JPH04276548A - Ultrasonic probe and ultrasonic diagnosis method - Google Patents

Ultrasonic probe and ultrasonic diagnosis method

Info

Publication number
JPH04276548A
JPH04276548A JP3037533A JP3753391A JPH04276548A JP H04276548 A JPH04276548 A JP H04276548A JP 3037533 A JP3037533 A JP 3037533A JP 3753391 A JP3753391 A JP 3753391A JP H04276548 A JPH04276548 A JP H04276548A
Authority
JP
Japan
Prior art keywords
signal
ultrasonic
measured
frequency
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3037533A
Other languages
Japanese (ja)
Inventor
Akira Murayama
村山 章
Megumi Tanaka
恵 田中
Mitsuhiro Hoshino
星野 充宏
Akio Onimaru
鬼丸 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN PUROOBU KK
JFE Engineering Corp
Tokyo Keiki Inc
Original Assignee
JAPAN PUROOBU KK
Tokimec Inc
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN PUROOBU KK, Tokimec Inc, NKK Corp, Nippon Kokan Ltd filed Critical JAPAN PUROOBU KK
Priority to JP3037533A priority Critical patent/JPH04276548A/en
Publication of JPH04276548A publication Critical patent/JPH04276548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To input ultrasonic waves having plural kinds of frequencies and to make it possible to diagnose objects from the small size to the large size accurately by laminating a plurality of piezoelectric transducers in the orthogonally intersecting direction with respect to the attaching surface of a body to be measured in the same container. CONSTITUTION:When a switch 23a of a signal switching circuit 23 is thrown to the side of a signal line 30b, the pulse signals from a pulse signal generating circuit 7 are applied on electrodes 28a and 28b of a piezoelectric transducer 26. As a result, an ultrasonic wave 21 having the frequency f1 is sent into the direction of the thickness of a body to be measured 4. When the switch 23a is thrown to the side of a signal line 30c, the pulse signal is applied across electrodes 28a and 29b of the piezoelectric transducers 26 and 27 through the signal lines 30c and 30a. At this time, the piezoelectric transducers 26 and 27 are operated as one synthesized piezoelectric transducer, and an ultrasonic wave 21 having the frequency f2 (= about f1/2) is sent out to the body to be measured 4. Therefore, a fine flaw in the shallow surface layer part of the body to be measured 4 can be detected with the high frequency f1, and a large flaw in the deep inner material can be detected with the low frequency f2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は積層された複数の振動子
を同一容器内に組込んだ超音波探触子とこの超音波探触
子を用いた超音波診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe in which a plurality of stacked transducers are assembled in the same container, and an ultrasonic diagnostic method using this ultrasonic probe.

【0002】0002

【従来の技術】例えば鋼板等の被測定体内に存在する欠
陥を検出する欠陥探傷手法の一つとして超音波探傷法が
実用化されている。図9は超音波探触子を用いた超音波
探傷装置を示す図である。
2. Description of the Related Art Ultrasonic flaw detection has been put into practical use as one of the flaw detection techniques for detecting defects present in objects to be measured, such as steel plates. FIG. 9 is a diagram showing an ultrasonic flaw detection device using an ultrasonic probe.

【0003】超音波探触子1においては、ダンパー材が
充填された容器2内に超音波の送信と受信とを行う1枚
の振動子3が鋼板等の被測定体4の取付面4aに平行に
配設されている。また、振動子3は信号線5で容器2に
設けられた端子6に接続されている。そして、外部の探
傷器内のパルス発生回路7から信号線5を介してパルス
信号を振動子3に印加すると、振動子3から超音波8が
被測定体4の厚み方向(垂直方向)に送出される。
In the ultrasonic probe 1, a single transducer 3 for transmitting and receiving ultrasonic waves is placed in a container 2 filled with a damper material on a mounting surface 4a of a measuring object 4 such as a steel plate. are arranged in parallel. Further, the vibrator 3 is connected to a terminal 6 provided on the container 2 through a signal line 5. When a pulse signal is applied to the transducer 3 from the pulse generating circuit 7 in the external flaw detector via the signal line 5, the ultrasonic wave 8 is sent from the transducer 3 in the thickness direction (vertical direction) of the object to be measured 4. be done.

