JPH04212055A - Compound supersonic probe - Google Patents

Compound supersonic probe

Info

Publication number
JPH04212055A
JPH04212055A JP3052547A JP5254791A JPH04212055A JP H04212055 A JPH04212055 A JP H04212055A JP 3052547 A JP3052547 A JP 3052547A JP 5254791 A JP5254791 A JP 5254791A JP H04212055 A JPH04212055 A JP H04212055A
Authority
JP
Japan
Prior art keywords
probe
split type
mounting surface
type probe
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3052547A
Other languages
Japanese (ja)
Inventor
Akira Murayama
村山 章
Toshiya Akiyama
秋山 俊弥
Takeshige Katsumata
勝又 武繁
Mitsuhiro Hoshino
星野 充宏
Akio Onimaru
鬼丸 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc, NKK Corp, Nippon Kokan Ltd filed Critical Tokimec Inc
Priority to JP3052547A priority Critical patent/JPH04212055A/en
Publication of JPH04212055A publication Critical patent/JPH04212055A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a defect to be detected with an approximately uniform sensitivity over a wide distance range in thickness direction by incorporating a plurality of division-type probes, having different focusing positions on a perpendicular to the surface for mounting a body to be measured, in one container. CONSTITUTION:Transmission vibrators 12a and 13a and reception vibrators 12b and 13b are placed at symmetrical positions sandwiching an acoustic division plate 14 within a box-type container 11 while being slanted nearly in chevron shape. Then, by setting a slant angle of a steel plate to be measured 4 of the vibrators 12a and 12b constituting a first division-type probe for a mounting surface 4a of the steel plate to be measured 4 to a value which is larger than an inclination angle of the vibrators 13a and 13b constituting a second division-type probe, thus enabling a focusing position 15 to be located closer to a mounting surface 4a than a focusing position 16. Therefore, by adjusting the inclination angle and enabling the focusing positions 15 and 16 of each probe to be distributed from a shallow position to a deep position near a bottom surface in perpendicular direction for the mounting surface 4a, a defect can be detected highly accurately with nearly a uniform sensitivity over a wide distance range including a short distance and a far distance in thickness direction within a steel plate 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は焦点位置が異なる複数の
分割型探触子を一つの容器内に組込んだ複合超音波探触
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite ultrasonic probe in which a plurality of split type probes having different focal positions are assembled into a single container.

【0002】0002

【従来の技術】例えば鋼板等の被測定体内に存在する欠
陥を検出する欠陥探傷手法の一つとして超音波探傷法が
実用化されている。そして、その手法はJISにも規定
されている(例えばJIS G−0801)。
2. Description of the Related Art Ultrasonic flaw detection has been put into practical use as one of the flaw detection techniques for detecting defects present in objects to be measured, such as steel plates. The method is also specified in JIS (for example, JIS G-0801).

【0003】この垂直超音波探傷法に用いる超音波探触
子は大きく分けて垂直探触子と分割型探触子との2種類
があり、それぞれ被測定体の厚みや使用目的に応じて使
い分けられている。
[0003] Ultrasonic probes used in this vertical ultrasonic flaw detection method can be roughly divided into two types: vertical probes and split-type probes, and each type is used depending on the thickness of the object to be measured and the purpose of use. It is being

【0004】そして、垂直探触子においては、被測定体
の表面に対して平行に振動子を配設して、この振動子に
パルス信号を印加して、パルス状の超音波を被測定体の
表面に対して垂直に印加させる。すると、この超音波は
被測定体内を垂直に伝播して底面で反射される。そして
、同一の振動子でその反射波を受信する。超音波の伝播
経路に欠陥が存在するとその欠陥にて超音波が反射され
るので、前記振動子から取出された受信信号に欠陥に起
因する反射波が含まれる。よって、欠陥の発生位置とそ
の規模が把握できる。
In the vertical probe, a vibrator is arranged parallel to the surface of the object to be measured, and a pulse signal is applied to this vibrator to send pulsed ultrasonic waves to the object to be measured. The voltage is applied perpendicular to the surface. Then, this ultrasonic wave propagates vertically within the body to be measured and is reflected at the bottom surface. The same transducer then receives the reflected wave. If a defect exists in the propagation path of the ultrasonic wave, the ultrasonic wave is reflected by the defect, so that the received signal extracted from the vibrator includes a reflected wave caused by the defect. Therefore, the location where the defect occurs and its scale can be grasped.

【0005】しかし、この垂直探触子においては、被測
定体の表面近傍のごく浅い部分には送信パルス波形が重
畳するので、たとえその部分に欠陥が存在したとしても
その欠陥に起因する反射波(エコー)は送信パルス波に
埋もれてしまうので、正確に検出できない問題がある。 例えば、5MHzの振動子を用いた場合には、前記欠陥
が測定できない範囲は垂直探触子の取付面から10mm
にも達する場合がある。前述したJISにおいても、こ
の垂直探触子を用いて測定できる鋼板の厚みtは13m
m以上であると規定されている。このような不都合を解
消するためには分割型探触子を用いる必要がある。
However, in this vertical probe, the transmitted pulse waveform is superimposed on a very shallow part near the surface of the object to be measured, so even if a defect exists in that part, the reflected wave due to the defect will not be reflected. (Echo) is buried in the transmitted pulse wave, so there is a problem that it cannot be detected accurately. For example, when using a 5 MHz vibrator, the range where the defect cannot be measured is 10 mm from the mounting surface of the vertical probe.
It may even reach. According to the above-mentioned JIS, the thickness t of a steel plate that can be measured using this vertical probe is 13 m.
m or more. In order to eliminate such inconveniences, it is necessary to use a split type probe.

【0006】図8は分割型探触子の概略構成図である。 この分割型探触子1はくさび材およびダンパー材が充填
された容器2内に超音波の送信振動子3aと受信振動子
3bとが鋼板4の取付面4aに対して多少傾斜させて配
設されている。そして、垂線上に位置する焦点5の上下
位置は、前記傾斜角を変化させることで調整可能である
。外部の制御装置から信号線6aを介してパルス信号を
送信振動子3aに印加すると、送信振動子3aから超音
波7が鋼板4内の焦点5方向に送出される。また、受信
振動子3bは、前記焦点5方向から入力される超音波を
受信し、その受信信号aを信号線6bを介して制御装置
へ送出する。したがって、この受信信号aには図8の右
側に示すように、受信振動子3bの取付位置での送信パ
ルス波Tと、取付面4aでの表面反射波Sと、底面での
反射波Bとが含まれる。
FIG. 8 is a schematic diagram of a split type probe. In this split type probe 1, an ultrasonic transmitting transducer 3a and a receiving transducer 3b are arranged at a slight angle with respect to the mounting surface 4a of a steel plate 4 in a container 2 filled with a wedge material and a damper material. has been done. The vertical position of the focal point 5 located on the perpendicular line can be adjusted by changing the inclination angle. When a pulse signal is applied to the transmitting transducer 3a from an external control device via the signal line 6a, the ultrasonic wave 7 is transmitted from the transmitting transducer 3a in the direction of the focal point 5 within the steel plate 4. Further, the receiving transducer 3b receives the ultrasonic waves input from the direction of the focal point 5, and sends the received signal a to the control device via the signal line 6b. Therefore, as shown on the right side of FIG. 8, this received signal a includes a transmitted pulse wave T at the mounting position of the receiving transducer 3b, a surface reflected wave S at the mounting surface 4a, and a reflected wave B at the bottom surface. is included.

【0007】したがって、鋼板4内の前記焦点5の近傍
に欠陥が存在すると、この欠陥で超音波7が反射される
ので、受信信号aにおける表面反射波Sと底面反射波B
との間に欠陥に起因する欠陥波が生じる。よって、欠陥
の発生位置と規模とを特定できる。
[0007] Therefore, if a defect exists in the vicinity of the focal point 5 in the steel plate 4, the ultrasonic wave 7 is reflected by this defect, so that the surface reflected wave S and the bottom reflected wave B in the received signal a are
A defective wave is generated due to the defect. Therefore, the location and size of the defect can be identified.

