JPS6135354A - Ultrasonic signal processor - Google Patents

Ultrasonic signal processor

Info

Publication number
JPS6135354A
JPS6135354A JP15796684A JP15796684A JPS6135354A JP S6135354 A JPS6135354 A JP S6135354A JP 15796684 A JP15796684 A JP 15796684A JP 15796684 A JP15796684 A JP 15796684A JP S6135354 A JPS6135354 A JP S6135354A
Authority
JP
Japan
Prior art keywords
circuit
defect
received signal
signal
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15796684A
Other languages
Japanese (ja)
Inventor
Yasuo Hayakawa
泰夫 早川
Toshio Nonaka
野中 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP15796684A priority Critical patent/JPS6135354A/en
Publication of JPS6135354A publication Critical patent/JPS6135354A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform high-precision flaw detection by evaluating a defect of an object material and the position and size of a weld zone from the area of a received signal originating from a reflected echo. CONSTITUTION:A probe 1 outputs an ultrasonic wave with high-frequency pulses from a transmitting circuit 3. Then, a receiving circuit 4 receives the reflected echo from the defect of the object material and its received signal is inputted to an integration circuit 11 through a gate circuit 6 and converted into an area signal. Namely, the correlation between namely, the ratio (received signal area by reflected echo)/(received signal area by bottom surface cho) and an artificial defect whose ratio between the both is already known is utilized to grasp the shape of the defect including its size, inclination, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波受信信号の面積から、欠陥の評価、品
質の評価等を行なうようにした超音波信号処理装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic signal processing device that performs defect evaluation, quality evaluation, etc. from the area of an ultrasonic reception signal.

〔従来技術〕[Prior art]

一般に、超音波探傷装置、溶接用ロデット等においては
、超音波の反射エコーレベルを電気的な受信信号に変換
し、この受信信号のピーク値から被検材の欠陥、溶接位
置等の評価を行表っている。
Generally, in ultrasonic flaw detection equipment, welding rodets, etc., the reflected echo level of ultrasonic waves is converted into an electrical reception signal, and defects in the test material, welding position, etc. are evaluated from the peak value of this reception signal. It's showing.

このように、受信信号のピーク値から欠陥等の評価性な
うようにした、超音波信号処理装置としては、従来第2
図ないし第4図に示すものが知られている。
In this way, as an ultrasonic signal processing device that can evaluate defects etc. from the peak value of the received signal, the conventional
The devices shown in FIGS. 4 to 4 are known.

図面において、1は被検材に超音波を出力し、該被検材
からの反射エコー量として超音波を受信する探触子で、
該探触子1としては例えば磁性体とコイルとからなる磁
歪振動子、水晶振動子等の圧電振動子、直流電磁石とコ
イルとからなる電磁超音波振動子等が用いられる。
In the drawing, 1 is a probe that outputs ultrasonic waves to a test material and receives the ultrasonic waves as the amount of reflected echoes from the test material,
As the probe 1, for example, a magnetostrictive vibrator made of a magnetic material and a coil, a piezoelectric vibrator such as a crystal vibrator, an electromagnetic ultrasonic vibrator made of a DC electromagnet and a coil, etc. are used.

2は従来技術による信号処理装置で、該信号処理装置2
は送信回路3、受信回路4、同期回路5、ダート回路6
、表示部7等から構成され、送信回路3、受信回路4は
入出力端子8を介して探触子1と接続され、受信回路4
はf−)回路6を介して外部出力端子9と接続され、該
外部出力端子9は例えば受信信号のピーク値から欠陥の
有無全判定する記録装置(図示せず)等と接続されてい
る。
2 is a signal processing device according to the prior art;
are transmitting circuit 3, receiving circuit 4, synchronizing circuit 5, dart circuit 6
, a display section 7, etc., the transmitting circuit 3 and the receiving circuit 4 are connected to the probe 1 via an input/output terminal 8, and the receiving circuit 4
f-) is connected to an external output terminal 9 via a circuit 6, and the external output terminal 9 is connected to, for example, a recording device (not shown) or the like that completely determines the presence or absence of defects from the peak value of the received signal.