【0004】被測定体4内を垂直方向に伝播される超音
波8は例えば被測定体4の反対面(底面)で反射されて
、同一の振動子3へ入射する。振動子3に入射した反射
波(エコー)は電気信号に変換されて受信信号として信
号線5を介して前記探傷器の受信回路9で受信される。 受信回路9は受信信号を検波して、ブラウン管10へ送
出する。したがって、受信回路9にて検波された受信信
号には、ブラウン管10に示すように、送信パルス波T
と底面での反射波Bとが含まれる。
[0004] Ultrasonic waves 8 propagating vertically within the object to be measured 4 are reflected by, for example, the opposite surface (bottom surface) of the object to be measured 4 and are incident on the same transducer 3 . The reflected wave (echo) incident on the vibrator 3 is converted into an electrical signal and received as a received signal by the receiving circuit 9 of the flaw detector via the signal line 5. The receiving circuit 9 detects the received signal and sends it to the cathode ray tube 10. Therefore, the received signal detected by the receiving circuit 9 includes a transmitted pulse wave T as shown on the cathode ray tube 10.
and a reflected wave B at the bottom surface.

【0005】ここで、被測定体4の内部に欠陥11が存
在すると、この欠陥11で超音波8が反射されるので、
送信パルス波Tと底面反射波Bとの間に欠陥に起因する
欠陥波Fが生じる。よって、欠陥の発生位置(発生深さ
)と波形高さで示される規模とを特定できる。
[0005] Here, if a defect 11 exists inside the object to be measured 4, the ultrasonic wave 8 is reflected by this defect 11.
A defective wave F is generated between the transmitted pulse wave T and the bottom reflected wave B due to the defect. Therefore, it is possible to specify the defect occurrence position (occurrence depth) and the scale indicated by the waveform height.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図9に
示す超音波探傷装置においてもまだ次のような問題があ
る。
However, the ultrasonic flaw detection apparatus shown in FIG. 9 still has the following problems.

【0007】すなわち、超音波探触子1の振動子3にパ
ルス信号が印加されると、振動子3は、厚みtに応じた
伸び縮みの振動(共振)を開始する。そして、数回振動
を繰り返して減衰して停止する。したがって、超音波探
触子1から被測定体4内へ入射される超音波8の周波数
fは、振動子3の厚みtによって一義的に定まる。この
ことは、一つの超音波探触子1でもって予め設定された
単一の周波数fを有する超音波8しか被測定体4内へ入
射できなかった。
That is, when a pulse signal is applied to the vibrator 3 of the ultrasonic probe 1, the vibrator 3 starts to vibrate (resonate) by expanding and contracting in accordance with the thickness t. Then, it vibrates several times, decays, and stops. Therefore, the frequency f of the ultrasonic waves 8 that enter the object to be measured 4 from the ultrasonic probe 1 is uniquely determined by the thickness t of the transducer 3. This means that only the ultrasonic waves 8 having a single preset frequency f can be incident on the object to be measured 4 using one ultrasonic probe 1 .

【0008】一方、超音波8の被測定体4内における減
衰特性は超音波8の周波数fによって大きく変化する。 すなわち、周波数fが高いと比較的減衰しやすく、周波
数fが低いと比較的減衰しにくい。また、微細な欠陥は
高い周波数fの超音波で比較的検出しやすく、低い周波
数では検出能力が低下する懸念がある。
On the other hand, the attenuation characteristics of the ultrasonic waves 8 within the object to be measured 4 vary greatly depending on the frequency f of the ultrasonic waves 8. That is, when the frequency f is high, it is relatively easy to attenuate, and when the frequency f is low, it is relatively difficult to attenuate. Furthermore, fine defects are relatively easy to detect using ultrasonic waves with a high frequency f, and there is a concern that the detection ability may deteriorate at low frequencies.

【0009】また、被測定体4の取付面4aから欠陥1
1が存在する位置までの距離xと、欠陥波Fと底面の反
射波Bとの比(F/B)で示される欠陥エコー高さとの
関係を示すDGS線図を図10に示す。図示するように
、欠陥11までの距離xが大きくなると、エコー高さで
示される検出感度が低下する。また、図中のパラメータ
Gは欠陥11の大きさ(規模)dと振動子3の外径Dと
の比(G=d/D)である。このように、振動子3の寸
法によっても減衰特性は大きく変化する。
Furthermore, the defect 1 can be removed from the mounting surface 4a of the object to be measured 4.
FIG. 10 shows a DGS diagram showing the relationship between the distance x to the position where 1 exists and the defect echo height represented by the ratio (F/B) of the defect wave F to the bottom reflected wave B. As shown in the figure, as the distance x to the defect 11 increases, the detection sensitivity indicated by the echo height decreases. Further, the parameter G in the figure is the ratio between the size (scale) d of the defect 11 and the outer diameter D of the vibrator 3 (G=d/D). In this way, the damping characteristics vary greatly depending on the dimensions of the vibrator 3.