【0008】このような分割型探触子1によれば、受信
信号aにおける鋼板4の取付面4a(表面)近傍には送
信パルス波Tが現れないので、表面下1〜2mmより深
い位置にある欠陥を検出することが可能である。すなわ
ち、前述した垂直探触子に比較してより表面近傍に存在
する欠陥を確実に検出できる長所を有する。
According to such a split type probe 1, since the transmitted pulse wave T does not appear near the mounting surface 4a (surface) of the steel plate 4 in the received signal a, the transmission pulse wave T does not appear in the vicinity of the mounting surface 4a (surface) of the steel plate 4 in the received signal a. It is possible to detect certain defects. That is, compared to the above-mentioned vertical probe, it has the advantage of being able to more reliably detect defects existing near the surface.

【0009】[0009]

【発明が解決しようとする課題】しかしながら図8に示
す分割型探触子1においてもまだ解消すべき次のような
問題があった。
However, the split type probe 1 shown in FIG. 8 still has the following problems to be solved.

【0010】すなわち、受信振動子3bでもって精度良
く欠陥を検出できる領域は、図9に示すように、焦点5
を中心とする両方の振動子3a,3bが同時にカバーす
る斜線で示した領域(焦点範囲)8のみとなる。したが
って、受信信号aにて得られる欠陥に起因する欠陥波の
検出感度は同図の右側に示すようにこの領域8で最大値
を示す。図10は鋼板4の厚み方向の各距離dにおける
欠陥の検出感度を示す検出感度特性図である。図示する
ように、前記領域8を越える距離dの領域で欠陥検出感
度は大幅に低下する。
That is, the area where defects can be detected with high accuracy using the receiving transducer 3b is the focal point 5, as shown in FIG.
Only the shaded area (focal range) 8 is simultaneously covered by both of the vibrators 3a and 3b centered on . Therefore, the detection sensitivity of a defective wave caused by a defect obtained in the received signal a has a maximum value in this region 8, as shown on the right side of the figure. FIG. 10 is a detection sensitivity characteristic diagram showing the defect detection sensitivity at each distance d in the thickness direction of the steel plate 4. As shown in the figure, the defect detection sensitivity is significantly reduced in a region at a distance d beyond the region 8.

【0011】したがって、この分割型探触子1において
は、厚い鋼板4を測定できない問題がある。前述したJ
ISにおいても、この分割型探触子1を用いて測定でき
る鋼板4の厚みtは20mm未満であると規定されてい
る。
[0011] Therefore, this split type probe 1 has a problem that thick steel plate 4 cannot be measured. J mentioned above
IS also stipulates that the thickness t of the steel plate 4 that can be measured using this split type probe 1 is less than 20 mm.

【0012】しかも、欠陥検出感度は図10に示すよう
に距離dによって大きく変化するので、前述したJIS
においては、DAC(距離感度補正)回路を用いて、底
面近傍の遠距離位置に発生した欠陥に起因する欠陥波を
該当欠陥の規模に相当する大きさに補正するように規定
されている。
Moreover, since the defect detection sensitivity varies greatly depending on the distance d as shown in FIG.
, it is specified that a DAC (distance sensitivity correction) circuit is used to correct a defect wave caused by a defect occurring at a long distance near the bottom surface to a size corresponding to the size of the defect.

【0013】このようにDAC回路を用いて感度補正を
行えば、操作者は出力された欠陥波の高さ(レベル)の
みを観測することによって、発生位置に関係なく欠陥規
模を正確に把握できる。また、一定レベル以上の欠陥波
を検出して警報を出力すればよいので、探傷速度を高め
ることができる。
[0013] By performing sensitivity correction using the DAC circuit in this way, the operator can accurately grasp the scale of the defect by observing only the height (level) of the output defective wave, regardless of the location where it occurs. . Moreover, since it is sufficient to output an alarm upon detecting a defect wave of a certain level or higher, the flaw detection speed can be increased.

【0014】しかし、この感度補正を行うためのDAC
曲線を作成する作業は操作者がその都度行っている。こ
のDAC曲線を作成するには、DAC起点,DAC範囲
,DACマーク,DAC傾斜値等のDAC関係の各調整
つまみを鋼板4の各厚みt毎に探触子を移動させながら
、一定のレベルに調整する必要がある。この調整作業は
非常に繁雑であるので、この作業は熟練した者が実施す
る必要があった。また、測定を実行する毎に調整を実施
する必要があった。
However, the DAC for performing this sensitivity correction
The work of creating a curve is performed by the operator each time. To create this DAC curve, adjust the DAC-related adjustment knobs such as the DAC starting point, DAC range, DAC mark, and DAC slope value to a constant level while moving the probe for each thickness t of the steel plate 4. Need to adjust. Since this adjustment work is very complicated, it is necessary to carry out this work by a skilled person. Further, it was necessary to perform adjustments every time a measurement was performed.

【0015】さらに、遠距離の検出感度を例えば増幅器
等を用いて強制的に上昇させているので、増幅に起因す
る雑音が混入しやすく、S/Nが低下する問題があった
。すなわち、本質的に遠距離の欠陥検出におけるS/N
は近距離におけるS/Nに比較し格段に低下する。よっ
て、厚み方向の全測定範囲に亘って均一なS/N特性を
得ることができないので、この分割型探触子を用いた超
音波探傷装置全体の欠陥検出精度が低下する問題があっ
た。
Furthermore, since the long-distance detection sensitivity is forcibly increased using, for example, an amplifier, there is a problem in that noise due to amplification is likely to be mixed in, resulting in a reduction in S/N. That is, essentially the S/N in long-distance defect detection
is significantly lower than the S/N at short distances. Therefore, it is not possible to obtain uniform S/N characteristics over the entire measurement range in the thickness direction, resulting in a problem that the defect detection accuracy of the entire ultrasonic flaw detection apparatus using this split type probe is reduced.

【0016】本発明はこのような事情に鑑みてなされた
ものであり、焦点位置が異なる複数の分割型探触子を同
一容器内に組込むことによって、被測定体の厚み方向の
近距離および遠距離の広い距離範囲に亘って欠陥をほぼ
均一な検出感度で検出でき、欠陥の検出範囲の拡大と検
出精度の向上と、探傷作業能率向上とを図ることができ
る複合超音波探触子を提供することを目的とする。
The present invention has been made in view of the above circumstances, and by incorporating a plurality of split type probes with different focal positions into the same container, it is possible to measure near and far distances in the thickness direction of the object to be measured. We provide a composite ultrasonic probe that can detect defects with almost uniform detection sensitivity over a wide distance range, expanding the defect detection range, improving detection accuracy, and improving flaw detection work efficiency. The purpose is to

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に、本発明の複合超音波探触子においては、超音波の送
信振動子と受信振動子とを被測定体の取付面に直交する
垂線上における互いに異なる位置に焦点を結ぶように配
設した複数の分割型探触子を同一容器内に組込んだもの
である。また、別の発明においては、同一容器内に組込
む分割型探触子の数を2としている。
[Means for Solving the Problems] In order to solve the above problems, in the composite ultrasonic probe of the present invention, the ultrasonic transmitting transducer and the receiving transducer are arranged perpendicularly to the mounting surface of the object to be measured. A plurality of split-type probes arranged to focus on different positions on a perpendicular line are assembled in the same container. Further, in another invention, the number of split type probes incorporated into the same container is two.

