JPH0493763A - Ultrasonic apparatus for flaw detection - Google Patents

Ultrasonic apparatus for flaw detection

Info

Publication number
JPH0493763A
JPH0493763A JP2209100A JP20910090A JPH0493763A JP H0493763 A JPH0493763 A JP H0493763A JP 2209100 A JP2209100 A JP 2209100A JP 20910090 A JP20910090 A JP 20910090A JP H0493763 A JPH0493763 A JP H0493763A
Authority
JP
Japan
Prior art keywords
defect
circuit
ultrasonic
ultrasonic waves
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2209100A
Other languages
Japanese (ja)
Other versions
JP2864429B2 (en
Inventor
Akira Murayama
村山 章
Megumi Tanaka
恵 田中
Toshiya Akiyama
秋山 俊弥
Takeshige Katsumata
勝又 武繁
Mitsuhiro Hoshino
星野 充宏
Akio Onimaru
鬼丸 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN PUROOBU KK
JFE Engineering Corp
Tokyo Keiki Inc
Original Assignee
JAPAN PUROOBU KK
Tokimec Inc
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN PUROOBU KK, Tokimec Inc, NKK Corp, Nippon Kokan Ltd filed Critical JAPAN PUROOBU KK
Priority to JP2209100A priority Critical patent/JP2864429B2/en
Publication of JPH0493763A publication Critical patent/JPH0493763A/en
Application granted granted Critical
Publication of JP2864429B2 publication Critical patent/JP2864429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To expand a range of detection of a defect and to improve the precision in detection by impressing a plurality of ultrasonic waves simultaneously on a body to be measured, from directions different from one another, and by causing interference intentionally among the ultrasonic waves. CONSTITUTION:Based on a pulse outputted from a transmission circuit 30, transmission vibrators 22a and 23a of each divided-type probe emit pulse-shaped ultrasonic waves simultaneously. Part of these ultrasonic waves is reflected on a fitting surface 4a and other enters a steel plate 4 and is propagated in the direction of focuses 25 and 26. Each reflected wave from a bottom surface or meeting with a defect in the course of propagation is made to enter a reception vibrator 22b or 23b and displayed 38 as a defect-reflected wave F, in addition to the transmission pulse wave, the surface-reflected wave and the bottom-reflected wave, through a reception circuit 31. Besides, phase-shift circuits 21a and 21b interposing between the circuit 30 and the vibrators 22a and 23a shift phases of the ultrasonic waves propagated through the steel plate from each other, so as to cause interference intentionally, and thereby increase the intensity of the ultrasonic wave at a remote distance from the fitting surface 4a, for instance. Accordingly, the characteristic of sensitivity of detection of the detect in the direction of the thickness of a body to be measured can be set in the most excellent state, and expansion of a range of detection of the defect and improvement of the precision in detection can be attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複数の探触子を例えば一つの容器に組込んだ複
合超音波探触子を用いた超音波探傷装置に係わり、特に
、被測定体の厚み方向の欠陥検出感度特性を可変設定で
きるようにした超音波探傷装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection device using a composite ultrasonic probe in which a plurality of probes are assembled into one container, and in particular, The present invention relates to an ultrasonic flaw detection device in which defect detection sensitivity characteristics in the thickness direction of a measuring object can be variably set.

C従来の技術] 例えば鋼板等の被測定体内に存在する欠陥を検出する欠
陥探傷装置の一つとして超音波探傷装置が実用化されて
いる。そして、その超音波探傷手法はJISにも規定さ
れている(例えばJIS G−0801)。
C. Prior Art] Ultrasonic flaw detection devices have been put into practical use as one type of flaw detection device for detecting defects present in objects to be measured, such as steel plates. The ultrasonic flaw detection method is also specified in JIS (for example, JIS G-0801).

この垂直超音波探傷法に用られる超音波探触子は大きく
分けて垂直探触子と分割型探触子との2種類があり、そ
れぞれ被測定体の厚みや使用目的に応して使い分けられ
ている。
The ultrasonic probes used in this vertical ultrasonic flaw detection method can be roughly divided into two types: vertical probes and split-type probes, and each can be used depending on the thickness of the object to be measured and the purpose of use. ing.

第9図(a)は垂直探触子の概略構成を示す図である。FIG. 9(a) is a diagram showing a schematic configuration of a vertical probe.

この垂直探触子1はダンパー材か充填された容器2内に
超音波の送信と受信とを行う1枚の振動子3か被測定体
としての鋼板4の取付面4aに平行に配設されている。
This vertical probe 1 is disposed in a container 2 filled with a damper material or parallel to a mounting surface 4a of a single transducer 3 for transmitting and receiving ultrasonic waves or a steel plate 4 as an object to be measured. ing.

そして、外部の制御装置から信号線5を介してパルス信
号を振動子3に印加すると、振動子3から超音波6か鋼
板4の厚み方向(垂直方向)に送出される。鋼板4内を
垂直方向に伝播される超音波6は例えば鋼板4の反対面
(底面)で反射されて、同一の振動子3へ入射する。し
たがって、この振動子3に接続された信号線5を介して
検出される受信信号aには第9図(a)の右側に示すよ
うに、送信パルス波Tと底面での反射波Bとが含まれる
When a pulse signal is applied to the vibrator 3 from an external control device via the signal line 5, the vibrator 3 sends out ultrasonic waves 6 in the thickness direction (vertical direction) of the steel plate 4. The ultrasonic waves 6 propagated vertically within the steel plate 4 are reflected, for example, from the opposite surface (bottom surface) of the steel plate 4 and are incident on the same vibrator 3 . Therefore, the received signal a detected via the signal line 5 connected to the vibrator 3 includes the transmitted pulse wave T and the reflected wave B from the bottom surface, as shown on the right side of FIG. 9(a). included.

ここで、鋼板4の内部に欠陥が存在すると、この欠陥で
超音波6が反射されるので、受信信号aにおける送信パ
ルス波Tと底面反射波Bとの間に欠陥に起因する欠陥反
射波か生じる。よって、欠陥の発生位置(発生深さ)と
波高さ(レベル)で示される欠陥規模とを特定できる。
Here, if a defect exists inside the steel plate 4, the ultrasonic wave 6 is reflected by this defect, so there is no defect reflected wave caused by the defect between the transmitted pulse wave T and the bottom reflected wave B in the received signal a. arise. Therefore, the defect occurrence position (occurrence depth) and the defect scale indicated by the wave height (level) can be specified.

第9図(b)は分割型探触子の概略構成を示す図である
。この分割型探触子7はくさび材及びダンパー材が充填
された容器8内に一対の振動子910が鋼板4の取付面
4aに対して多少傾斜して配置されている。そして、垂
線上に位置する焦点11の上下位置は、前記傾斜角を変
化させることや、楔材の寸法を変えること等で調整可能
である。
FIG. 9(b) is a diagram showing a schematic configuration of a split type probe. This split type probe 7 has a pair of vibrators 910 arranged at a slight angle with respect to the mounting surface 4a of the steel plate 4 in a container 8 filled with a wedge material and a damper material. The vertical position of the focal point 11 located on the perpendicular line can be adjusted by changing the inclination angle, changing the dimensions of the wedge material, etc.

外部の制御装置から信号線12aを介してパルス信号を
一方の振動子9に印加すると、この振動子9から超音波
6か鋼板4内の焦点11方向に送出される。また、他方
の振動子10は、前記焦点11方向から入力される超音
波を受信し、その受信信号すを信号線12bを介して制
御装置へ送出する。したかって、この受信信号すには第
9図(b)の右側に示すように、振動子10の取付位置
での送信パルス波Tと、取付面4aての表面反射波Sと
、底面での底面反射波Bとが含まれる。
When a pulse signal is applied from an external control device to one of the transducers 9 via the signal line 12a, the ultrasonic waves 6 are sent out from the transducer 9 in the direction of the focal point 11 within the steel plate 4. Further, the other transducer 10 receives ultrasonic waves input from the direction of the focal point 11, and sends the received signal to the control device via the signal line 12b. Therefore, as shown on the right side of FIG. 9(b), this received signal consists of a transmitted pulse wave T at the mounting position of the vibrator 10, a surface reflected wave S from all the mounting surfaces 4a, and a wave reflected from the bottom surface. The bottom reflected wave B is included.