【0010】このように、被測定体4内の任意の位置に
おける欠陥の検出能力は、超音波8の周波数fと振動子
3の寸法でほぼ定まる。逆に、このことは、被測定体4
内における各位置の欠陥検出感度分布を任意に設定でき
ないことになる。
[0010] Thus, the ability to detect defects at any position within the object to be measured 4 is approximately determined by the frequency f of the ultrasonic wave 8 and the dimensions of the vibrator 3. Conversely, this means that the object to be measured 4
Therefore, it is not possible to arbitrarily set the defect detection sensitivity distribution for each position within the area.

【0011】したがって、一般的に被測定体4を探傷す
る場合には、被測定体4の厚みや結晶粒度等の超音波8
の透過率に影響する因子を考慮して、超音波8が通過し
て反射して来ると共に、充分なS/Nが得られる周波数
fを選択するようにしてる。
Therefore, in general, when testing the object 4 to be measured, ultrasonic waves 8 are used to detect the thickness, crystal grain size, etc. of the object 4 to be measured.
Considering the factors that affect the transmittance of the ultrasonic wave 8, a frequency f is selected that allows the ultrasonic wave 8 to pass through and be reflected, and at which a sufficient S/N ratio can be obtained.

【0012】その結果、被測定体4の内質部に対しては
目的とした検出能力(感度)が得られるが、表層部に対
しては検出能力(感度)が高すぎて、不必要な疵まで検
出してしまう問題がある。また、逆に表層部は目的とし
た検出能力(感度)が得られるが、内質部は検出能力(
感度)不足になる問題がある。
As a result, the desired detection ability (sensitivity) is obtained for the internal part of the object to be measured 4, but the detection ability (sensitivity) is too high for the surface layer, and unnecessary detection is achieved. There is a problem that even flaws are detected. Conversely, the superficial layer can achieve the desired detection ability (sensitivity), but the internal layer can achieve the detection ability (sensitivity).
There is a problem of insufficient sensitivity.

【0013】従来、このような不都合を解消するために
、周波数の異なる複数の超音波探触子を準備して、被測
定体4の同一場所を2回に分けて探傷する手法が実施さ
れているが、別々に得られた受信信号を合成したり、信
号処理を行う必要があるので、超音波探触子の取付位置
等の補正処理などを含んだ高度で複雑なシステムが必要
となる。また、同一場所を異なる超音波探触子でもって
2回測定する必要があり、探傷作業能率が低下する。
Conventionally, in order to eliminate such inconveniences, a method has been implemented in which a plurality of ultrasonic probes with different frequencies are prepared and the same location on the object to be measured 4 is inspected twice. However, since it is necessary to combine the separately obtained received signals and perform signal processing, an advanced and complex system is required that includes correction processing for the installation position of the ultrasound probe, etc. Furthermore, it is necessary to measure the same location twice using different ultrasonic probes, which reduces the efficiency of flaw detection work.

【0014】本発明はこのような事情に鑑みてなされた
ものであり、同一容器内に複数の振動子を積層すること
によって、各振動子単独で又は各振動子を連結して励振
することができ、もって複数種類の周波数の超音波を被
測定体に入射でき、近距離から遠距離まで目的とする検
出感度を実現でき、小さい対象から大きい対象まで精度
よく診断できる超音波探触子および超音波診断方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and by stacking a plurality of vibrators in the same container, it is possible to excite each vibrator alone or by connecting each vibrator. Ultrasonic probes and ultrasonic probes that can inject ultrasonic waves of multiple types of frequencies into the object to be measured, achieve the desired detection sensitivity from short to long distances, and accurately diagnose small to large objects. The purpose is to provide a method for sonic diagnosis.

【0015】[0015]

【課題を解決するための手段】上記課題を解消するため
に、本発明の超音波探触子は、同一容器内に組込まれ、
被測定体の取付面に直交する方向に積層された複数の振
動子と、この積層された各振動子の両端に取付けられた
電極と、この各電極に送受信する信号を容器外へ導く複
数の信号線とを備えたたものである。
[Means for Solving the Problems] In order to solve the above problems, the ultrasonic probe of the present invention is incorporated in the same container,
A plurality of transducers are stacked in a direction perpendicular to the mounting surface of the object to be measured, electrodes are attached to both ends of each of the stacked transducers, and a plurality of transducers are used to guide signals sent and received from each electrode to the outside of the container. It is equipped with a signal line.

