasonic flaw detection device according to an embodiment of the present invention, Fig. 2, Fig. 3, Fig. 4 (A), (B),
(C) is an explanatory diagram of the embodiment; FIGS. 5, 6, and 7 are explanatory diagrams regarding plate waves; and FIGS. 8 and 9 are mode conversions of plate waves due to defects, which are the background of the present invention. Fig. 6 is an explanatory diagram of the state in which the wave receiving angle is changed by moving the wave receiver by hand. FIG. 11 is an explanatory diagram of a state in which a wave receiving element is moved by a small electric motor to change a receiving angle. FIG. 12 is an explanatory diagram of an example used as a method for estimating the type and size of a defect. 11... Wave transmitter, 12... Wave receiver, 14... Sliding piece, 15.16... Ultrasonic model, 31... Wave transmitter plate wave,
32...Reflector wave, 33...Plate wave, 40...Electrical pulse, 4]...Pulser, 42...Preamplifier, 43...Display section, 44...Synchronization circuit , 45.46
...Switching circuit, 47-1.47-2...Delay circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、パルス発振器とそのパルス発振器からのパルス電圧
を受けて超音波を送波し、あるいは超音波を受波する超
音波送受波子、前記超音波送受波子からの信号と増巾す
る増巾器、及び増巾された受波信号を表示する表示部か
ら構成される超音波探傷装置に於いて、探傷面に対する
超音波の送波角度と受波角度を等しくしないことを特徴
とする超音波探傷装置。
1. A pulse oscillator, an ultrasonic transducer that receives the pulse voltage from the pulse oscillator and transmits or receives ultrasonic waves, and an amplifier that amplifies the signal from the ultrasonic transducer; and a display unit that displays the amplified received wave signal, the ultrasonic flaw detection device characterized in that the transmitting angle and the receiving angle of the ultrasonic waves with respect to the flaw detection surface are not equal. .
JP60097823A 1985-05-10 1985-05-10 Ultrasonic flaw detection apparatus Pending JPS61256255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097823A JPS61256255A (en) 1985-05-10 1985-05-10 Ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097823A JPS61256255A (en) 1985-05-10 1985-05-10 Ultrasonic flaw detection apparatus

Publications (1)

Publication Number Publication Date
JPS61256255A true JPS61256255A (en) 1986-11-13

Family

ID=14202448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097823A Pending JPS61256255A (en) 1985-05-10 1985-05-10 Ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPS61256255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777239B1 (en) 2006-06-30 2007-11-19 재단법인 포항산업과학연구원 Automatic variable incident angle ultrasonic transmitter
US8225668B2 (en) 2005-07-04 2012-07-24 Independent Administrative Institution Japan Aerospace Exploration Agency Ultrasonic wave testing method and ultrasonic testing device using this method
KR101214109B1 (en) * 2005-10-31 2012-12-20 재단법인 포항산업과학연구원 Ultrasonic Variable Incident Angle Beam Wedge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225668B2 (en) 2005-07-04 2012-07-24 Independent Administrative Institution Japan Aerospace Exploration Agency Ultrasonic wave testing method and ultrasonic testing device using this method
KR101214109B1 (en) * 2005-10-31 2012-12-20 재단법인 포항산업과학연구원 Ultrasonic Variable Incident Angle Beam Wedge
KR100777239B1 (en) 2006-06-30 2007-11-19 재단법인 포항산업과학연구원 Automatic variable incident angle ultrasonic transmitter

Similar Documents

Publication Publication Date Title
CN109696480B (en) Glass fiber composite material acoustic emission source positioning imaging method based on improved time reversal algorithm
JPS60233547A (en) Method and device for maintaining parallel relationship between working surface of acoustic transducer and flat surface of object
JPS61256255A (en) Ultrasonic flaw detection apparatus
JP2000241397A (en) Method and apparatus for detecting surface defect
US4733963A (en) Method of measuring a sound pressure distribution in a solid body due to a ultrasonic probe by using photoelasticity
US3832887A (en) Ultrasonic inspection apparatus
JPS61160053A (en) Ultrasonic flaw detection test
JP2001013118A (en) Electromagnetic ultrasonic probe
JP2943567B2 (en) Pipe shape inspection device
JPH1038862A (en) Method and device for iron loss value evaluation
JPH0493763A (en) Ultrasonic apparatus for flaw detection
JP3207740B2 (en) Defect position estimation device
JPS63305245A (en) Defective position estimating method
JP2739972B2 (en) Ultrasonic flaw detector
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPS6014167A (en) Ultrasonic examination device
JP2001033508A (en) Method for locating partial discharge position of power cable
JPH0474962A (en) Ultrasonic measuring apparatus
SU1142788A1 (en) Method of measuring time of distribution of ultrasound in material
JPS597260A (en) Method and device for ultrasonic flaw detection
RU2034236C1 (en) Ultrasound echo thickness gage
JPS62156558A (en) Ultrasonic flaw detector
JPS6228862B2 (en)
KR20210086323A (en) Device for inspecting defects using nondestructive method
JPS60120243A (en) Electron scanning type ultrasonic-wave flaw detecting apparatus