【0018】さらに別の発明においては、被測定体の取
付面に近い位置に焦点を結ぶ分割型探触子の各振動子の
振動周波数を取付面から遠い位置に焦点を結ぶ分割型探
触子の各振動子の振動周波数より高く設定している。
In still another invention, a split type probe focuses the vibration frequency of each vibrator of the split type probe at a position close to the mounting surface of the object to be measured at a position far from the mounting surface. The vibration frequency is set higher than the vibration frequency of each vibrator.

【0019】[0019]

【作用】このように構成された複合超音波探触子によれ
ば、容器内に組込まれた各分割型探触子の焦点は取付面
に直交する垂線上における互いに異なる位置に設定され
ている。前述したように、分割型探触子の欠陥検出感度
は焦点位置を中心とする一定範囲が最良である。よって
、各分割型探触子の各焦点位置を互いに調整して、焦点
位置を前記垂線方向の表面近傍の浅い位置から底面近傍
の深い位置まで分散させることによって、欠陥が存在す
ればその存在位置を最良検出範囲とする分割型探触子で
該当欠陥を精度良く検出できる。すなわち、垂線方向の
広い範囲に亘って欠陥の発生位置およびその規模を精度
良く測定できる。さらに、別の発明においては、同一容
器内に組込む分割型探触子の数を2とすることによって
、小型軽量でかつ低製造費で最大の効果を得るようにし
ている。
[Operation] According to the composite ultrasonic probe configured in this way, the focal points of each split type probe incorporated in the container are set at different positions on the perpendicular line perpendicular to the mounting surface. . As mentioned above, the defect detection sensitivity of the split type probe is best within a certain range centered on the focal position. Therefore, by mutually adjusting the focal positions of each split type probe and dispersing the focal positions from a shallow position near the surface in the perpendicular direction to a deep position near the bottom surface, the location of the defect, if any, can be determined. The defect can be detected with high accuracy using a segmented probe with the best detection range. That is, the location and size of defects can be measured with high precision over a wide range in the perpendicular direction. Furthermore, in another invention, the number of split type probes incorporated in the same container is set to two, thereby obtaining the maximum effect with a small size, light weight, and low manufacturing cost.

【0020】さらに、被測定体の取付面に近い位置に焦
点を結ぶ分割型探触子の各振動子の振動周波数を取付面
から遠い位置に焦点を結ぶ分割型探触子の各振動子の振
動子の振動周波数より高く設定している。具体的には、
振動子が同一材料で形成されていれば、振動子の厚みを
薄くすれば振動周波数が高くなり、厚くすれば低くなる
Furthermore, the vibration frequency of each vibrator of the split type probe that focuses at a position close to the mounting surface of the object to be measured is changed from the vibration frequency of each vibrator of the split type probe that focuses at a position far from the mounting surface. It is set higher than the vibration frequency of the vibrator. in particular,
If the vibrators are made of the same material, decreasing the thickness of the vibrator will increase the vibration frequency, and increasing the thickness will decrease the vibration frequency.

【0021】一般に、被測定体に入射する超音波の周波
数が高いほど、微細な欠陥を検出できるが減衰しやすい
。また、逆に超音波の周波数が低いほど、減衰しにくい
が微細な欠陥を検出しにくい。
Generally, the higher the frequency of the ultrasonic waves incident on the object to be measured, the more minute defects can be detected, but the more easily the ultrasonic waves are attenuated. Conversely, the lower the frequency of ultrasonic waves, the harder it is to attenuate, but the harder it is to detect minute defects.

【0022】一方、被測定体が例えば鋼板等の場合にお
いては、表面近傍に材料力学上有害な微細欠陥が発生し
やすく、逆に鋼板の表面から深い内部位置においては、
比較的集中応力は起こりにくいので、微細欠陥は発生し
にくい。
On the other hand, when the object to be measured is, for example, a steel plate, fine defects harmful to material mechanics are likely to occur near the surface, and conversely, at deep internal positions from the surface of the steel plate,
Since concentrated stress is relatively less likely to occur, micro defects are less likely to occur.

【0023】したがって、取付面から比較的近距離に焦
点を有する分割型探触子でもって、材料力学上有害な表
面微細欠陥を高い周波数で精度良く探傷できる。一方、
被測定体の深い位置に焦点を有する分割型探触子でもっ
て、被測定体の深い位置における比較的大きな欠陥を低
い周波数で確実に探傷できる。すなわち、被測定体の表
面近傍の微細欠陥から深い位置における大欠陥まで1回
の操作で確実に探傷できる。
[0023] Therefore, fine surface defects harmful to material mechanics can be detected with high precision at a high frequency using a split type probe having a focal point at a relatively short distance from the mounting surface. on the other hand,
By using a segmented probe that focuses at a deep position in the object to be measured, relatively large defects deep in the object to be measured can be reliably detected at a low frequency. That is, it is possible to reliably detect flaws from minute defects near the surface of the object to be measured to large defects at deep positions in a single operation.

【0024】[0024]

【実施例】以下本発明の一実施例を図面を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0025】図1は実施例の複合超音波探触子の概略構
成を示す透視斜視図であり、図2はこの複合超音波探触
子が被測定体としての鋼板に取付けられた状態を示す断
面模式図である。
FIG. 1 is a perspective view showing the schematic structure of a composite ultrasonic probe according to an embodiment, and FIG. 2 shows a state in which this composite ultrasonic probe is attached to a steel plate as an object to be measured. It is a cross-sectional schematic diagram.

【0026】この複合超音波探触子10においては、箱
型の容器11内に、第1の分割型探触子を構成する送信
振動子12aおよび受信振動子12bと、第2の分割型
探触子を構成する送信振動子13aおよび受信振動子1
3bとが組込まれている。なお、この実施例においては
、各振動子12a〜13bは同一材料でかつ同一厚みに
形成されている。したがって、同一共振周波数を有して
いるので、パルス信号を印加すれば同一周波数で振動す
る。
In this composite ultrasonic probe 10, a transmitting transducer 12a and a receiving transducer 12b constituting a first segmented probe and a second segmented probe are housed in a box-shaped container 11. A transmitting transducer 13a and a receiving transducer 1 forming a tentacle
3b is incorporated. In this embodiment, each of the vibrators 12a to 13b is made of the same material and has the same thickness. Therefore, since they have the same resonant frequency, when a pulse signal is applied, they vibrate at the same frequency.

【0027】また、この容器11内にはくさび材および
ダンパー材が充填されている。そして、送信振動子12
a,受信振動子12bは音響分割板14を挟んだ対称位
置に略ハ字形に傾斜して配設されている。そして、この
送信振動子12aおよび受信振動子12bで構成される
第1の分割型探触子の焦点15の取付面4aからの厚み
方向の距離dF1は前記傾斜角度によって定まる。
Further, the container 11 is filled with a wedge material and a damper material. Then, the transmitting vibrator 12
a, the receiving transducers 12b are arranged at symmetrical positions with the acoustic dividing plate 14 in between and inclined in a substantially V-shape. The distance dF1 in the thickness direction of the focal point 15 of the first split type probe composed of the transmitting transducer 12a and the receiving transducer 12b from the mounting surface 4a is determined by the above-mentioned inclination angle.

【0028】同様に、送信振動子13a,受信振動子1
3bは前記音響分割板14を挟んで第1の分割型探触子
の外側位置に同じく略ハ字形に傾斜して配設されている
。そして、この送信振動子13aおよび受信振動子13
bで構成される第2の分割型探触子の焦点16の取付面
4aからの厚み方向の距離dF2は前記傾斜角度によっ
て定まる。この実施例においては、第1の分割型探触子
の各振動子12a,12bの取付面4aに対する傾斜角
を第2の分割型探触子の傾斜角より大きく設定すること
によって、焦点位置(距離dF1)を第2の分割型探触
子の焦点位置(距離dF2)より取付面4a側に位置さ
せている。
Similarly, the transmitting transducer 13a and the receiving transducer 1
3b is disposed on the outside of the first split-type probe with the acoustic dividing plate 14 in between, and is also inclined in a substantially V-shape. The transmitting transducer 13a and the receiving transducer 13
The distance dF2 in the thickness direction of the focal point 16 of the second split type probe constituted by b from the mounting surface 4a is determined by the above-mentioned inclination angle. In this embodiment, the focal position ( The distance dF1) is located closer to the mounting surface 4a than the focal position (distance dF2) of the second split type probe.