【0016】また、本発明の超音波診断方法によれば、
被測定体の取付面に直交する方向に積層された複数の振
動子を同一容器内に組込み、各振動子の両端に取付けら
れた電極から容器外にそれぞれ信号線を導出し、この導
出された複数の信号線のうちから一対の信号線の組合せ
を同時または交互に選択していき、選択された一対の信
号線間にパルス信号を印加することによって、前記被測
定体内に複数の異なる周波数を有する超音波を入射させ
て超音波診断するようにしている。
[0016] Furthermore, according to the ultrasonic diagnostic method of the present invention,
Multiple transducers stacked in a direction perpendicular to the mounting surface of the object to be measured are built into the same container, and signal lines are led out from the container from electrodes attached to both ends of each transducer. By simultaneously or alternately selecting a combination of a pair of signal lines from among a plurality of signal lines and applying a pulse signal between the selected pair of signal lines, a plurality of different frequencies can be transmitted into the body under test. Ultrasonic diagnosis is performed by injecting ultrasonic waves that have a

【0017】[0017]

【作用】このように構成された超音波探触子および超音
波診断方法によれば、一つの容器内に複数の振動子が積
層されている。そして、各振動子の両側に取付けられた
電極から信号線が容器外へ導出されている。
[Operation] According to the ultrasonic probe and ultrasonic diagnostic method constructed as described above, a plurality of transducers are stacked in one container. Signal lines are led out of the container from electrodes attached to both sides of each vibrator.

【0018】したがって、積層された複数の探触子のう
ちの最下端に位置する振動子の下面の電極に接続された
信号線と最上端に位置する振動子の上面の電極に接続さ
れた信号線との間にパルス信号を印加すると、積層され
た複数の振動子が1個の振動子と見なして振動する。こ
の場合の振動の周波数は積層された振動子の全部の厚み
を加算した厚みで定まる。
Therefore, the signal line connected to the electrode on the bottom surface of the vibrator located at the lowest end of the plurality of stacked probes and the signal wire connected to the electrode on the top surface of the vibrator located at the top end. When a pulse signal is applied between the wire and the wire, the plurality of stacked vibrators are regarded as one vibrator and vibrate. The frequency of vibration in this case is determined by the sum of the thicknesses of all the stacked vibrators.

【0019】逆に、最下端に位置する振動子の下面の電
極に接続された信号線と同じ振動子の上面の電極に接続
された信号線との間にパルス信号を印加すると、この最
下端の振動子のみが振動する。この場合の振動の周波数
は最下端の振動子の厚みで定まる。
Conversely, when a pulse signal is applied between the signal line connected to the electrode on the bottom surface of the vibrator located at the lowest end and the signal line connected to the electrode on the top surface of the same vibrator, Only the oscillator vibrates. The frequency of vibration in this case is determined by the thickness of the lowest vibrator.

【0020】このように、パルス信号を印加する一対の
信号線間を適宜切換えることによって、1個の超音波探
触子でもって複数種類の周波数を有した超音波を被測定
体に入射させることが可能である。よって、被測定体の
取付面からの距離によって超音波の周波数を使い分ける
ことが可能となり、任意の検出能力(感度)を設定でき
る。
[0020] In this way, by appropriately switching between the pair of signal lines to which pulse signals are applied, ultrasonic waves having multiple types of frequencies can be made to enter the object to be measured using one ultrasonic probe. is possible. Therefore, it is possible to use different ultrasonic frequencies depending on the distance from the mounting surface of the object to be measured, and arbitrary detection ability (sensitivity) can be set.

【0021】[0021]

【実施例】以下本発明の一実施例を図面を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0022】図1は実施例の超音波探触子および超音波
診断方法を適用した超音波探傷装置を示す概略構成図で
ある。図9と同一部分には同一符号が付してある。した
がって、重複する部分の詳細説明を省略する。
FIG. 1 is a schematic diagram showing the configuration of an ultrasonic flaw detection apparatus to which an ultrasonic probe and an ultrasonic diagnostic method are applied. The same parts as in FIG. 9 are given the same reference numerals. Therefore, detailed explanation of the overlapping parts will be omitted.