したがって、鋼板4内の前記焦点11近傍に欠陥が存在
すると、この欠陥で超音波6が反射されるので、受信信
号すにおける表面反射波Sと底面反射波Bとの間に欠陥
に起因する欠陥反射波が生じる。よって、欠陥の発生位
置と規模とを特定できる。
Therefore, if a defect exists in the vicinity of the focal point 11 in the steel plate 4, the ultrasonic wave 6 will be reflected by this defect, so that the defect caused by the defect will occur between the surface reflected wave S and the bottom reflected wave B in the received signal. Reflected waves occur. Therefore, the location and size of the defect can be identified.

[発明か解決しようとする課題] しかしながら第9図に示す垂直探触子1または分割型探
触子7を用いた超音波探傷装置においてもまだ解消すべ
き次のような問題があった。
[Problems to be Solved by the Invention] However, even in the ultrasonic flaw detection apparatus using the vertical probe 1 or the split type probe 7 shown in FIG. 9, the following problems still remain to be solved.

すなわち、第9図(a)に示す垂直探触子1を用いた超
音波探傷装置においては、同図の右側の受信信号aの波
形に示すように、鋼板4のご(浅い部分には送信パルス
波Tが重畳するので、たとえその部分に欠陥が存在した
としてもその欠陥に起因する反射波(エコー)は送信パ
ルス波Tに埋もれてしまうので、正確に検出てきない問
題がある。
That is, in the ultrasonic flaw detection apparatus using the vertical probe 1 shown in FIG. Since the pulse waves T are superimposed, even if a defect exists in that part, the reflected wave (echo) caused by the defect is buried in the transmitted pulse wave T, so there is a problem that it cannot be detected accurately.

また、この垂直探触子1は一定の近距離音場内において
は、検出された欠陥反射波(欠陥エコー)の高さは欠陥
の存在する位置(取付面がらの距M)に大きく影響され
ない。しかし、この近距離音場限界の距離を越えると、
超音波の音圧が拡散現象や結晶粒度による散乱現象によ
り低下する。従って、欠陥位置か取付面4aがら遠くな
るほど同一規模の欠陥であっても、欠陥反射波の高さは
低くなる。よって、欠陥を検出した位置で欠陥反射波高
さが異なる問題が生しる。その結果、欠陥反射波の高さ
でもって被測定体に対する合否判定を行うことができな
い。よって、この超音波探傷装置を例えば工場の製品検
査ラインに組込んで製品の合否判定を自動的に行うこと
が困難であった。
Further, in the vertical probe 1, within a certain short-range sound field, the height of the detected defect reflected wave (defect echo) is not greatly influenced by the position where the defect exists (distance M from the mounting surface). However, beyond this near field limit distance,
The sound pressure of ultrasonic waves decreases due to diffusion phenomena and scattering phenomena due to crystal grain size. Therefore, the farther the defect position is from the mounting surface 4a, the lower the height of the defect reflected wave even if the defect is of the same size. Therefore, a problem arises in that the height of the defect reflected wave differs depending on the position where the defect is detected. As a result, it is not possible to make a pass/fail judgment for the object to be measured based on the height of the defect reflected wave. Therefore, it has been difficult to incorporate this ultrasonic flaw detection device into, for example, a product inspection line in a factory to automatically determine pass/fail of products.

一方、第9図(b)に示す分割型探触子7においては、
受信信号すにおける鋼板4の取付面4a近傍には送信パ
ルス波Tが現れないので、表面下1〜21より深い位置
にある欠陥を検出することが可能である。しかし、精度
良く欠陥を検出できる領域は、第10図に示すように、
焦点11を中心とする両方の振動子9,10が同時にカ
バーする斜線で示した領域(焦点範囲)13のみとなる
On the other hand, in the split type probe 7 shown in FIG. 9(b),
Since the transmitted pulse wave T does not appear in the vicinity of the mounting surface 4a of the steel plate 4 in the received signal, it is possible to detect defects located deeper than the surface 1 to 21. However, the area where defects can be detected with high accuracy is as shown in Figure 10.
Only the shaded area (focal range) 13 centered on the focal point 11 is simultaneously covered by both the vibrators 9 and 10.

したがって、受信信号すにて得られる欠陥に起因する反
射波の検出感度は同図の右側に示すようにこの領域13
で最大値を示す。第11図は鋼板4の厚み方向の各距M
dにおける欠陥の検出感度を示す欠陥検出感度特性図で
ある。図示するように、前記領域13を越える距fid
の領域で欠陥検出感度は大幅に低下する。また、前記領
域13より浅い位置においても欠陥検出感度は低下する
Therefore, the detection sensitivity of the reflected wave caused by the defect obtained in the received signal is as shown on the right side of the figure, in this region 13.
indicates the maximum value. Figure 11 shows each distance M in the thickness direction of the steel plate 4.
FIG. 3 is a defect detection sensitivity characteristic diagram showing the defect detection sensitivity at d. As shown, the distance fid beyond the area 13
Defect detection sensitivity decreases significantly in the region of . Further, the defect detection sensitivity also decreases at a position shallower than the region 13.

よって、この分割型探触子7においても、前述した垂直
探触子1と同様に欠陥反射波の高さでもって製品の良否
を一律に判断できない問題が生じる。
Therefore, similar to the above-described vertical probe 1, this split type probe 7 also has the problem that the quality of the product cannot be determined uniformly based on the height of the defect reflected wave.

このような不都合を解消するために、DAC(距離感度
補正)回路を用いて、底面近傍の遠距離位置に発生した
欠陥に起因する欠陥反射波を該当欠陥の規模に相当する
大きさに補正するようにした超音波探傷装置が開発され
ている。
In order to eliminate this inconvenience, a DAC (distance sensitivity correction) circuit is used to correct the defect reflected wave caused by a defect occurring at a long distance near the bottom surface to a size corresponding to the size of the defect in question. An ultrasonic flaw detection device has been developed.

このようにDAC回路を用いて感度補正を行うことによ
って、操作者は出力された欠陥反射波の高さのみを観測
することによって、発生位置に関係なく欠陥規模を正確
に把握できる。また、発生位置に関係なく、一定レベル
以上の欠陥反射波を無条件に検出して警報を出力すれば
よいので、操作者が欠陥波を観測して判断する必要がな
く、欠陥の探傷速度を高めることができる。
By performing sensitivity correction using the DAC circuit in this manner, the operator can accurately grasp the scale of the defect regardless of the location of the defect by observing only the height of the output defect reflected wave. In addition, since it is possible to unconditionally detect defect reflected waves of a certain level or higher and output an alarm regardless of the location where they occur, there is no need for the operator to observe the defect waves and make judgments, and the defect detection speed can be increased. can be increased.

しかし、この感度補正を行うためのDAC回路の補正曲
線(DAC曲線)を作成する作業は操作者がその都度行
っている。このDAC曲線を作成するには、DAC起点
、DAC範囲 DACマーク、DAC傾斜値等のDAC
関係の各調整つまみを鋼板4の各厚み毎に探触子を移動
させなから、一定のレベルに調整する必要がある。この
調整作業は非常に繁雑で、また高度な熟練度か要求され
るのて、この作業は熟達した者か実施する必要かあった
。また、測定を実行する毎に調整を実施する必要かあっ
た。
However, the operation of creating a correction curve (DAC curve) for the DAC circuit for performing this sensitivity correction is performed by the operator each time. To create this DAC curve, set the DAC starting point, DAC range, DAC mark, DAC slope value, etc.
Since the probe is not moved for each thickness of the steel plate 4 using the related adjustment knobs, it is necessary to adjust them to a constant level. This adjustment work was very complicated and required a high degree of skill, so it had to be carried out by a skilled person. Also, it was necessary to make adjustments every time a measurement was performed.