【0029】また、容器11の上面11aには各振動子
12a,12b,13a,13bに対応する4個の接続
端子17a,17b,18a,18bが取付けられてい
る。そして、各接続端子17a〜18bと各振動子12
a〜13bとは各ゲイン調整用の例えばコイルからなる
整合器19を介して接続されている。各接続端子17a
〜18bは制御装置20に接続されている。
Furthermore, four connection terminals 17a, 17b, 18a, 18b are attached to the top surface 11a of the container 11, corresponding to each vibrator 12a, 12b, 13a, 13b. Then, each connection terminal 17a to 18b and each vibrator 12
a to 13b are connected via a matching box 19 made of, for example, a coil for each gain adjustment. Each connection terminal 17a
~18b are connected to the control device 20.

【0030】そして、送信振動子12aと受信振動子1
2bとで構成される第1の分割型探触子における厚み方
向の各距離dにおける前述した欠陥に起因する欠陥波の
検出感度は図3の右側に示す感度特性Aとなる。よって
、焦点15の位置(距離dF1)が最大感度となる。し
たがって、検出感度の減衰量が最大感度から例えば−3
dBまでの欠陥を精度良く検出できる探傷領域AR は
焦点位置(距離dF1)を中心に上下に広がる。
[0030] Then, the transmitting transducer 12a and the receiving transducer 1
The detection sensitivity of the defect wave caused by the above-mentioned defect at each distance d in the thickness direction of the first split type probe composed of 2b and 2b is a sensitivity characteristic A shown on the right side of FIG. Therefore, the position of the focal point 15 (distance dF1) has the maximum sensitivity. Therefore, the amount of attenuation of detection sensitivity is -3, for example, from the maximum sensitivity.
The flaw detection area AR, which can accurately detect defects up to dB, spreads vertically around the focal point (distance dF1).

【0031】同様に、送信振動子13aと受信振動子1
3bとで構成される第2の分割型探触子における検出感
度は感度特性Bとなる。よって、焦点16の位置(距離
dF2)が最大感度となり、欠陥を精度良く検出できる
探傷領域BR は、第1の分割型探触子の探傷領域AR
 にその一部が重なる。逆に、各探傷領域AR ,BR
 において相互に重なる部分が生じるように、各焦点位
置dF1,dF2が設定されている。
Similarly, the transmitting transducer 13a and the receiving transducer 1
The detection sensitivity of the second split type probe composed of 3b and 3b is sensitivity characteristic B. Therefore, the flaw detection area BR where the position of the focal point 16 (distance dF2) has the maximum sensitivity and can detect defects with high accuracy is the flaw detection area AR of the first segmented probe.
Some of them overlap. Conversely, each flaw detection area AR, BR
The respective focal positions dF1 and dF2 are set so that there are mutually overlapping portions in the .

【0032】よって、鋼板4の表面(取付面4a)から
両方の感度特性A,Bが交差する距離dC までの近距
離区間に発生する欠陥を第1の分割型探触子で検出し、
また、距離dC から距離t(鋼板の厚み)までの遠距
離区間に発生する欠陥を第2の分割型探触子で検出すれ
ばよい。具体的には、距離dに応じて、欠陥検出解析に
用いる受信信号の送信元の分割型探触子を切換える。
[0032] Therefore, defects occurring in a short distance section from the surface (mounting surface 4a) of the steel plate 4 to the distance dC where both sensitivity characteristics A and B intersect are detected by the first split type probe,
Furthermore, defects occurring in a long distance section from distance dC to distance t (thickness of the steel plate) may be detected using the second split type probe. Specifically, the split type probe that is the transmission source of the received signal used for defect detection analysis is switched according to the distance d.

【0033】なお、各分割型探触子の検出感度は完全に
一致しないが、前述した例えばコイルからなる各整合器
19の抵抗等の物理特性を変化させることによって、図
3に示すように、各分割型探触子の感度特性A,Bの最
大値をほぼ一致させている。
Although the detection sensitivities of the split type probes do not completely match, by changing the physical characteristics such as the resistance of each matching device 19 made of a coil, as shown in FIG. The maximum values of the sensitivity characteristics A and B of each split type probe are made almost the same.

【0034】よって、被測定体としての鋼板4の取付面
4aから反対面(底面)までの各距離dにおける欠陥の
発生位置とその規模をほぼ同一の検出感度で精度良く検
出できる。
Therefore, the location and size of defects at each distance d from the mounting surface 4a to the opposite surface (bottom surface) of the steel plate 4 as the object to be measured can be accurately detected with substantially the same detection sensitivity.

【0035】また、広い距離範囲に亘って同一の検出感
度が得られるので、従来の1個の分割型探触子のみを用
いた手法のようにDAC回路を用いて感度補正を行う必
要がない。その結果、繁雑な調整作業を除去できるので
、この複合超音波探触子10を用いた超音波探傷装置の
操作性を大幅に向上できる。図4はこの複合超音波探触
子10を作動する制御装置20の構成を示すブロック図
である。
[0035] Furthermore, since the same detection sensitivity can be obtained over a wide distance range, there is no need to perform sensitivity correction using a DAC circuit, unlike the conventional method using only one split type probe. . As a result, since complicated adjustment work can be eliminated, the operability of the ultrasonic flaw detection apparatus using this composite ultrasonic probe 10 can be greatly improved. FIG. 4 is a block diagram showing the configuration of a control device 20 that operates this composite ultrasound probe 10.

【0036】送信回路21は規定周期P毎にパルス信号
bを接続端子17aを介して第1の分割型探触子の送信
振動子12aに印加する。また、受信振動子12bから
接続端子17bを介して出力された受信信号cは受信回
路22へ入力される。受信回路22は、入力した受信信
号cの雑音成分を予め設定されているスレッショルド電
圧VSHで除去して、ピーク波信号c1 として信号切
換回路23を介してCRT表示器24の縦軸へ印加する
。なお、受信回路22から出力されたピーク波信号c1
 は欠陥ゲート回路25を介して例えばレコーダに出力
される。
The transmitting circuit 21 applies a pulse signal b to the transmitting transducer 12a of the first split type probe via the connecting terminal 17a at every prescribed period P. Further, the reception signal c output from the reception vibrator 12b via the connection terminal 17b is input to the reception circuit 22. The receiving circuit 22 removes the noise component of the input received signal c using a preset threshold voltage VSH, and applies it to the vertical axis of the CRT display 24 via the signal switching circuit 23 as a peak wave signal c1. Note that the peak wave signal c1 output from the receiving circuit 22
is output to, for example, a recorder via the defective gate circuit 25.

【0037】また、送信回路26も同様に規定周期P毎
にパルス信号eを接続端子18aを介して第2の分割型
探触子の送信振動子13aに印加する。また、受信振動
子13bから出力された受信信号fは受信回路27へ入
力される。受信回路27は、入力した受信信号fの雑音
成分を予め設定されているスレッショルド電圧VSHで
除去して、ピーク波信号f1 として信号切換回路23
を介してCRT表示器24の縦軸へ印加する。なお、受
信回路27から出力されたピーク波信号f1 は欠陥ゲ
ート回路28を介して例えばレコーダに出力される。
Similarly, the transmitting circuit 26 applies a pulse signal e to the transmitting transducer 13a of the second split type probe via the connecting terminal 18a at regular intervals P. Further, the reception signal f output from the reception vibrator 13b is input to the reception circuit 27. The receiving circuit 27 removes the noise component of the input received signal f using a preset threshold voltage VSH, and outputs the signal as a peak wave signal f1 to the signal switching circuit 23.
The voltage is applied to the vertical axis of the CRT display 24 through. Note that the peak wave signal f1 outputted from the receiving circuit 27 is outputted to, for example, a recorder via the defective gate circuit 28.