【0023】この超音波探傷装置は、大きく分けて、鋼
板等の被測定体4に対して超音波21を送受信する超音
波探触子22と、この超音波探触子22の各振動子に対
する信号を切換える信号切換回路23と、信号切換回路
23を介して超音波探触子22にパルス信号を送出する
とともに受信信号を処理する探傷器24とで構成されて
いる。
This ultrasonic flaw detection apparatus is broadly divided into an ultrasonic probe 22 that transmits and receives ultrasonic waves 21 to and from an object 4 to be measured such as a steel plate, and a probe for each transducer of this ultrasonic probe 22. It is comprised of a signal switching circuit 23 that switches signals, and a flaw detector 24 that sends pulse signals to the ultrasonic probe 22 via the signal switching circuit 23 and processes received signals.

【0024】超音波探触子22においては、ダンパー材
が充填された容器25内に、同一構成の2枚の振動子2
6,27が被測定体4の取付面4aに直交する方向に積
層されている。各振動子26,27の上下面にはそれぞ
れ電極28a,28b,29a,29bが取付けられて
いる。なお、実際の境界面は各々の振動子の電極で構成
されている。各電極28a,28b(29a),29b
から信号線30a,30b,30cが容器25に取付ら
れた端子31を介して信号切換回路23に接続されてい
る。
In the ultrasonic probe 22, two transducers 2 having the same configuration are placed in a container 25 filled with damper material.
6 and 27 are stacked in a direction perpendicular to the mounting surface 4a of the object to be measured 4. Electrodes 28a, 28b, 29a, and 29b are attached to the upper and lower surfaces of each vibrator 26 and 27, respectively. Note that the actual boundary surface is composed of the electrodes of each vibrator. Each electrode 28a, 28b (29a), 29b
Signal lines 30a, 30b, and 30c are connected to the signal switching circuit 23 via terminals 31 attached to the container 25.

【0025】信号切換回路23は、図2に示すように、
前記3本の信号線30a,30b,30cから一対の信
号線を選択する機能を有する。共通アースとなる信号線
30aはそのまま探傷器24の(−)側端子に接続され
、信号線30b,30cが切換スイッチ23aを介して
探傷器24の(+)側端子に接続されている。
The signal switching circuit 23, as shown in FIG.
It has a function of selecting a pair of signal lines from the three signal lines 30a, 30b, and 30c. The signal line 30a serving as a common ground is directly connected to the (-) side terminal of the flaw detector 24, and the signal lines 30b and 30c are connected to the (+) side terminal of the flaw detector 24 via the changeover switch 23a.

【0026】切換スイッチ23aは例えばスナップスイ
ッチ,水銀リレー,通常のコイルを利用したリレー,I
CやSCR等の電子切換回路等で構成されている。そし
て、この切換スイッチ23aは探傷器24内の同期回路
32によって切換制御される。
The changeover switch 23a may be, for example, a snap switch, a mercury relay, a relay using a normal coil, or an I
It is composed of electronic switching circuits such as C and SCR. This changeover switch 23a is controlled by a synchronization circuit 32 within the flaw detector 24.

【0027】また、探傷器24は、パルス発生回路7,
受信回路9,ブラウン管10,および信号切換回路23
の切換動作とブラウン管10の表示内容との同期を取る
同期回路32とで構成されている。
The flaw detector 24 also includes a pulse generating circuit 7,
Receiving circuit 9, cathode ray tube 10, and signal switching circuit 23
It is composed of a synchronization circuit 32 that synchronizes the switching operation of the display with the content displayed on the cathode ray tube 10.

【0028】このように構成された超音波探傷装置にお
いて、 (1)  信号切換回路23の切換スイッチ23aを信
号線30b側に投入した状態で、探傷器24内のパルス
発生回路7からパルス信号を出力すると、このパルス信
号は信号切換回路23を介して信号線30aと信号線3
0bとを介して、下側の振動子26の電極28a,28
bに印加される。
In the ultrasonic flaw detector configured as described above, (1) With the changeover switch 23a of the signal changeover circuit 23 turned on to the signal line 30b side, the pulse signal is output from the pulse generation circuit 7 in the flaw detector 24. When output, this pulse signal passes through the signal switching circuit 23 to the signal line 30a and the signal line 3.
0b, the electrodes 28a, 28 of the lower vibrator 26
b.