さらに、遠距離の検出感度を例えば増幅器等を用いて強
制的に上昇させているので、増幅に起因する雑音か混入
しやすく、S/Nが低下する問題かあった。すなわち、
本質的に遠距離の欠陥検出におけるS/Nは近距離にお
けるS/Nに比較し格段に低下する。よって、厚み方向
の全測定範囲に亘って均一なS/N特性を得ることかで
きないので、この分割型探触子を用いた超音波探傷装置
全体の欠陥検出精度が低下する問題があった。
Furthermore, since the long-distance detection sensitivity is forcibly increased using, for example, an amplifier, noise caused by the amplification is likely to be mixed in, resulting in a problem in which the S/N ratio decreases. That is,
Essentially, the S/N in long-distance defect detection is significantly lower than the S/N in short-distance detection. Therefore, since it is only possible to obtain a uniform S/N characteristic over the entire measurement range in the thickness direction, there is a problem that the defect detection accuracy of the entire ultrasonic flaw detection apparatus using this split type probe is reduced.

本発明はこのような事情に鑑みてなされたものであり、
被測定体に対して互いに異なる方向から複数の超音波を
同時に印加し、かつその超音波の位相差をずらせること
によって、故意に超音波相互間で干諷を生じさせ、DA
C回路等を用いて感度補正を行う必要なく、複雑な調整
作業を除去でき、被測定体の厚み方向の欠陥検出感度特
性を最良の状態に設定でき、もって、欠陥の検出範囲の
拡大と検出精度の向上とを図ることができる超音波探傷
装置を提供することを目的とする。
The present invention was made in view of these circumstances, and
By simultaneously applying multiple ultrasonic waves to the object to be measured from different directions and shifting the phase difference of the ultrasonic waves, the ultrasonic waves are intentionally made to conflict with each other.
Complex adjustment work can be removed without the need for sensitivity correction using a C circuit, etc., and the defect detection sensitivity characteristics in the thickness direction of the object to be measured can be set to the best condition, thereby expanding the detection range and detecting defects. An object of the present invention is to provide an ultrasonic flaw detection device that can improve accuracy.

[課題を解決するだめの手段] 上記課題を解消するために本発明の超音波探傷装置にお
いては、一対の振動子を被測定体の取付面に直交する垂
線上における互いに異なる位置に焦点を結ぶように配設
した複数の分割型探触子からなる複合超音波探触子と、
この複合超音波探触子に組込まれた複数の振動子へパル
ス信号を同時に印加してそれぞれパルス状の超音波を発
生させる送信回路と、この送信回路と複数の送信振動子
のうちの少なくとも一つの振動子との間に介挿され、各
振動子から出力される各超音波相互間の位相差を可変設
定する移相回路と、各振動子から出力された受信信号を
受信してこの受信信号に含ま゛れる欠陥等に起因する、
各種反射波を検出する受信回路と、この受信回路で検出
された各反射波を表示する表示器とを備えたものである
[Means for Solving the Problems] In order to solve the above problems, the ultrasonic flaw detection device of the present invention focuses a pair of transducers at different positions on a perpendicular line perpendicular to the mounting surface of the object to be measured. A composite ultrasonic probe consisting of multiple segmented probes arranged as shown in FIG.
A transmitting circuit that simultaneously applies pulse signals to a plurality of transducers incorporated in the composite ultrasound probe to generate pulsed ultrasonic waves, and at least one of the transmitting circuit and the plurality of transmitting transducers. A phase shift circuit is inserted between the two transducers to variably set the phase difference between the ultrasonic waves output from each transducer, and a phase shift circuit that receives the received signal output from each transducer. Due to defects included in the signal,
It is equipped with a receiving circuit that detects various reflected waves, and a display that displays each reflected wave detected by this receiving circuit.

また、別の発明においては、上記複合超音波探触子を、
被測定体の取付面と直交する方向に超音波を送受信する
振動子を有する垂直探触子と一対の振動子を被測定体の
取付面に直交する垂線上に焦点を結ぶように配設した分
割型探触子とで構成したものである。
Further, in another invention, the above composite ultrasonic probe includes:
A vertical probe with a transducer that transmits and receives ultrasonic waves in a direction perpendicular to the mounting surface of the measured object and a pair of transducers are arranged so as to focus on a perpendicular line perpendicular to the mounting surface of the measured object. It consists of a split type probe.

[作 用コ このように構成された超音波探傷装置には焦点位置が取
付面に直交する垂線上において互いに異なる位置に設定
された複数の分割型探触子が備えられている。そして、
各分割型探触子の各一方の振動子に送信回路から同時に
パルス信号が印加される。よって、これらの各振動子か
ら同時に超音波が各焦点方向へ送出される。この場合、
振動子と送信回路との間に移相回路が介挿されているの
で、この移相回路によって同時に出力された超音波相互
間の位相差が可変設定可能となる。すなわち、異なる方
向から出力された各超音波の位相か異なれば、これらの
超音波どうしか交差した位置において、これらの超音波
相互間で干渉現象か生じる。そして、その干渉現象のた
めに超音波相互間で互いに強めあい、または弱めあう。
[Function] The ultrasonic flaw detection device configured in this manner is equipped with a plurality of split probes whose focal positions are set at different positions on a perpendicular line perpendicular to the mounting surface. and,
Pulse signals are simultaneously applied from the transmission circuit to each one of the transducers of each split type probe. Therefore, ultrasonic waves are simultaneously transmitted from each of these transducers to each focal direction. in this case,
Since the phase shift circuit is interposed between the transducer and the transmission circuit, the phase difference between the simultaneously output ultrasonic waves can be variably set by this phase shift circuit. That is, if the phases of the ultrasonic waves output from different directions are different, an interference phenomenon occurs between these ultrasonic waves at a position where some of these ultrasonic waves intersect. Due to this interference phenomenon, the ultrasonic waves mutually strengthen or weaken each other.

各交差位置における超音波相互間の位相差は互いの伝播
経路が異なるためにその位置に応じて変化する。すなわ
ち、被測定体の厚み方向(垂線方向)の各位置に応じて
その干渉度合いか変化する。
The phase difference between the ultrasonic waves at each intersection position changes depending on the position because their propagation paths are different. That is, the degree of interference changes depending on each position in the thickness direction (perpendicular direction) of the object to be measured.

欠陥に起因する超音波の反射波の高さ(大きさ)はその
欠陥発生位置の超音波の強度に対応するので、その発生
位置における前記各超音波相互間の位相差が零の場合は
、互いに強めあうので、大きい欠陥反射波が検出される
。一方、該当欠陥発生位置の位相差か180°であれば
、互いに弱めあうので、検出された欠陥反射波は非常に
小さくなる。
The height (magnitude) of the reflected ultrasound wave caused by a defect corresponds to the intensity of the ultrasound at the location where the defect occurs, so if the phase difference between the ultrasound waves at the location where the defect occurs is zero, Since they strengthen each other, large defect reflected waves are detected. On the other hand, if the phase difference at the position where the defect occurs is 180°, they will weaken each other, so the detected defect reflected wave will be very small.

被測定体の厚み方向の各位置における位相差は移相回路
で調整可能であるので、例えば浅い(近距M)位置で互
いに弱めあう位相差となり、深い(遠距離)位置で互い
に強めあう位相差になるように設定すればよい。このよ
うに設定すれば、遠距離における検出感度を上昇できる
。なお、近距離においては、もともと遠距離比較して検
出感度は格段に高いので、干渉で多少検出感度か低下し
てもさほど問題とならない。
Since the phase difference at each position in the thickness direction of the object to be measured can be adjusted using a phase shift circuit, for example, the phase differences may weaken each other at a shallow (near distance M) position, and strengthen each other at a deep (long distance) position. They may be set so that they have a phase difference. With this setting, detection sensitivity at long distances can be increased. Note that since the detection sensitivity at short distances is originally much higher than that at long distances, it is not a big problem even if the detection sensitivity decreases to some extent due to interference.