ここで、送信回路3は探触子1に高周波パルスを印加す
るパルス発生器として構成され、該探触子1は高周波パ
ルスが印加されることによシ、所定周波数の超音波を出
力するようになされている。
Here, the transmitting circuit 3 is configured as a pulse generator that applies a high frequency pulse to the probe 1, and the probe 1 outputs an ultrasonic wave of a predetermined frequency by applying the high frequency pulse. is being done.

受信回路4は探触子1が受信した欠陥エコー、底面エコ
ー等の反射エコーレベルに基づいて当該反射エコーレベ
ルに比例した電圧信号を、受信信号としてff−)回路
6、表示部7に出力するもので、該受信回路4には必要
に応じて増幅回路等が内蔵されている。なお、探触子1
が電磁超音波振動子である場合には、受信回路4は該振
動子の受信コイルを含んで構成される。
The receiving circuit 4 outputs a voltage signal proportional to the reflected echo level, such as a defect echo or a bottom echo received by the probe 1, as a received signal to the ff-) circuit 6 and the display unit 7. The receiving circuit 4 includes an amplifier circuit and the like as necessary. In addition, probe 1
When is an electromagnetic ultrasonic transducer, the receiving circuit 4 includes a receiving coil of the transducer.

また、同期回路5は送信回路3、f−)回路6、表示部
7に同期信号を所定周期毎に出力するものである。従っ
て、送信回路3は同期回路5からの同期信号をトリがと
して高周波パルスを出力し1ゲ一ト回路6は同期信号に
基づいて所定時間ダートを開き受信回路4からの受信信
号を外部出力端子9に出力し、表示部7は同期信号に基
づ−て表示位置の零点設定を行なう。一方、デート回路
6は前述の如く同期回路5からの同期信号によってf−
)開時間を設定し、受信信号を外部出力端子9に出力す
ると共に、ダート開時間を表示部7に表示せしめる。
Further, the synchronizing circuit 5 outputs a synchronizing signal to the transmitting circuit 3, the f-) circuit 6, and the display section 7 at predetermined intervals. Therefore, the transmitting circuit 3 uses the synchronizing signal from the synchronizing circuit 5 as a trigger to output high-frequency pulses, and the gate circuit 6 opens the dart for a predetermined time based on the synchronizing signal, and transmits the received signal from the receiving circuit 4 to the external output terminal. 9, and the display section 7 sets the zero point of the display position based on the synchronization signal. On the other hand, the date circuit 6 receives the synchronization signal from the synchronization circuit 5 as described above.
) Set the opening time, output the received signal to the external output terminal 9, and display the dirt opening time on the display section 7.

さらに、表示部7は例えばシンクロスコープ等で構成さ
れ、受信回路4からの受信信号とダート回路6からのダ
ート開信号とをその表示管に表示せしめ、目視による観
察を可能としている。
Further, the display section 7 is composed of, for example, a synchroscope, and displays the received signal from the receiving circuit 4 and the dart opening signal from the dart circuit 6 on its display tube, thereby enabling visual observation.

従来技術は前述のように構成されるが、送信回路3は同
期回路5からの同期信号に基づき高周波パルスを探触子
1に出力すると、該探触子1は被検材に超音波を発信す
る。これによシ、被検材からの反射エコーは再び探触子
1に受信され、受信回路4に入力され、該受信回路4か
らは反射エコーレベルに応じた電圧信号が出力される。
The conventional technology is configured as described above, but when the transmitting circuit 3 outputs a high frequency pulse to the probe 1 based on the synchronization signal from the synchronization circuit 5, the probe 1 emits ultrasonic waves to the specimen material. do. As a result, the reflected echo from the test material is received by the probe 1 again and input to the receiving circuit 4, which outputs a voltage signal corresponding to the reflected echo level.