【0038】また、各送信回路21,26の各パルス信
号b,eの出力タイミングは同期回路29にて制御され
る。この同期回路29には操作者が操作する切換スイッ
チ29aが接続されており、この切換スイッチ29aを
同時励振側に投入すると、各パルス信号b,eは図5(
a)に示すように完全に同時に出力される。一方、切換
スイッチ29aを交互励振側に投入すると、各パルス信
号b,eは図5(b)に示すように、互いに周期が1/
2 だけずれて出力される。
Furthermore, the output timing of each pulse signal b, e from each transmitting circuit 21, 26 is controlled by a synchronization circuit 29. A changeover switch 29a operated by the operator is connected to this synchronization circuit 29, and when this changeover switch 29a is turned on to the simultaneous excitation side, each pulse signal b, e is
As shown in a), they are output completely simultaneously. On the other hand, when the changeover switch 29a is turned on to the alternate excitation side, the pulse signals b and e each have a period of 1/1 as shown in FIG. 5(b).
The output is shifted by 2.

【0039】また、同期回路29は時間軸回路30へ各
パルス信号b,eの出力タイミング信号を送出する。時
間軸回路30は、入力した出力タイミング信号に基づい
て、CRT表示器24の横軸(時間軸)に距離dに対応
する掃引信号を印加する。同時に、信号切換回路23へ
、横軸の距離dが図3に示した切換距離dC に達した
タイミングで切換信号gを出力して、CRT表示器24
へ入力されるピーク波信号を、第1の分割型探触子に対
応する受信回路22からのピーク波信号c1 から、第
2の分割型探触子に対応する受信回路27からのピーク
波信号f1 に切換える。また、各電子回路部品には電
源回路31から駆動電圧VC が供給される。
Furthermore, the synchronization circuit 29 sends output timing signals of the respective pulse signals b and e to the time axis circuit 30. The time axis circuit 30 applies a sweep signal corresponding to the distance d to the horizontal axis (time axis) of the CRT display 24 based on the input output timing signal. At the same time, a switching signal g is output to the signal switching circuit 23 at the timing when the distance d on the horizontal axis reaches the switching distance dC shown in FIG.
, the peak wave signal inputted to the peak wave signal c1 from the receiving circuit 22 corresponding to the first split type probe, and the peak wave signal input from the receiving circuit 27 corresponding to the second split type probe. Switch to f1. Further, each electronic circuit component is supplied with a driving voltage VC from a power supply circuit 31.

【0040】このような制御装置30において、同期回
路29の切換スイッチ29aを同時励振側に投入した状
態で電源を投入すると、各送信回路21,26から同一
タイミングで各パルス信号b,eが出力される。その結
果、第1,第2の分割型探触子の各送信振動子12a,
13aから同一タイミングでパルス状の超音波が出力さ
れる。各送信振動子12a,13aから出力された超音
波は取付面4aにてその一部が反射され、残りが鋼板4
内へ入射して各焦点15,16方向へ伝播される。そし
て、底面で反射された反射波が各受信振動子12b,1
3bへ入射される。また、伝播途中で欠陥に遭遇すると
その欠陥にて反射された欠陥反射波が各受信振動子12
b,13bへ入射する。
In such a control device 30, when the power is turned on with the changeover switch 29a of the synchronous circuit 29 turned on to the simultaneous excitation side, each pulse signal b, e is output from each transmitting circuit 21, 26 at the same timing. be done. As a result, each transmitting transducer 12a of the first and second split type probes,
Pulsed ultrasonic waves are output from 13a at the same timing. A part of the ultrasonic waves output from each transmitting transducer 12a, 13a is reflected by the mounting surface 4a, and the rest is reflected by the steel plate 4.
The light enters the center and is propagated toward each focal point 15 and 16. Then, the reflected waves reflected from the bottom surface of each receiving vibrator 12b, 1
3b. In addition, when a defect is encountered during propagation, the defect reflected wave reflected by the defect is transmitted to each receiving transducer 12.
b, 13b.

【0041】よって、第1,第2の各分割型探触子に対
応する各受信回路22,27から出力される各ピーク波
信号c1 ,f1 には図8で示したような送信パルス
波T,表面反射波S,底面反射波Bの他に、欠陥に起因
する欠陥波Fが生じる。
Therefore, each peak wave signal c1, f1 output from each receiving circuit 22, 27 corresponding to each of the first and second split type probes has a transmission pulse wave T as shown in FIG. , the surface reflected wave S, and the bottom reflected wave B, a defect wave F is generated due to the defect.

【0042】そして、各ピーク波信号c1 ,f1 は
信号切換回路23を介してCRT表示器24へ入力され
るが、距離dが取付面4a(d=0)から切換距離(d
=dC )までの期間は、時間軸回路30にて信号切換
回路23が受信回路22側に切換接続されているので、
この期間には、CRT表示器24に第1の分割型探触子
の受信信号cに対応するピーク波信号c1 が表示され
る。この第1の分割型探触子の探傷領域AR は図3に
示すように、鋼板4の表面(取付面4a)近傍の近距離
区域をカバーするので、取付表面4a近傍に存在する欠
陥に起因する欠陥波Fを確実に検出できる。
Each of the peak wave signals c1 and f1 is input to the CRT display 24 via the signal switching circuit 23, but the distance d is different from the switching distance (d=0) from the mounting surface 4a (d=0).
=dC), the signal switching circuit 23 is switched and connected to the receiving circuit 22 side in the time axis circuit 30.
During this period, a peak wave signal c1 corresponding to the received signal c of the first split type probe is displayed on the CRT display 24. As shown in FIG. 3, the flaw detection area AR of the first split type probe covers a short distance area near the surface (mounting surface 4a) of the steel plate 4, so it is difficult to detect defects caused by defects existing near the mounting surface 4a. The defective wave F can be reliably detected.

【0043】また、距離dが切換距離(d=dC )か
ら底面位置(d=t)までの期間は、時間軸回路30に
て信号切換回路23が受信回路27側に切換接続されて
いるので、この期間、CRT表示器24には第2の分割
型探触子の受信信号fに対応するピーク波信号f1 が
表示される。この第2の分割型探触子の探傷領域BR 
は図3に示すように、鋼板4の底面近傍の遠距離区域を
カバーするので、底面近傍に存在する欠陥に起因する欠
陥波Fを確実に検出できる。
Furthermore, during the period when the distance d is from the switching distance (d=dC) to the bottom position (d=t), the signal switching circuit 23 is switched and connected to the receiving circuit 27 side in the time axis circuit 30. , during this period, the peak wave signal f1 corresponding to the received signal f of the second segmented probe is displayed on the CRT display 24. The flaw detection area BR of this second split type probe
As shown in FIG. 3, since it covers a long distance area near the bottom of the steel plate 4, it is possible to reliably detect a defect wave F caused by a defect existing near the bottom.

【0044】このように、焦点位置が異なる複数の分割
型探触子を組込んだ複合超音波探触子10を使用するこ
とによって、DAC回路を使用せずに、鋼板4の複合超
音波探触子10の取付面4aから反対面(底面)までの
広い距離範囲に亘って、十分大きい均一な欠陥検出感度
が得られる。よって、欠陥の検出精度を大幅に向上でき
る。次に、同期回路29の切換スイッチ29aを交互励
振側に投入した場合を説明する。
As described above, by using the composite ultrasonic probe 10 incorporating a plurality of split type probes with different focal positions, the composite ultrasonic probe 10 of the steel plate 4 can be detected without using a DAC circuit. Sufficient and uniform defect detection sensitivity can be obtained over a wide distance range from the mounting surface 4a of the feeler 10 to the opposite surface (bottom surface). Therefore, defect detection accuracy can be greatly improved. Next, a case will be described in which the changeover switch 29a of the synchronous circuit 29 is turned on to the alternate excitation side.