よって、近距離から遠距離に亘って比較的均一な欠陥検
出感度特性を得ることか可能となる。
Therefore, it is possible to obtain relatively uniform defect detection sensitivity characteristics over a short distance to a long distance.

また、別の発明においては、複合超音波探触子を上述し
た分割型探触子と垂直探触子とで構成しているか、この
ような複合超音波探触子てあっても、被測定体に対して
異なる位置から異なる方向に各超音波が送出される。し
たがって、移相回路でもって、各超音波相互間の位相差
を調整すれば、上述した発明と同様な作用でもって近距
離から遠距離に亘って比較的均一な欠陥検出感度特性を
得ることか可能となる。
Further, in another invention, the composite ultrasonic probe may be composed of the above-mentioned split type probe and the vertical probe, or even if such a composite ultrasonic probe is used, the Each ultrasound wave is transmitted in a different direction from a different location relative to the body. Therefore, by adjusting the phase difference between each ultrasonic wave using a phase shift circuit, it is possible to obtain relatively uniform defect detection sensitivity characteristics from a short distance to a long distance with the same effect as the invention described above. It becomes possible.

[実施例] 以下本発明の一実施例を図面を用いて説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は実施例の超音波探傷装置を示す模式図であり、
第2図はこの超音波探傷装置に備えられた複合超音波探
触子の概略構成を示す透視斜視図である。
FIG. 1 is a schematic diagram showing an ultrasonic flaw detection device according to an embodiment.
FIG. 2 is a transparent perspective view showing a schematic configuration of a composite ultrasonic probe provided in this ultrasonic flaw detection apparatus.

この超音波探傷装置は、大きく分けて、複数の分割型探
触子が組込まれた複合超音波探触子20と、この複合超
音波探触子2oを作動する各種回路が組込まれた超音波
探傷器19と移相回路21a、21bとて構成されてい
る。
This ultrasonic flaw detection device is broadly divided into a composite ultrasonic probe 20 incorporating a plurality of split type probes, and an ultrasonic probe 20 incorporating various circuits for operating this composite ultrasonic probe 2o. It is composed of a flaw detector 19 and phase shift circuits 21a and 21b.

そして、複合超音波探触子2oにおいては、箱型の容器
2Oa内に、送信振動子22aおよび受信振動子22b
で構成される第1の分割型探触子と、送信振動子23a
および受信振動子23bて構成される第2の分割型探触
子とが組込まれている。また、この容器2Oa内にはく
さび材及びダンパー材が充填されている。そして、送信
振動子22a、受信振動子22bは音響分割板24を挟
んた対称位置に略ハ字形に傾斜して配設されている。そ
して、この送信振動子22aおよび受信振動子22bで
構成される第1の分割型探触子の焦点25の取付面4a
からの厚み方向の距M dp +は前記傾斜角度によっ
て定まる。
In the composite ultrasonic probe 2o, a transmitting transducer 22a and a receiving transducer 22b are placed in a box-shaped container 2Oa.
a first split-type probe consisting of a transmitting transducer 23a;
and a second split type probe constituted by a receiving transducer 23b. Further, the container 2Oa is filled with a wedge material and a damper material. The transmitting transducer 22a and the receiving transducer 22b are disposed at symmetrical positions with the acoustic dividing plate 24 in between, and are inclined in a substantially V-shape. The mounting surface 4a of the focal point 25 of the first split type probe composed of the transmitting transducer 22a and the receiving transducer 22b
The distance M dp + in the thickness direction from M dp + is determined by the inclination angle.

同様に、送信振動子23a、受信振動子23bは前記音
響分割板24を挟んで第1の分割型探触子の外側位置に
同じく略ハ字形に傾斜して配設されている。この送信振
動子23aおよび受信振動子23bで構成される第2の
分割型探触子の焦点26の取付面4aからの厚み方向の
距離dP2は前記傾斜角度によって定まる。この実施例
においては、第1の分割型探触子の各振動子22a。
Similarly, the transmitting transducer 23a and the receiving transducer 23b are disposed on the outside of the first split type probe with the acoustic dividing plate 24 in between, and are also inclined in a substantially V-shape. The distance dP2 in the thickness direction of the focal point 26 of the second split type probe composed of the transmitting transducer 23a and the receiving transducer 23b from the mounting surface 4a is determined by the inclination angle. In this embodiment, each vibrator 22a of the first split type probe.

22bの取付面4aに対する傾斜角を第2の分割型探触
子の傾斜角より大きく設定することによって、焦点位置
(距離d p+)を第2の分割型探触子の焦点位置(距
離d F2)より取付面4a側に位置させている。
By setting the inclination angle of 22b with respect to the mounting surface 4a to be larger than the inclination angle of the second split type probe, the focal position (distance d p+) is changed to the focal position (distance d F2) of the second split type probe. ) is located closer to the mounting surface 4a.

また、容器20aの上面には各振動子22a。Further, each vibrator 22a is provided on the upper surface of the container 20a.

22b、23a、23bに対応する4個の接続端子27
a、27b、28a、28bが取付けられている。
Four connection terminals 27 corresponding to 22b, 23a, 23b
a, 27b, 28a, and 28b are attached.

そして、送信振動子22aと受信振動子22bとで構成
される第1の分割型探触子における厚み方向の各距Md
における前述した欠陥に起因する欠陥反射波の検出感度
は第3図(a)に示す感度特性Aとなる。すなわち、焦
点25の位置(距離dF、)が最大感度となり、焦点位
置(距Mdp+)から離れるに伴って検出感度か低下す
る。同様に、送信振動子23aと受信振動子23bとで
構成される第2の分割型探触子における欠陥反射波の検
出感度は感度特性Bとなる。すなわち、焦点26の位置
(距Mdp2)か最大感度となり、焦点位置(距離d 
F2)から離れるに伴って検出感度が低下する。
Each distance Md in the thickness direction of the first split type probe composed of the transmitting transducer 22a and the receiving transducer 22b
The detection sensitivity of the defect reflected wave caused by the above-mentioned defect in is the sensitivity characteristic A shown in FIG. 3(a). That is, the position of the focal point 25 (distance dF) has the maximum sensitivity, and the detection sensitivity decreases as the distance from the focal point position (distance Mdp+) increases. Similarly, the detection sensitivity of defective reflected waves in the second split type probe composed of the transmitting transducer 23a and the receiving transducer 23b has sensitivity characteristic B. In other words, the maximum sensitivity is at the position of the focal point 26 (distance Mdp2), and the focal position (distance dp2) is the maximum sensitivity.
The detection sensitivity decreases as the distance from F2) increases.

なお、実際には各分割型探触子の検出感度は完全に一致
しないが、例えばコイル等の各整合器を各接続端子27
a〜28bと各振動子22a〜23bとの間に挿入して
、その各整合器の物理特性を変化させることによって、
第3図(a)に示すように、各分割型探触子の感度特性
A、Hの最大値をほぼ一致させている。
Note that in reality, the detection sensitivities of the split type probes do not completely match, but for example, each matching device such as a coil is connected to each connection terminal 27.
By inserting it between a to 28b and each vibrator 22a to 23b and changing the physical characteristics of each matching device,
As shown in FIG. 3(a), the maximum values of the sensitivity characteristics A and H of each split type probe are made to almost match.