一方、同期回路5によりゲート回路6は所定時間ダート
を開いているから、前記受信回路4からの受信信号は該
ダート回路6を介して外部出力端子9から記録装置に出
力されると共に、表示部7に出力され信号波形として表
示される。かくして、外部出力端子9から記録装置に出
力された受信信号はそのピーク値から欠陥の大きさが探
傷され、評価される。
On the other hand, since the synchronization circuit 5 causes the gate circuit 6 to open the dart for a predetermined time, the reception signal from the reception circuit 4 is outputted from the external output terminal 9 to the recording device via the dart circuit 6, and is also output to the display unit. 7 and displayed as a signal waveform. In this way, the size of the defect in the received signal output from the external output terminal 9 to the recording device is detected and evaluated based on its peak value.

即ち、第3図において、10を被検材、10Aを該被検
材10内の欠陥とし、探触子1から核被検材10に超音
波を発信し、欠陥10Aから反射することによ)受信さ
れた反射エコーによる受信信号を第4図に示すものとす
る。そして、受信信号Aのピーク値Hと、被検材10の
底面から反射してくる底面エコーによる受信信号のピー
ク値とを読みとり、反射エコーによるピーク値/底面エ
コーによるピーク値の比と、予め大きさが知られている
既知の人工欠陥との相関関係を調べ、較正曲線として用
いることによシ、欠陥10Aの大きさを評価していた。
That is, in FIG. 3, 10 is a material to be tested and 10A is a defect in the material to be tested 10, and ultrasonic waves are transmitted from the probe 1 to the nuclear test material 10 and reflected from the defect 10A. ) The received signal due to the received reflected echo is shown in FIG. Then, the peak value H of the received signal A and the peak value of the received signal due to the bottom surface echo reflected from the bottom surface of the test material 10 are read, and the ratio of the peak value due to the reflected echo/the peak value due to the bottom surface echo is determined in advance. The size of the defect 10A was evaluated by examining the correlation with a known artificial defect whose size is known and using it as a calibration curve.

これは超音波反射法として広く用いられている。このた
め、表示部7に表示される反射エコーと底面エコーに対
応した受信波形のピーク値を目視によって観察するか、
外部出力端子9から記録装置に出力され記録された各ピ
ーり値を読み取る等の方法で検査していた。
This is widely used as an ultrasonic reflection method. For this reason, either visually observe the peak values of the received waveforms corresponding to the reflected echo and bottom echo displayed on the display unit 7, or
Inspection was performed by reading each peak value output from the external output terminal 9 to the recording device and recorded.

しかし、前述した従来技術によるものは次のような欠点
がある。即ち、欠陥10Aの形状、傾き等によシ、受信
信号Aに小さ々ピークB、C等が当該受信信号Aに重畳
することがある。これは、第3図に示すように、欠陥1
0Aのうち超音波ビームに垂直な面では反射角は0で、
最短時間でエコーが戻ってくるのに対し、欠陥10Aの
面が傾いている部位からの反射エコーはその分だけ反射
角が生じ、探触子1へのエコー到達時間が遅れるからで
ある。従って、1個の欠陥10Aでも、反射エコーによ
る受信信号Aには時間軸の異った位置にピーク値が観測
されることになる。
However, the prior art described above has the following drawbacks. That is, depending on the shape, inclination, etc. of the defect 10A, small peaks B, C, etc. may be superimposed on the received signal A. This is caused by defect 1, as shown in Figure 3.
On the plane perpendicular to the ultrasonic beam within 0A, the reflection angle is 0,
This is because, while the echo returns in the shortest possible time, the echo reflected from the portion where the surface of the defect 10A is inclined has a reflection angle corresponding to the angle of reflection, and the time for the echo to reach the probe 1 is delayed. Therefore, even with one defect 10A, peak values are observed at different positions on the time axis in the received signal A due to the reflected echo.