【0045】切換スイッチ29aを交互励振側に投入す
ると、図5(b)に示すように、各送信回路21,26
から互いに周期が1/2 だけずれたパルス信号b,e
が第1,第2の各分割型探触子の各送信振動子12a,
13aに印加される。その結果、各送信振動子12a,
13aにおける超音波の出力タイミングがずれる。よっ
て、両方の超音波が互いに干渉しあうことが未然に防止
される。したがって、各分割型探触子から出力される各
受信信号c,fのS/Nを向上できるので、結果として
欠陥の検出精度をさらに向上できる。
When the changeover switch 29a is turned on to the alternate excitation side, each transmitting circuit 21, 26 is turned on as shown in FIG. 5(b).
Pulse signals b and e whose period is shifted by 1/2 from each other
are the respective transmitting transducers 12a of the first and second split type probes,
13a. As a result, each transmitting transducer 12a,
The output timing of the ultrasonic waves in 13a is shifted. Therefore, both ultrasonic waves are prevented from interfering with each other. Therefore, the S/N ratio of each received signal c, f output from each split type probe can be improved, and as a result, defect detection accuracy can be further improved.

【0046】なお、この場合は、ピーク波信号c1 ,
f1 相互間でタイミング差が存在するので、CRT表
示器24に同時に表示することはなく、操作者が信号切
換回路23を手動で切換操作して、各ピーク波信号c1
 ,f1 を交互にCRT表示器24に表示させて、欠
陥波Fを観察すればよい。
Note that in this case, the peak wave signals c1,
Since there is a timing difference between the peak wave signals c1 and f1, they are not displayed simultaneously on the CRT display 24, and the operator manually switches the signal switching circuit 23 to display each peak wave signal c1.
, f1 may be displayed alternately on the CRT display 24 to observe the defect wave F.

【0047】また、各送信振動子12a,13aから出
力されたパルス状の各超音波が鋼板4内へ入射される場
合は、その一部分は表面(取付面4a)で表面反射され
る。そして、その表面反射波の一部が各受信振動子12
b,13bに入射する。したがって、各受信信号c,f
のピーク波信号c1 ,f1には、図8に示したように
、表面近傍に表面反射波Sが現れる。そして、この表面
反射波Sが大きいと表面近傍に発生する小さな欠陥の欠
陥波Fがこの表面反射波Sに含まれてしまう。この表面
反射波Sの大きさ(高さ)は超音波の入射角度が小さい
ほど、すなわち、焦点位置が遠いほど大きくなる。その
結果、近距離の欠陥を検出する第1の分割型探触子の受
信振動子12bに遠距離の欠陥を検出する第2の分割型
探触子の送信振動子13aから出力された超音波の表面
反射波が混入するので、たとえ第1の分割型探触子を用
いたとしても表面にごく近い位置の欠陥を正確に検出で
きない問題が生じる。
Further, when each pulsed ultrasonic wave outputted from each transmitting transducer 12a, 13a is incident on the steel plate 4, a portion thereof is reflected by the surface (mounting surface 4a). A part of the surface reflected wave is transmitted to each receiving transducer 12.
b, 13b. Therefore, each received signal c, f
As shown in FIG. 8, a surface reflected wave S appears in the peak wave signals c1 and f1 near the surface. If the surface reflected wave S is large, the defect wave F of a small defect generated near the surface will be included in the surface reflected wave S. The magnitude (height) of this surface reflected wave S increases as the incident angle of the ultrasonic wave becomes smaller, that is, as the focal position becomes farther away. As a result, the ultrasonic wave output from the transmitting transducer 13a of the second split type probe, which detects long-distance defects, is transmitted to the receiving transducer 12b of the first split-type probe, which detects defects at a short distance. Since the surface reflected waves of 1 are mixed in, a problem arises in that even if the first split type probe is used, defects in positions very close to the surface cannot be accurately detected.

【0048】しかし、第1,第2の各分割型探触子の各
送信振動子12a,13aから出力される超音波の出力
タイミングが異なるので、第1の分割型探触子の受信振
動子12bに第2の分割型探触子の表面反射波が入力す
るタイミングと自己が出力した超音波による表面反射波
の入力タイミングとは1/2 周期ずれる。その結果、
第2の分割型探触子の表面反射波Sが表面近傍における
欠陥検出精度に悪影響を与えることはない。よって、よ
り精度良く欠陥を検出できる。
However, since the output timings of the ultrasonic waves output from the transmitting transducers 12a and 13a of the first and second split-type probes are different, the receiving transducer of the first split-type probe The timing at which the surface reflected wave from the second split type probe is input to 12b and the input timing at which the surface reflected wave from the ultrasonic wave output by itself are input are shifted by 1/2 period. the result,
The surface reflected wave S of the second split type probe does not adversely affect the defect detection accuracy near the surface. Therefore, defects can be detected with higher accuracy.

【0049】また、切換スイッチ29aを交互励振側に
投入することによって、超音波を交互に出力させて超音
波相互間に干渉現象が生じるのを未然に防止できると説
明したが、逆に故意に超音波相互間で干渉現象を発生さ
せて、遠距離における総合的な検出感度を上昇させるこ
とが可能である。
Furthermore, although it has been explained that by turning the selector switch 29a to the alternate excitation side, it is possible to output ultrasonic waves alternately and prevent interference between the ultrasonic waves. It is possible to generate an interference phenomenon between ultrasonic waves to increase overall detection sensitivity at a long distance.

【0050】すなわち、図6(a)に示すように、切換
スイッチ29aを交互励振側に投入した状態で各分割型
探触子をそれぞれ独立に稼働させると、感度特性Cを有
する近距離用の第1の分割型探触子と、感度特性Dを有
する遠距離用の第2の分割型探触子とが存在するとする
。この状態で、切換スイッチ29aを同時励振側に投入
すると、それぞれの受信信号c,fにおける感度特性が
図6(b)に示す感度特性Gとなる場合がある。
That is, as shown in FIG. 6(a), when each split type probe is operated independently with the changeover switch 29a set to the alternate excitation side, a short-distance probe with sensitivity characteristic C is generated. Assume that a first split-type probe and a second split-type probe for long distance use having sensitivity characteristics D exist. In this state, when the changeover switch 29a is turned to the simultaneous excitation side, the sensitivity characteristics of the respective received signals c and f may become the sensitivity characteristics G shown in FIG. 6(b).

【0051】よって、各振動子12a〜13bの振動周
波数や各振動子12a〜13b相互間および各振動子1
2a〜13bと表面4aまでの距離等を調整して、鋼板
4の底面近傍の各反射波の振幅が互い強調する方向に位
相が合致すれば、結果として該当位置の検出感度が上昇
する。逆に、近距離においては、互いの振幅を打ち消し
あう方向に位相が合致すれば、検出感度が低下する。す
なわち、干渉現象を利用して合成された感度特性Gを任
意に設定可能である。
Therefore, the vibration frequency of each vibrator 12a to 13b, the difference between each vibrator 12a to 13b, and the vibration frequency of each vibrator 1
If the distances between 2a to 13b and the surface 4a are adjusted so that the amplitudes of the respective reflected waves near the bottom of the steel plate 4 match in phase in a direction that emphasizes each other, the detection sensitivity of the corresponding position increases as a result. Conversely, at short distances, if the phases match in directions that cancel out each other's amplitudes, detection sensitivity will decrease. That is, the sensitivity characteristic G synthesized using the interference phenomenon can be arbitrarily set.