そして、第1の分割型探触子の送信振動子22aの接続
端子27aは移相回路21b、超音波探傷器19の送信
端子29aを介して送信回路30に接続される。また、
第2の分割型探触子の送信振動子23aの接続端子28
aは移相回路21aを介して前記出力端子29aに接続
されている。さらに、第1.第2の分割型探触子の各受
信振動子22b、23bは共通に超音波探傷器19の受
信端子29bを介して受信回路31に接続されている。
The connection terminal 27a of the transmission transducer 22a of the first split type probe is connected to the transmission circuit 30 via the phase shift circuit 21b and the transmission terminal 29a of the ultrasonic flaw detector 19. Also,
Connection terminal 28 of the transmitting transducer 23a of the second split type probe
a is connected to the output terminal 29a via a phase shift circuit 21a. Furthermore, the first. The receiving transducers 22b and 23b of the second split type probe are commonly connected to the receiving circuit 31 via the receiving terminal 29b of the ultrasonic flaw detector 19.

送信回路30は、規定周期毎にパルス信号Cを送信端子
29aから送出する。送信端子29aから出力されたパ
ルス信号Cは接続端子27Bを介して直接第1の分割型
探触子の送信振動子22aに印加されると共に、移相回
路21を介して第2の分割型探触子の送信振動子23a
に印加される。
The transmitting circuit 30 transmits a pulse signal C from the transmitting terminal 29a at regular intervals. The pulse signal C output from the transmission terminal 29a is directly applied to the transmission transducer 22a of the first split-type probe via the connection terminal 27B, and is applied to the second split-type probe via the phase shift circuit 21. Transmitting transducer 23a of the tentacle
is applied to

それぞれパルス信号Cが印加された送信振動子22a、
23aから各焦点25.26方向へ同一タイミングでパ
ルス状の超音波が送出される。
a transmission vibrator 22a to which a pulse signal C is applied;
Pulsed ultrasonic waves are transmitted from 23a to each focal point 25 and 26 at the same timing.

送信回路30から各送信振動子22a、23aに至る経
路に移相回路21a、21bが介挿されているので、各
送信振動子22a、23aから出力される各超音波相互
間に位相差θが生じる。この移相回路21a、21bは
、例えば、コンデンサ等を用いた遅延回路、デイレーラ
イン等のコイル、IC等で形成された単安定マルチバイ
ブレータ等で構成されている。なお、両方の経路に移相
回路21a、21bか挿入されているので、位相差θの
みならす、位相の進み方向を任意に設定できる。
Since the phase shift circuits 21a and 21b are inserted in the path from the transmitting circuit 30 to the transmitting transducers 22a and 23a, there is a phase difference θ between the ultrasonic waves output from the transmitting transducers 22a and 23a. arise. The phase shift circuits 21a and 21b are composed of, for example, a delay circuit using a capacitor or the like, a coil such as a delay line, a monostable multivibrator formed of an IC, or the like. Note that since the phase shift circuits 21a and 21b are inserted in both paths, the direction in which the phase advances based on only the phase difference θ can be set arbitrarily.

また、各受信振動子22b、23bから各接続端子27
b、28bを介して出力された受信信号eは共通に受信
端子29bを介して受信回路31へ入力される。受信回
路31へ入力された受信信号eは受信増幅器32て増幅
され、可変抵抗33でゲイン調整され、さらに、増幅器
34で再度増幅される。そして、検波器35で入力した
受信信号eに含まれる高周波の雑音成分を除去する。受
信回路31から出力された不要成分が除去された受信信
号は波形整形回路36でさらに単純な、すなわち観測者
が見易いようなピーク波信号に変換されて、ビデオ増幅
器37を介して表示器としてのCR7表示装置38の縦
軸に印加される。
In addition, each connection terminal 27 is connected to each receiving transducer 22b, 23b.
The reception signal e outputted through the terminals b and 28b is commonly input to the reception circuit 31 through the reception terminal 29b. The received signal e input to the receiving circuit 31 is amplified by a receiving amplifier 32, gain adjusted by a variable resistor 33, and further amplified again by an amplifier 34. Then, the high frequency noise component contained in the received signal e inputted by the wave detector 35 is removed. The received signal from which unnecessary components have been removed, which is output from the receiving circuit 31, is further converted by the waveform shaping circuit 36 into a simple peak wave signal that is easy for the observer to see, and then sent via the video amplifier 37 as a display. Applied to the vertical axis of the CR7 display 38.

また、時間軸回路38は、送信回路30から一定周期毎
に出力されるパルス信号Cに同期して、CR7表示装置
38の時間軸にトリガ信号を送出する。したがって、C
R7表示装置38は、バルス信号Cに同期するトリガ信
号が入力する毎に掃引を開始するので、表示画面には、
図示するように、横軸(時間軸)を被測定体4の取付面
4aからの距離dとして、各組Mdにおける波形整理さ
れた受信信号eが表示される。そして、この受信信号に
は、第9図(b)と同様に、送信パルス波T1表面反射
波S、底面反射波Bか含まれる。そして、これらに加え
て欠陥か存在した場合には欠陥反射波Fか含まれる。
Further, the time axis circuit 38 sends out a trigger signal to the time axis of the CR7 display device 38 in synchronization with the pulse signal C output from the transmitting circuit 30 at regular intervals. Therefore, C
The R7 display device 38 starts sweeping every time a trigger signal synchronized with the pulse signal C is input, so the display screen shows
As shown in the figure, the received signal e whose waveform has been arranged in each group Md is displayed with the horizontal axis (time axis) being the distance d from the mounting surface 4a of the object to be measured 4. This received signal includes a transmitted pulse wave T1, a surface reflected wave S, and a bottom reflected wave B, as in FIG. 9(b). If a defect exists in addition to these, the defect reflected wave F is also included.

また、各電子回路部品には電源回路40から駆動電圧V
。が供給される。
Further, each electronic circuit component is supplied with a drive voltage V from the power supply circuit 40.
. is supplied.

このように構成された超音波探傷装置において、電源を
投入すると、送信回路30から一定周期間隔でパルス信
号Cが出力される。その結果、第1゜第2の分割型探触
子の各送信振動子22a。
In the ultrasonic flaw detection apparatus configured as described above, when the power is turned on, the pulse signal C is outputted from the transmission circuit 30 at regular intervals. As a result, each transmitting transducer 22a of the first and second split type probes.

23aが同時励振されて、各送信振動子22a。23a are excited simultaneously, and each transmitting oscillator 22a.

23aから同一タイミングでパルス状の超音波が出力さ
れる。各送信振動子22a、23aから出力された超音
波は取付面4aにてその一部が反射され、残りが鋼板4
内へ入射して各焦点25゜26方向へ伝播される。そし
て、底面で反射された反射波が各受信振動子22b、2
3bへ入射される。また、伝播途中で欠陥に遭遇すると
その欠陥にて反射された欠陥反射波が各受信振動子22
b、23bへ入射する。
Pulsed ultrasonic waves are output from 23a at the same timing. A part of the ultrasonic waves output from each transmitting transducer 22a, 23a is reflected by the mounting surface 4a, and the rest is reflected by the steel plate 4.
The light enters the center and propagates in 25° and 26 directions at each focal point. Then, the reflected waves reflected from the bottom surface of each receiving vibrator 22b, 2
3b. In addition, when a defect is encountered during propagation, the defect reflected wave reflected by the defect is transmitted to each receiving transducer 22.
b, enters 23b.

よって、各分割型探触子の各受信振動子22b。Therefore, each receiving transducer 22b of each split type probe.

23bから出力された受信信号eは受信回路31を経て
CRT表示装置38へ表示される。そして、前述したよ
うに、表示された受信信号から、送信パルス波T1表面
反射波S、底面反射波Bの他に、欠陥に起因する欠陥反
射tiFか生じる。よって、欠陥の有無とその規模を把
握できる。
The received signal e outputted from the receiving circuit 23b is displayed on the CRT display device 38 via the receiving circuit 31. As described above, in addition to the transmitted pulse wave T1, the surface reflected wave S, and the bottom reflected wave B, a defect reflection tiF caused by the defect is generated from the displayed received signal. Therefore, the presence or absence of defects and their scale can be determined.

次に、移位相回路21a、21bの効果を第3図を用い
て説明する。前述したように、この移相回路21g、2
ユbは、送信振動子23a。
Next, the effect of the phase shift circuits 21a and 21b will be explained using FIG. As mentioned above, this phase shift circuit 21g, 2
Yub is a transmission vibrator 23a.