かくして、従来技術によるものは、反射エコーによるピ
ーク値だけから欠陥10Aの大きさを評価していたが、
前述した如くこのピーク値は欠陥10Aから戻ってくる
反射エコー情報の一部を利用しているにしかすぎず、小
さなピーク値B、C等についての評価はなされておらず
、欠陥10Aの形状、傾き等の全てを考慮した評価とは
なっていないという問題点があった。一方、従来技術に
よるものは欠陥10Aの形状、傾き等により、較正曲線
を求めるだめの実測データに大きなバラツキを生じ、人
工欠陥との相関関係を高めることができないという欠点
がある。
Thus, in the conventional technique, the size of the defect 10A was evaluated only from the peak value of the reflected echo;
As mentioned above, this peak value only uses a part of the reflected echo information returned from the defect 10A, and small peak values B, C, etc. have not been evaluated, and the shape of the defect 10A, There was a problem in that the evaluation did not take everything such as slope into account. On the other hand, the conventional technique has the drawback that the shape, slope, etc. of the defect 10A causes large variations in the actual measurement data used to determine the calibration curve, making it impossible to improve the correlation with artificial defects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前述した従来技術の問題点に鑑みなされたもの
で、反射エコーによる受信信号の波形を積分し、その面
積比から欠陥の大きさを評価することによシ、高精度な
超音波探傷装置等を得ることができるようにした超音波
信号処理装置を提供することにある。
The present invention was developed in view of the problems of the prior art described above, and is capable of highly accurate ultrasonic flaw detection by integrating the waveform of the received signal due to reflected echoes and evaluating the size of the defect from the area ratio. An object of the present invention is to provide an ultrasonic signal processing device that enables the acquisition of an ultrasonic signal processing device and the like.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明が採用する構成の特
徴は、受信回路の次段に積分回路を設け、該積分回路か
らは受信信号の面積に対応した信号管出力するようにし
たことにある。
In order to achieve the above object, the feature of the configuration adopted by the present invention is that an integrating circuit is provided at the next stage of the receiving circuit, and the integrating circuit outputs a signal tube corresponding to the area of the received signal. be.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図に基づき詳述する。なお
、前述した従来技術と同一構成要素には同一符号を付し
、その説明を省略する。
Embodiments of the present invention will be described in detail below with reference to FIG. Note that the same components as those in the prior art described above are given the same reference numerals, and their explanations will be omitted.

然るに、11はダート回路6の出力側と外部出力端子9
との間に設けられた積分回路で、該積分回路11はダー
ト回路6を介して出力される受信回路4からの受信信号
(第4図に示す受信信号A)をこれに比例した面積信号
として変換するものであるO 本実施例は前述のように構成されるが、次にその作動に
ついて述べるに、送信回路3からの高周波パルスによシ
探触子1から高周波を出力し、受信回路4では被検材1
0の欠陥10Aから反射する反射エコーレベルに比例し
た受信信号Aに変換し、この受信信号Aをダート回路6
を介して出力する点は、従来技術のものと格別変るとこ
ろがない。
However, 11 is the output side of the dart circuit 6 and the external output terminal 9.
The integrating circuit 11 converts the received signal (received signal A shown in FIG. 4) from the receiving circuit 4 outputted via the dart circuit 6 as an area signal proportional to the received signal (received signal A shown in FIG. 4). The present embodiment is configured as described above, but the operation will be described next. Now, test material 1
The dirt circuit 6 converts the received signal A into a received signal A proportional to the reflected echo level reflected from the defect 10A
There is no particular difference from the conventional technology in terms of output via the .