【0052】なお、本発明は上述した実施例に限定され
るものではない。実施例においては、2つの分割型探触
子を用いて複合超音波探触子を構成したが、互いに焦点
位置が異なる多数の分割型探触子を用いてもよい。この
場合、全体としての探傷領域が広がるので、さらに広範
囲に亘って欠陥を精度良く探傷できる。
Note that the present invention is not limited to the embodiments described above. In the embodiment, the composite ultrasonic probe is constructed using two split probes, but a large number of split probes having different focal positions may also be used. In this case, since the overall flaw detection area is expanded, defects can be detected over a wider area with high precision.

【0053】さらに、各分割型探触子を一つの複合超音
波探触子10として同一容器11内に組込んでいるので
、探触子の取扱いが簡単になり、超音波探傷装置全体の
操作性を大幅に向上できる。
Furthermore, since each split type probe is assembled into the same container 11 as one composite ultrasonic probe 10, handling of the probes is simplified and operation of the entire ultrasonic flaw detection apparatus is simplified. can significantly improve performance.

【0054】また、各送信振動子12a,13aおよび
各受信振動子12b,13bの配置方法も図1,図2に
示した実施例方法に限定されるものではない。例えば図
7(a)〜(e)に示すように種々の方法が考えられる
。そして、収納容器や取付場所等を考慮して最適の配置
方法を選択すればよい。すなわち、重要なことは、複合
超音波探触子を構成する各分割型探触子の焦点位置が互
いに異なっていればよい。例えば、図7(a)〜(c)
は各分割型探触子を横1列に配列したものであり、図7
(d)および同図(e)は横2列に亘って配列したもの
である。
Furthermore, the method of arranging the transmitting transducers 12a, 13a and the receiving transducers 12b, 13b is not limited to the embodiment shown in FIGS. 1 and 2. For example, various methods can be considered, as shown in FIGS. 7(a) to 7(e). Then, the optimum arrangement method may be selected in consideration of the storage container, mounting location, etc. That is, what is important is that the focal positions of the segmented probes constituting the composite ultrasound probe should be different from each other. For example, FIGS. 7(a) to (c)
is an arrangement of each segmented probe in a horizontal row, as shown in Figure 7.
(d) and (e) of the same figure are arranged in two horizontal rows.

【0055】また、上述した各実施例においては、各分
割型探触子相互間の振動子の振動周波数を互いに等しく
設定したが、取付面に近い位置に焦点15を結ぶ第1の
分割型探触子の各振動子12a,12bの振動周波数を
取付面から遠い位置に焦点16を結ぶ第2の分割型探触
子の各振動子13a,13bの振動周波数より高く設定
することによって、より効果的に欠陥を探傷できる。
In each of the embodiments described above, the vibration frequencies of the transducers between the split probes were set to be equal to each other. By setting the vibration frequency of each vibrator 12a, 12b of the probe to be higher than the vibration frequency of each vibrator 13a, 13b of the second split type probe, which connects the focal point 16 at a position far from the mounting surface, more effects can be achieved. Defects can be detected visually.

【0056】すなわち、第1の分割型探触子の各振動子
12a,12bの厚みを第2の分割型探触子の各振動子
13a,13bの厚みより薄くすることによって、第1
の分割型探触子の各振動子12b,12bの共振周波数
で定まる振動周波数を例えば5MHzに設定し、第2の
分割型探触子の各振動子13a,13bの振動周波数を
2MHzに設定する。なお、この場合は、鋼板4内にお
ける超音波どうしの干渉を避けるために交互励振のみで
探傷するのが望ましい。
That is, by making the thickness of each vibrator 12a, 12b of the first split type probe thinner than the thickness of each vibrator 13a, 13b of the second split type probe,
For example, the vibration frequency determined by the resonance frequency of each vibrator 12b, 12b of the split type probe is set to 5 MHz, and the vibration frequency of each vibrator 13a, 13b of the second split type probe is set to 2 MHz. . In this case, in order to avoid interference between ultrasonic waves within the steel plate 4, it is desirable to perform flaw detection using only alternate excitation.

【0057】前述したように、振動周波数を高くすると
微細な欠陥が精度良く探傷できるので、第1の分割型探
触子で鋼板4の取付面4a近傍の比較的浅い位置又は表
面における材料力学上有害な微細欠陥をより精度良く探
傷できる。一方、振動周波数を低くすると減衰しにくい
ので、振動周波数の低い第2の分割型探触子でもって、
鋼板4の深い位置における比較的大きな欠陥を確実に探
傷できる。
As mentioned above, fine defects can be detected with high accuracy by increasing the vibration frequency, so the first split-type probe can be used to detect material mechanics at a relatively shallow position or surface near the mounting surface 4a of the steel plate 4. Harmful minute defects can be detected with higher precision. On the other hand, if the vibration frequency is lowered, it is difficult to attenuate, so using the second split type probe with a lower vibration frequency,
Relatively large defects deep in the steel plate 4 can be reliably detected.

【0058】すなわち、このように互いに異なる振動周
波数を有する複数の分割型探触子を一つの容器11内に
組込むことによって、欠陥の種類に応じた最適周波数の
超音波で探傷できるので、S/Nを向上でき、かつ鋼板
4の表面近傍の微細欠陥から深い位置における大欠陥ま
で確実に探傷できる。よって、欠陥検出能力が向上する
と共に、1回の探傷動作で終了するので、探傷作業能率
をより向上できる。
That is, by incorporating a plurality of split type probes having different vibration frequencies into one container 11 in this way, flaw detection can be performed using ultrasonic waves at the optimum frequency depending on the type of defect, so that S/ N can be improved, and flaws ranging from minute defects near the surface of the steel plate 4 to large defects at deep positions can be reliably detected. Therefore, the defect detection ability is improved, and since the flaw detection operation is completed in one time, the flaw detection work efficiency can be further improved.

【0059】さらに、この複合超音波探触子10を作動
する制御装置20をもっと簡略化することが可能である
。例えば受信回路22,27は入力した受信信号c,f
を簡単なフィルタで雑音成分のみを除去してCRT表示
器24へ送出してもよい。また、時間軸回路30から切
換信号gを送出しなくて、信号切換回路23を操作者が
必要に応じてマニアル操作で切換えるようにしてもよい
。さらに、同時励振のみを行う場合は、2個の送信回路
21,26を用いずに1個の送信回路のみでよい。この
ように、複雑な制御装置を用いなくても前述した複合超
音波探触子10としての機能を十分発揮することが可能
である。
Furthermore, it is possible to further simplify the control device 20 that operates this composite ultrasonic probe 10. For example, the receiving circuits 22 and 27 receive input received signals c and f.
It is also possible to remove only the noise component using a simple filter and send it to the CRT display 24. Alternatively, the switching signal g may not be sent from the time axis circuit 30, and the signal switching circuit 23 may be manually switched by the operator as necessary. Furthermore, when only simultaneous excitation is performed, only one transmitting circuit is required instead of using the two transmitting circuits 21 and 26. In this way, it is possible to fully exhibit the functions of the composite ultrasonic probe 10 described above without using a complicated control device.

【0060】[0060]

【発明の効果】以上説明したように本発明の複合超音波
探触子によれば、焦点位置が異なる複数の分割型探触子
を同一容器内に組込んでいる。したがって、各焦点位置
を被測定体の厚み方向に分散させることによって、被測
定体の厚み方向の近距離および遠距離を含む広い距離範
囲に亘って欠陥をほぼ均一な検出感度で検出でき、欠陥
の検出範囲の拡大と検出精度の向上とを図ることができ
る。
As explained above, according to the composite ultrasonic probe of the present invention, a plurality of split type probes having different focal positions are assembled in the same container. Therefore, by dispersing each focal point position in the thickness direction of the object to be measured, defects can be detected with almost uniform detection sensitivity over a wide distance range including near and far distances in the thickness direction of the object to be measured. It is possible to expand the detection range and improve the detection accuracy.