22aに印加される各パルス信号の立上りタイミングを
微少すらせることによって、複合超音波探触子20の各
送信振動子22a、23aがら被測定体としての鋼板4
内へ同時に出力される各超音波相互間の位相差θを可変
設定できる機能を有している。すなわち、異なる方向か
ら出力された各超音波の位相が異なれば、これらの超音
波どうしが交差した位置において、これらの超音波相互
間で干渉現象か生じ、その位置における合成された超音
波の強度が変化する。その結果、被測定体の厚み方向(
垂線方向)の各位置に応じて超音波の強度が変化する。
By slightly changing the rise timing of each pulse signal applied to 22a, each transmitting transducer 22a, 23a of the composite ultrasonic probe 20 can be adjusted to the steel plate 4 as the object to be measured.
It has a function that can variably set the phase difference θ between the respective ultrasonic waves that are simultaneously output to the inside. In other words, if the phases of the ultrasound waves output from different directions are different, an interference phenomenon will occur between these ultrasound waves at the position where they intersect, and the intensity of the combined ultrasound wave at that position will be changes. As a result, the thickness direction of the object to be measured (
The intensity of the ultrasonic waves changes depending on each position in the perpendicular direction).

被測定体の厚み方向(取付面からの距離d)の各位置に
おける位相差は、超音波の周波数や、各送信振動子22
a、23aから出力された時点での位相差θや、各送信
振動子相互間の距離や取付面4aに対する傾斜角度等に
よって変化する。したがって、移相回路21a、21.
bで最初の位相差θを調整することによって、各位置に
おける位相差を制御できる。
The phase difference at each position in the thickness direction (distance d from the mounting surface) of the object to be measured depends on the frequency of the ultrasonic wave and each transmitting transducer 22.
It changes depending on the phase difference θ at the time of output from a, 23a, the distance between each transmitting vibrator, the inclination angle with respect to the mounting surface 4a, etc. Therefore, phase shift circuits 21a, 21 .
By adjusting the initial phase difference θ at b, the phase difference at each position can be controlled.

前述したように、欠陥に起因する超音波の反射波の高さ
(大きさ)はその欠陥発生位置の超音波の強度に対応す
るので、移相回路21で位相差θを調整することによっ
て、取付面4aからの距離d方向の欠陥検出感度特性を
可変設定できる。
As mentioned above, the height (magnitude) of the reflected ultrasonic wave caused by a defect corresponds to the intensity of the ultrasonic wave at the defect occurrence position, so by adjusting the phase difference θ with the phase shift circuit 21, The defect detection sensitivity characteristic in the distance d direction from the mounting surface 4a can be variably set.

第3図(a)は、前述したように、他方の探触子を作動
させずに、第1.第2の各分割型探触子をそれぞれ単独
で使用した場合における各距離dにおける欠陥検出感度
特性A、Bを示す図である。
FIG. 3(a) shows, as described above, that the first... FIG. 7 is a diagram showing defect detection sensitivity characteristics A and B at each distance d when each of the second split-type probes is used alone.

一方、第3図(b)および同図(c)は、それぞれ第1
.第2の分割型探触子を同時に作動ささせた場合におけ
る受信信号eにて検出される欠陥反射波Fの各欠陥検出
感度特性C,Dである。なお、各欠陥検出感度特性C,
Dは移相回路21a。
On the other hand, FIGS. 3(b) and 3(c) show the first
.. These are the defect detection sensitivity characteristics C and D of the defect reflected wave F detected in the received signal e when the second split type probes are operated simultaneously. In addition, each defect detection sensitivity characteristic C,
D is a phase shift circuit 21a.

21bによって、各送信振動子22a、  23aがら
出力される超音波相互間の位相差θを異なる値に設定し
た場合を示す。
21b shows a case where the phase difference θ between the ultrasonic waves output from each of the transmitting transducers 22a and 23a is set to different values.

図示するように、第3図(b)の特性Cにおいては、遠
距離にいくほど検出感度を上昇させることが可能である
。また、第3図(c)の特性Bにおいては、近距離にお
ける検出感度を上昇させている。いずれにしても、第3
図(a)に示した、各探触子単独の場合に比較して、広
い距離範囲に亘って良好な欠陥検出感度を維持できる。
As shown, in characteristic C of FIG. 3(b), it is possible to increase the detection sensitivity as the distance increases. Furthermore, in characteristic B of FIG. 3(c), the detection sensitivity at short distances is increased. In any case, the third
Compared to the case where each probe is used alone as shown in FIG.

第4図乃至第7図は2種類の分割型探触子P。4 to 7 show two types of split type probes P.

Qを用いて鋼板4を探傷した場合における各欠陥検出感
度特性を示す図である。この実験に用いた移相回路21
a、21bは二重シールドを有する送信タイミング遅延
用同軸ケーブルで構成されており、各分割型探触子P、
Qの送信振動子への送信パルスの各経路長を調整するこ
とによって、前記位相差θを可変設定している。そして
、図中PIO,QIOは10mの同軸ケーブルを介挿し
た状態を示し、P2O,Q20は20mの同軸ケーブル
を介挿した状態を示し、さらに、P2O。
It is a figure which shows each defect detection sensitivity characteristic when the steel plate 4 is flaw-detected using Q. Phase shift circuit 21 used in this experiment
a and 21b are double-shielded coaxial cables for transmission timing delay, and each split type probe P,
The phase difference θ is variably set by adjusting the path length of each transmission pulse to the Q transmission vibrator. In the figure, PIO and QIO indicate a state in which a 10 m coaxial cable is inserted, P2O and Q20 indicate a state in which a 20 m coaxial cable is inserted, and further, P2O.

Q30は30mの同軸ケーブルを介挿した状態を示す。Q30 shows a state in which a 30m coaxial cable is inserted.

そして、数字が付されていないP、Qは同軸ケーブルか
介挿されていない状態、すなわち両者間に位相差θか存
在しない基準状態を示す。
P and Q without numbers indicate a state in which no coaxial cable is inserted, that is, a reference state in which there is no phase difference θ between the two.

そして、第4図の「Pのみ」および「Qのみ」の特性は
、各分割型探触子P、Qを同時励振せずに、互いに干渉
させずに、それぞれ個別で交互励振した場合における検
出感度特性である。また、rP+QJは位相差θか0の
状態で同時励振した場合における検出感度特性である。
The characteristics of "P only" and "Q only" in Fig. 4 are detected when the split probes P and Q are not excited simultaneously, but are alternately excited individually without interfering with each other. This is a sensitivity characteristic. Moreover, rP+QJ is a detection sensitivity characteristic when simultaneous excitation is performed in a state where the phase difference θ is 0.

この図でも明らかなように、ただ単に同時励振した場合
は、干渉現象によって検出感度が低下する。
As is clear from this figure, if simultaneous excitation is simply performed, the detection sensitivity will decrease due to the interference phenomenon.

第5図は、分割型探触子Qのみに1.0mの同軸ケーブ
ルを取付け、分割型探触子Pは基準状態のままで同時励
振した場合の検出感度特性rP+Q10Jと、逆に、分
割型探触子Pのみに10mの同軸ケーブルを取付け、分
割型探触子Qは基準状態のままで同時励振した場合の検
出感度特性rP10+QJとの比較を示す。
Figure 5 shows the detection sensitivity characteristics rP+Q10J when a 1.0 m coaxial cable is attached only to the split type probe Q, and the split type probe P is simultaneously excited while remaining in its reference state. A comparison is shown with the detection sensitivity characteristic rP10+QJ when a 10 m coaxial cable is attached only to the probe P and simultaneous excitation is performed with the split type probe Q in its reference state.

このように、同一位相差θであっても、位相差θの方向
によって検出感度特性か異なることか理解できる。
In this way, it can be understood that even if the phase difference θ is the same, the detection sensitivity characteristics differ depending on the direction of the phase difference θ.