然るに、本実施例ではダート回路6の出力側に積分回路
11を設け、受信信号Aを面積として変換し、外部出力
端子9よシ記録装置に出力する構成としたから、反射エ
コーによる受信信号面積/底面エコーによる受信信号面
積の比と、予め両者の比が知られている既知の人工欠陥
との相関関係を利用して、欠陥10Aの大きさ、傾き等
も含めた欠陥形状を把握することができる。
However, in this embodiment, the integration circuit 11 is provided on the output side of the dirt circuit 6, and the received signal A is converted into an area and outputted to the external output terminal 9 and the recording device. /Understand the defect shape including the size and inclination of the defect 10A by using the correlation between the ratio of the received signal area by the bottom echo and a known artificial defect whose ratio is known in advance. I can do it.

かくして、従来技術においては、第4図に示す如き受信
信号Aはそのピーク値Hのみから探傷していたため、小
さなビークB、C等については欠陥情報として無視され
ていたが、本実施例では当該小さなピークB、C等につ
いても面積内に含めて欠陥情報として利用することがで
きるから、欠陥10Aの評価をよυ高精度に行なうこと
ができる。
Thus, in the prior art, the received signal A as shown in FIG. 4 was detected only from its peak value H, so small peaks B, C, etc. were ignored as defect information, but in this embodiment, the Since small peaks B, C, etc. can also be included in the area and used as defect information, it is possible to evaluate the defect 10A with higher precision.

々お、前述の実施例では信号処理装置2として送信回路
3、受信回路4の他に、同期回路5、ダート回路6、表
示部7等を含めた構成として述べたが、これらは必要に
応じて適宜組合せられるべきものであり、必ずしも必要
としないものである。
In the above-described embodiment, the signal processing device 2 is configured to include, in addition to the transmitting circuit 3 and the receiving circuit 4, a synchronizing circuit 5, a dart circuit 6, a display section 7, etc., but these can be changed as necessary. They should be combined as appropriate, and are not necessarily required.

また、実施例では外部出力端子9には記録装置が設けら
れるものとして述べたが、マイクロコンピュータ等を用
いた演算装置を設け、欠陥部の自動判別機能を有する探
傷装置としてもよい。
Further, in the embodiment, the external output terminal 9 has been described as being provided with a recording device, but a flaw detection device may be provided with an arithmetic device using a microcomputer or the like and having an automatic defect determination function.

、  さらに、実施例では被検材10の欠陥10A’に
探傷する超音波探傷装置を例に挙げたが、垂直6dB 
)リップ法を用いた溶接部検出装置等にも適用しうろこ
とは勿論である。
Furthermore, in the example, an ultrasonic flaw detection device that detects a defect 10A' in a test material 10 is used as an example, but the vertical 6 dB
) It goes without saying that this method can also be applied to weld detection devices using the lip method.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳述した如くであって、反射エコーによる
受信信号の面積から被検材の欠陥、溶接部位置等の大き
さを評価する構成としたから、従来最大ピーク値に対し
て無視されてきた小さなピーク値も、欠陥情報の一部と
して面積形態で最大限活用することができ、欠陥の大き
さをよシ高精度に評価することができる。
The present invention has been described in detail above, and since it is configured to evaluate the size of a defect in the material to be inspected, the position of a weld, etc. from the area of the received signal due to the reflected echo, the conventional maximum peak value is ignored. Even small peak values obtained can be utilized to the fullest in the form of area as part of the defect information, and the size of the defect can be evaluated with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例を示す回路図、第2図ない
し第4図は従来技術に係り、第2図は回路図、第3図は
探触子と欠陥との間での超音波の路程を示す説明図、第
4図は超音波の反射エコーによる受信信号を示す波形図
である。 1・・・探触子、2・・・信号処理装置、3・・・送信
回路、4・・・受信回路、10・・・被検材、10A・
・・欠陥、11・・・積分回路、A・・・受信信号。
Fig. 1 is a circuit diagram showing an embodiment according to the present invention, Figs. 2 to 4 are related to the prior art, Fig. 2 is a circuit diagram, and Fig. 3 is an ultrasonic wave between a probe and a defect. FIG. 4 is a waveform diagram showing a received signal due to a reflected echo of an ultrasonic wave. DESCRIPTION OF SYMBOLS 1... Probe, 2... Signal processing device, 3... Transmission circuit, 4... Receiving circuit, 10... Test material, 10A.
...Defect, 11...Integrator circuit, A...Received signal.