【0061】また、取付面に近い焦点の分割型探触子の
振動周波数を取付面から遠い焦点の分割型探触子の振動
周波数より高くしているので、近い焦点の分割型探触子
で表面近傍の微細欠陥をより精度良く探傷でき、遠い焦
点の分割型探触子で深い位置の大きい欠陥をより確実に
探傷できる。
Furthermore, since the vibration frequency of the split-type probe with a focus close to the mounting surface is higher than the vibration frequency of the split-type probe with a focus far from the mounting surface, the split-type probe with a focus close to the mounting surface Microscopic defects near the surface can be detected with higher accuracy, and large defects in deep positions can be detected more reliably using a split-type probe with a far focus.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例に係わる複合超音波探触
子の概略構成を示す透視斜視図、
FIG. 1 is a transparent perspective view showing a schematic configuration of a composite ultrasound probe according to an embodiment of the present invention;

【図2】  同実施例探触子を示す断面模式図、[Figure 2] Schematic cross-sectional diagram showing the same example probe,

【図3
】  同実施例探触子における各分割型探触子の焦点位
置と各検出感度特性との関係を示す図、
[Figure 3
] A diagram showing the relationship between the focal position of each split type probe and each detection sensitivity characteristic in the same example probe,

【図4】  同
実施例探触子の制御装置を示すブロック構成図、
[Fig. 4] Block configuration diagram showing the control device of the probe of the same embodiment,

【図5】  同実施例探触子に印加するパルス信号を示
すタイムチャート、
[Figure 5] A time chart showing pulse signals applied to the probe of the same example.

【図6】  本発明の他の実施例に係わる複合超音波探
触子の各分割型探触子の検出感度特性図、
FIG. 6: Detection sensitivity characteristic diagram of each split type probe of a composite ultrasonic probe according to another embodiment of the present invention,

【図7】  
本発明のさらに別の実施例に係わる複合超音波探触子の
各振動子の配列状態を示す図、
[Figure 7]
A diagram showing the arrangement state of each vibrator of a composite ultrasonic probe according to still another embodiment of the present invention,

【図8】  一般的な分
割型探触子を示す断面模式図、
[Figure 8] Schematic cross-sectional diagram showing a general split-type probe,

【図9】  同分割型探
触子の動作を説明するための図、
[Figure 9] Diagram for explaining the operation of the split type probe,

【図10】  同分割
型探触子における欠陥検出感度特性図。
FIG. 10 is a defect detection sensitivity characteristic diagram of the split type probe.

【符号の説明】[Explanation of symbols]

4…鋼板、4a…取付面、10…複合超音波探触子、1
1…容器、12a,13a…送信振動子、12b,13
b…受信振動子、15,16…焦点、20…制御装置、
21,26…送信回路、22,27…受信回路、23…
信号切換回路、24…CRT表示器、29…同期回路。
4... Steel plate, 4a... Mounting surface, 10... Composite ultrasound probe, 1
1... Container, 12a, 13a... Transmission vibrator, 12b, 13
b... Receiving transducer, 15, 16... Focus, 20... Control device,
21, 26... Transmitting circuit, 22, 27... Receiving circuit, 23...
Signal switching circuit, 24...CRT display, 29...synchronous circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  超音波の送信振動子と受信振動子とを
被測定体の取付面に直交する垂線上における互いに異な
る位置に焦点を結ぶように配設した複数の分割型探触子
を同一容器内に組込んだことを特徴とする複合超音波探
触子。
Claim 1: A plurality of split-type probes each having an ultrasonic transmitting transducer and a receiving transducer arranged so as to focus on different positions on a perpendicular line perpendicular to the mounting surface of the object to be measured. A composite ultrasonic probe characterized by being incorporated into a container.
【請求項2】  超音波の送信振動子と受信振動子とを
被測定体の取付面に直交する垂線上における第1の位置
に焦点を結ぶように配設した第1の分割型探触子と、超
音波の送信振動子と受信振動子とを被測定体の取付面に
直交する垂線上おける前記第1の位置とは異なる第2の
位置に焦点を結ぶように配設した第2の分割型探触子と
を同一容器内に組込んだことを特徴とする複合超音波探
触子。
[Claim 2] A first split-type probe in which an ultrasonic transmitting transducer and a receiving transducer are arranged so as to focus on a first position on a perpendicular line perpendicular to the mounting surface of the object to be measured. and a second ultrasonic transmitting transducer and a receiving transducer arranged so as to focus on a second position different from the first position on a perpendicular line perpendicular to the mounting surface of the object to be measured. A composite ultrasonic probe characterized by incorporating a split type probe into the same container.
【請求項3】  被測定体の取付面に近い位置に焦点を
結ぶ分割型探触子の各振動子の振動周波数は前記取付面
から遠い位置に焦点を結ぶ分割型探触子の各振動子の振
動周波数より高く設定されたことを特徴とする請求項1
および請求項2のいずれか1項に記載された複合超音波
探触子。
3. The vibration frequency of each vibrator of the split type probe that focuses at a position close to the mounting surface of the object to be measured is equal to the vibration frequency of each vibrator of the split type probe that focuses at a position far from the mounting surface. Claim 1 characterized in that the vibration frequency is set higher than the vibration frequency of
and a composite ultrasound probe according to claim 2.
JP3052547A 1990-07-05 1991-03-18 Compound supersonic probe Pending JPH04212055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3052547A JPH04212055A (en) 1990-07-05 1991-03-18 Compound supersonic probe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-176334 1990-07-05
JP17633490 1990-07-05
JP3052547A JPH04212055A (en) 1990-07-05 1991-03-18 Compound supersonic probe

Publications (1)

Publication Number Publication Date
JPH04212055A true JPH04212055A (en) 1992-08-03

Family

ID=26393164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3052547A Pending JPH04212055A (en) 1990-07-05 1991-03-18 Compound supersonic probe

Country Status (1)

Country Link
JP (1) JPH04212055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257794A (en) * 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method
JP2011214891A (en) * 2010-03-31 2011-10-27 Mitsubishi Electric Corp Array ultrasonic flaw detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257794A (en) * 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method
JP4524937B2 (en) * 2001-03-02 2010-08-18 住友金属工業株式会社 Ultrasonic flaw detection method
JP2011214891A (en) * 2010-03-31 2011-10-27 Mitsubishi Electric Corp Array ultrasonic flaw detector

Similar Documents

Publication Publication Date Title
JPS5847026B2 (en) How to calibrate acoustic radiation transducers
JPS62102154A (en) Ultrasonic inspection device
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
JPS6151894B2 (en)
JPH04212055A (en) Compound supersonic probe
JP4633268B2 (en) Ultrasonic flaw detector
JPH0465670A (en) Ultrasonic flaw detecting device
JP2864429B2 (en) Ultrasonic flaw detector
JPH05188046A (en) Ultrasonic probe and ultrasonic diagnosis method
JPS6228869B2 (en)
JP2501488B2 (en) Ultrasonic testing of pipes
JPH05209868A (en) Composite ultrasonic probe
JPS6128301B2 (en)
JPH09145697A (en) Composite probe device
JPH0627091A (en) Ultrasonic probe
JPH0465669A (en) Ultrasonic flaw detecting device
RU2011193C1 (en) Device for ultrasonic inspection of articles
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JPH04276548A (en) Ultrasonic probe and ultrasonic diagnosis method
SU1730573A1 (en) Method of determination of coordinates of acoustic emission sources
JP2943438B2 (en) Driving method of linear array ultrasonic probe
SU1422133A1 (en) Method of ultrasonic check by echo method
JPS597260A (en) Method and device for ultrasonic flaw detection
SU1763971A1 (en) Working pieces quality inspecting ultrasonic device