同様に、第6図は検出感度特性rP20+QJと検出感
度特性rP+Q20Jとの比較を示し、第7図は検出感
度特性rP30+QJと検出感度特性r ”P + Q
 3 Q Jとの比較を示す。
Similarly, Fig. 6 shows a comparison between the detection sensitivity characteristic rP20+QJ and the detection sensitivity characteristic rP+Q20J, and Fig. 7 shows the comparison between the detection sensitivity characteristic rP30+QJ and the detection sensitivity characteristic r''P + Q.
A comparison with 3 Q J is shown.

このように、同軸ケーブルの長さを変化させて、位相差
θの値とその方向を適宜設定することによって、目的に
応した最良の欠陥検出感度特性を得ることかできる。
In this way, by changing the length of the coaxial cable and appropriately setting the value and direction of the phase difference θ, it is possible to obtain the best defect detection sensitivity characteristics suitable for the purpose.

よって、従来装置のように、DAC回路を用いて欠陥検
出感度特性を補正する必要がないので、DAC回路を調
整するための繁雑な操作か不要となり、たとえこの超音
波探傷装置に不慣れなものであっても、簡単に探傷作業
を実施できる。
Therefore, unlike conventional equipment, there is no need to use a DAC circuit to correct the defect detection sensitivity characteristics, eliminating the need for complicated operations to adjust the DAC circuit, making it easy to use even if you are unfamiliar with this ultrasonic flaw detection equipment. Even if there is, flaw detection work can be carried out easily.

また、前述したように、移相回路21a521bは簡単
な回路構成で実現できるので、DAC回路を組込んだ従
来の超音波探傷装置に比較して製造費を大幅に節減でき
る。
Further, as described above, since the phase shift circuit 21a521b can be realized with a simple circuit configuration, manufacturing costs can be significantly reduced compared to a conventional ultrasonic flaw detection device incorporating a DAC circuit.

さらに、第3図(b)(c)に示すように、遠距離での
欠陥検出感度低下が少ないために、増幅器等を用いて遠
距離における検出感度を電気的に強制的に上昇させる必
要がないので、従来装置に比較してS/Nを大幅に向上
できる。
Furthermore, as shown in Figure 3(b) and (c), since there is little decrease in defect detection sensitivity at long distances, it is necessary to electrically forcibly increase the detection sensitivity at long distances using an amplifier or the like. Therefore, the S/N ratio can be significantly improved compared to conventional devices.

また、特に取付面4aから遠い底面近傍における欠陥検
出感度を上昇できるので、例えば組立完了後の製品て探
傷面と反対側について、分解して検査できないために、
より厳格な検査を要求される場合等において、その部分
のみを特別に欠陥検出感度を上昇して、小さい欠陥も正
確に検出することも可能である。
In addition, it is possible to increase the defect detection sensitivity especially in the vicinity of the bottom surface far from the mounting surface 4a, so for example, it is not possible to disassemble and inspect the side opposite to the flaw detection surface of a product after assembly has been completed.
In cases where more rigorous inspection is required, it is also possible to specifically increase the defect detection sensitivity of only that part to accurately detect even small defects.

第8図は本発明の他の実施例に係わる超音波探傷装置の
複Q IF ’g波探触子を示す断面模式図である。な
お、超音波探傷器19および移相回路2]、a、21b
は第1図に示した実施例と同じであるので説明を省略す
る。
FIG. 8 is a schematic cross-sectional view showing a multi-Q IF' g-wave probe of an ultrasonic flaw detection apparatus according to another embodiment of the present invention. In addition, the ultrasonic flaw detector 19 and the phase shift circuit 2], a, 21b
Since this is the same as the embodiment shown in FIG. 1, the explanation will be omitted.

この実施例の複合超音波探触子42は、図示するように
、一つ容器42a内に、被測定体としての鋼板4に対し
て直角に超音波を送出する送信振動子41aおよび超音
波を受信する受信振動子4]bとからなる垂直探触子と
、取付面4aに対して互いに傾斜して配設された送信振
動子23aおよび受信振動子23bとからなる分割型探
触子とが収納されている。そして、分割型探触子は垂線
上に焦点44を結ぶ。
As shown in the figure, the composite ultrasonic probe 42 of this embodiment includes a transmitting transducer 41a that transmits ultrasonic waves perpendicularly to a steel plate 4 as an object to be measured, and a transmitting transducer 41a that transmits ultrasonic waves in a container 42a. A vertical probe consisting of a receiving transducer 4]b that receives data, and a split type probe consisting of a transmitting transducer 23a and a receiving transducer 23b arranged at an angle to each other with respect to the mounting surface 4a. It is stored. The split type probe then focuses 44 on the perpendicular line.

このように構成された超音波探傷装置であっても、送信
回路30から各送信振動子41a。
Even in the ultrasonic flaw detection apparatus configured in this way, the transmitting circuit 30 and each transmitting transducer 41a.

23aに同時にパルス信号が印加され、かっ移相回路2
1a、21bによって各送信振動子41a。
A pulse signal is simultaneously applied to 23a, and the phase shift circuit 2
1a and 21b each transmitting transducer 41a.

23aから鋼板4内へ出力される超音波相互間に位相差
θを生じさせることができる。よって、各距離dにおけ
る干渉度合いを移相回路21a。
A phase difference θ can be generated between the ultrasonic waves output from 23a into the steel plate 4. Therefore, the degree of interference at each distance d is determined by the phase shift circuit 21a.

21bによって制御可能である。21b.

したがって、第1図に示した実施例とほば同様の効果を
得ることができる。
Therefore, almost the same effect as the embodiment shown in FIG. 1 can be obtained.

[発明の効果] 以上説明したように本発明の超音波探傷装置によれば、
被測定体に対して互いに異なる方向から複数の超音波を
同時に印加し、かつその超音波相互間の位相をずらせる
ことによって、被測定内を伝播する超音波相互間で故意
に干渉を生じさせて、例えば取付面から遠距離における
超音波の強度を近距離に比較して相対的に増大させてい
る。したがって、DAC回路等を用いて感度補正を行う
必要なく、複雑な調整作業を除去でき、被測定体の厚み
方向の欠陥検出感度特性を最良の状態に設定でき、もっ
て、欠陥の検出範囲の拡大と検出精度の向上とを図るこ
とかできる。
[Effects of the Invention] As explained above, according to the ultrasonic flaw detection device of the present invention,
By simultaneously applying multiple ultrasonic waves to the object to be measured from different directions and shifting the phases of the ultrasonic waves, interference is intentionally caused between the ultrasonic waves propagating within the object to be measured. For example, the intensity of ultrasonic waves at a long distance from the mounting surface is relatively increased compared to at a short distance. Therefore, it is not necessary to perform sensitivity correction using a DAC circuit, etc., and complex adjustment work can be eliminated, and the defect detection sensitivity characteristics in the thickness direction of the object to be measured can be set to the best condition, thereby expanding the defect detection range. It is possible to improve the detection accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は本発明の一実施例に係わる超音波探
傷装置を示すものであり、第1図は装置全体の概略構成
を示す模式図、第2図は複合超音波探触子の概略構成を
示す透視斜視図、第3図乃至第7図は欠陥検出感度特性
図であり、第8図は本発明の他の実施例に係わる超音波
探傷装置の概略構成を示す模式図、第9図(a)は一般
的な分割型探触子を示す断面模式図、第9図(b)は−
般的な垂直探触子を示す断面模式図、第10図は一般的
な分割型探触子の動作を説明するための図、第11図は
同分割型探触子における欠陥検出感度特性図である。 4・・・鋼板、4a・・・取付面、]9・・・超音波探
傷器、20.42−・・複合超音波探触子、21a、2
1b・・・移相回路、22a、23a、41a・・・送
信振動子、22b、23b、41b・・受信振動子、2
526.44・・・焦点、30・・・送信回路、3]・
・・受信回路、38・・・CRT表示装置。 出願人代理人 弁理士 鈴江武彦 第4区 dB 第 図 B dB 2a (a) (b) 第 図 第 図 第 図
1 to 7 show an ultrasonic flaw detection device according to an embodiment of the present invention, FIG. 1 is a schematic diagram showing the overall configuration of the device, and FIG. 2 is a composite ultrasonic probe. 3 to 7 are defect detection sensitivity characteristic diagrams, and FIG. 8 is a schematic diagram showing the schematic configuration of an ultrasonic flaw detection device according to another embodiment of the present invention. Fig. 9(a) is a schematic cross-sectional view showing a general split type probe, and Fig. 9(b) is a -
A schematic cross-sectional diagram showing a general vertical probe, Fig. 10 is a diagram for explaining the operation of a general split-type probe, and Fig. 11 is a defect detection sensitivity characteristic diagram of the split-type probe. It is. 4... Steel plate, 4a... Mounting surface,] 9... Ultrasonic flaw detector, 20.42-... Composite ultrasonic probe, 21a, 2
1b...Phase shift circuit, 22a, 23a, 41a...Transmission oscillator, 22b, 23b, 41b...Reception oscillator, 2
526.44... Focus, 30... Transmission circuit, 3]・
...Reception circuit, 38...CRT display device. Applicant's agent Patent attorney Takehiko Suzue District 4 dB Figure B dB 2a (a) (b) Figure Figure Figure