Claims (1)

【特許請求の範囲】[Claims] 被検材に超音波を出力し、該被検材からの反射エコーと
して超音波を受信する探触子と、該探触子に超音波を発
生さすべき信号を出力する送信回路と、前記探触子が受
信した反射エコーに対応した受信信号を出力する受信回
路とからなる超音波信号処理装置において、前記受信回
路の次段には積分回路を設け、該積分回路からは受信信
号の面積に対応した信号を出力するように構成したこと
を特徴とする超音波信号処理装置。
a probe that outputs ultrasonic waves to a material to be inspected and receives the ultrasonic waves as reflected echoes from the material to be inspected; a transmitting circuit that outputs a signal to cause the probe to generate ultrasonic waves; In an ultrasonic signal processing device comprising a receiving circuit that outputs a received signal corresponding to a reflected echo received by a tentacle, an integrating circuit is provided at the next stage of the receiving circuit, and the integrating circuit outputs an area of the received signal. An ultrasonic signal processing device characterized in that it is configured to output a corresponding signal.
JP15796684A 1984-07-27 1984-07-27 Ultrasonic signal processor Pending JPS6135354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15796684A JPS6135354A (en) 1984-07-27 1984-07-27 Ultrasonic signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15796684A JPS6135354A (en) 1984-07-27 1984-07-27 Ultrasonic signal processor

Publications (1)

Publication Number Publication Date
JPS6135354A true JPS6135354A (en) 1986-02-19

Family

ID=15661333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15796684A Pending JPS6135354A (en) 1984-07-27 1984-07-27 Ultrasonic signal processor

Country Status (1)

Country Link
JP (1) JPS6135354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241963A (en) * 2015-09-07 2016-01-13 中国特种设备检测研究院 Power amplification device of nonlinear electromagnetic ultrasound exciting signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241963A (en) * 2015-09-07 2016-01-13 中国特种设备检测研究院 Power amplification device of nonlinear electromagnetic ultrasound exciting signal

Similar Documents

Publication Publication Date Title
JPS6323505B2 (en)
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
EP0212899A2 (en) Ultrasonic testing of materials
US3009353A (en) Ultrasonic measurement apparatus
US4596142A (en) Ultrasonic resonance for detecting changes in elastic properties
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JPS6135354A (en) Ultrasonic signal processor
JP2728265B2 (en) Equipment for measuring the thickness of objects with coatings
JPH0493763A (en) Ultrasonic apparatus for flaw detection
RU2034236C1 (en) Ultrasound echo thickness gage
KR920007199B1 (en) Nondestructive inspection method and apparatus
JPS61266907A (en) Detector for surface condition
JPH06242086A (en) Ultrasonic inspection system
JP2740871B2 (en) Method and apparatus for measuring shear wave velocity in ultrasonic test
JPS61114160A (en) Ultrasonic measuring instrument
JP2002328120A (en) Ultrasonic probe, and method for ultrasonic flaw detection
SU1649414A1 (en) Method of ultrasonic testing
JP2812688B2 (en) Measuring method of thickness of coated object
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
JPS5837506B2 (en) Ultrasonic flaw detection equipment
JPS5946503A (en) Method for measuring depth of crack
SU1084672A1 (en) Ultrasonic flaw detection method
Lunt et al. Measurement of Doppler gate length using signal re-injection
JP3088614B2 (en) Array flaw detection method and device therefor
JPH0313810A (en) Method for measuring thickness of plate of concrete structure by ultrasonic-wave pulse reflection method