Claims (2)

【特許請求の範囲】[Claims] (1)一対の振動子を被測定体の取付面に直交する垂線
上における互いに異なる位置に焦点を結ぶように配設し
た複数の分割型探触子からなる複合超音波探触子と、こ
の複合超音波探触子に組込まれた複数の振動子へパルス
信号を同時に印加してそれぞれパルス状の超音波を発生
させる送信回路と、この送信回路と前記複数の送信振動
子のうちの少なくとも一つの振動子との間に介挿され、
前記各振動子から出力される各超音波相互間の位相差を
可変設定する移相回路と、各振動子から出力された受信
信号を受信してこの受信信号に含まれる欠陥等に起因す
る各種反射波を検出する受信回路と、この受信回路で検
出された各反射波を表示する表示器とを備えた超音波探
傷装置。
(1) A composite ultrasonic probe consisting of a plurality of split-type probes in which a pair of transducers are arranged to focus at different positions on a perpendicular line perpendicular to the mounting surface of the object to be measured; a transmitting circuit that simultaneously applies a pulse signal to a plurality of transducers incorporated in a composite ultrasonic probe to generate pulsed ultrasonic waves, and at least one of the transmitting circuit and the plurality of transmitting transducers; inserted between two vibrators,
A phase shift circuit that variably sets the phase difference between the ultrasonic waves output from each of the vibrators, and a phase shift circuit that receives the received signal output from each vibrator and detects various defects caused by defects contained in the received signal. An ultrasonic flaw detection device that includes a receiving circuit that detects reflected waves and a display that displays each reflected wave detected by the receiving circuit.
(2)被測定体の取付面と直交する方向に超音波を送受
信する振動子を有する垂直探触子と一対の振動子を被測
定体の取付面に直交する垂線上に焦点を結ぶように配設
した分割型探触子とからなる複合超音波探触子と、この
複合超音波探触子に組込まれた複数の振動子へパルス信
号を同時に印加してそれぞれパルス状の超音波を発生さ
せる送信回路と、この送信回路と前記複数の振動子のう
ちの少なくとも一つの振動子との間に介挿され、前記各
振動子から出力される各超音波相互間の位相差を可変設
定する移相回路と、各振動子から出力された受信信号を
受信してこの受信信号に含まれる欠陥等に起因する各種
反射波を検出する受信回路と、この受信回路で検出され
た各反射波を表示する表示器とを備えた超音波探傷装置
(2) A vertical probe with a transducer that transmits and receives ultrasonic waves in a direction perpendicular to the mounting surface of the object to be measured, and a pair of transducers focused on a perpendicular line perpendicular to the mounting surface of the object to be measured. Pulse signals are simultaneously applied to a composite ultrasound probe consisting of a split-type probe and multiple transducers built into this composite ultrasound probe, each generating a pulsed ultrasound. a transmitting circuit interposed between the transmitting circuit and at least one of the plurality of transducers, the transmitting circuit variably setting the phase difference between the ultrasonic waves output from each of the transducers; A phase shift circuit, a receiving circuit that receives the received signal output from each vibrator and detects various reflected waves caused by defects contained in this received signal, and each reflected wave detected by this receiving circuit. An ultrasonic flaw detection device equipped with a display.
JP2209100A 1990-08-09 1990-08-09 Ultrasonic flaw detector Expired - Lifetime JP2864429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209100A JP2864429B2 (en) 1990-08-09 1990-08-09 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209100A JP2864429B2 (en) 1990-08-09 1990-08-09 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPH0493763A true JPH0493763A (en) 1992-03-26
JP2864429B2 JP2864429B2 (en) 1999-03-03

Family

ID=16567290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209100A Expired - Lifetime JP2864429B2 (en) 1990-08-09 1990-08-09 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP2864429B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257794A (en) * 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method
JP2009243890A (en) * 2008-03-28 2009-10-22 Ihi Corp Ultrasonic inspection device and method
JP2012088134A (en) * 2010-10-19 2012-05-10 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
JP2015111076A (en) * 2013-12-06 2015-06-18 三菱重工業株式会社 Ultrasonic flaw detector
JP2016045157A (en) * 2014-08-26 2016-04-04 株式会社東芝 Ultrasonic flaw detection apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257794A (en) * 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method
JP4524937B2 (en) * 2001-03-02 2010-08-18 住友金属工業株式会社 Ultrasonic flaw detection method
JP2009243890A (en) * 2008-03-28 2009-10-22 Ihi Corp Ultrasonic inspection device and method
JP2012088134A (en) * 2010-10-19 2012-05-10 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
JP2015111076A (en) * 2013-12-06 2015-06-18 三菱重工業株式会社 Ultrasonic flaw detector
JP2016045157A (en) * 2014-08-26 2016-04-04 株式会社東芝 Ultrasonic flaw detection apparatus

Also Published As

Publication number Publication date
JP2864429B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US3944963A (en) Method and apparatus for ultrasonically measuring deviation from straightness, or wall curvature or axial curvature, of an elongated member
EP0053034A1 (en) Method of determining stress distribution in a solid body
JPH0493763A (en) Ultrasonic apparatus for flaw detection
JPS60233547A (en) Method and device for maintaining parallel relationship between working surface of acoustic transducer and flat surface of object
US4492117A (en) Ultrasonic nondestructive test apparatus
JP4633268B2 (en) Ultrasonic flaw detector
US3608352A (en) Ultrasonic transducers
US4056971A (en) Distance amplitude compensation system
JPH0465670A (en) Ultrasonic flaw detecting device
JPS5821558A (en) Supersonic wave flaw detector for nonmetal
JP2019070628A (en) Nondestructive inspection system
JPH0465669A (en) Ultrasonic flaw detecting device
US3395572A (en) Apparatus for ultrasonic detection and display of location of material defects
JPH02296147A (en) Method and apparatus for measuring acoustic anisotropy
JPH05188046A (en) Ultrasonic probe and ultrasonic diagnosis method
JP3088614B2 (en) Array flaw detection method and device therefor
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
JPH01142486A (en) Subsoil through-vision method
JP3002065U (en) Multiple reflected wave automatic extinction device
JPS60174949A (en) Method and apparatus for detecting gap of resonance wave
JPS597260A (en) Method and device for ultrasonic flaw detection
JPS61256255A (en) Ultrasonic flaw detection apparatus
JPS6135354A (en) Ultrasonic signal processor
JPH04212055A (en) Compound supersonic probe
KR20210086323A (en) Device for inspecting defects using nondestructive method