【0029】その結果、下側の振動子26がこの振動子
26の厚みで一義的に定まる周波数f1 で振動して、
周波数f1 の超音波21が被測定体4の厚み方向(垂
直方向)に送出される。被測定体4内を垂直方向に伝播
される超音波21は例えば被測定体4の反対面(底面)
で反射されて、同一の振動子26へ入射する。振動子2
6に入射した反射波(エコー)は電気信号に変換されて
受信信号として信号線30a,30bおよび信号回路2
3を介して探傷器24の受信回路9で受信される。受信
回路9は受信信号を検波して、ブラウン管10へ送出す
る。 したがって、受信回路9にて検波された受信信号には、
ブラウン管10に示すように、送信パルス波Tと底面で
の反射波Bとが含まれる。
As a result, the lower vibrator 26 vibrates at a frequency f1 uniquely determined by the thickness of this vibrator 26,
Ultrasonic waves 21 having a frequency f1 are transmitted in the thickness direction (vertical direction) of the object 4 to be measured. The ultrasonic wave 21 propagated vertically within the object to be measured 4 is e.g.
, and enters the same vibrator 26 . Vibrator 2
The reflected wave (echo) incident on 6 is converted into an electrical signal and sent to signal lines 30a, 30b and signal circuit 2 as a received signal.
3 and is received by the receiving circuit 9 of the flaw detector 24. The receiving circuit 9 detects the received signal and sends it to the cathode ray tube 10. Therefore, the received signal detected by the receiving circuit 9 has the following:
As shown in the cathode ray tube 10, a transmitted pulse wave T and a reflected wave B from the bottom surface are included.

【0030】ここで、被測定体4の内部に欠陥11が存
在すると、この欠陥11で超音波21が反射されるので
、送信パルス波Tと底面反射波Bとの間に欠陥11に起
因する欠陥波Fが生じる。よって、欠陥の発生位置(発
生深さ)と波形高さ(エコー高さ)で示される規模とを
特定できる。
[0030] Here, if a defect 11 exists inside the object to be measured 4, the ultrasonic wave 21 is reflected by this defect 11, so that there is a difference between the transmitted pulse wave T and the bottom reflected wave B due to the defect 11. A defective wave F is generated. Therefore, it is possible to specify the defect occurrence position (occurrence depth) and the scale indicated by the waveform height (echo height).

【0031】(2)  次に、信号切換回路23の切換
スイッチ23aを信号線30c側に投入した状態で、探
傷器24内のパルス発生回路7からパルス信号を出力す
ると、このパルス信号は信号切換回路23を介して信号
線30aと信号線30cとを介して、下側の振動子26
の下面の電極28aと上側の振動子27の上面の電極2
9bとの間に印加される。
(2) Next, with the changeover switch 23a of the signal changeover circuit 23 turned on to the signal line 30c side, when a pulse signal is output from the pulse generation circuit 7 in the flaw detector 24, this pulse signal is activated by the signal changeover circuit. The lower vibrator 26 is connected via the circuit 23 to the signal line 30a and the signal line 30c.
The electrode 28a on the lower surface of the oscillator 27 and the electrode 2 on the upper surface of the upper vibrator 27
9b.

【0032】この場合、各振動子26,27は薄い電極
28b(29a)を介して積層されているので、2個の
振動子26,27が合成された一つの振動子のように動
作する。その結果、各振動子26,27の各厚みを加算
した等価的な厚みで一義的に定まる周波数f2 で振動
し、周波数f2 の超音波21が被測定体4の厚み方向
(垂直方向)に送出される。その結果、周波数f1 の
超音波21と同様に、ブラウン管10内に被測定体4内
に存在する欠陥11に起因する欠陥波Fが生じる。
In this case, since the vibrators 26 and 27 are laminated with the thin electrode 28b (29a) interposed therebetween, the two vibrators 26 and 27 operate like a combined vibrator. As a result, the transducers 26 and 27 vibrate at a frequency f2 uniquely determined by the equivalent thickness added together, and an ultrasonic wave 21 with a frequency f2 is transmitted in the thickness direction (vertical direction) of the object to be measured 4. be done. As a result, a defect wave F caused by the defect 11 existing in the object to be measured 4 is generated in the cathode ray tube 10, similar to the ultrasonic wave 21 having the frequency f1.

【0033】同一材料で同一外径に形成された振動子に
おいては、振動子の厚さが厚いほど低い周波数で振動す
る。したがって、2枚の振動子26,27を励振した(
2)の組合せ条件の周波数f2 は1枚の振動子28の
みを励振した(1)の組合せ条件の周波数f1 に比較
して約1/2の周波数となる。
In vibrators formed of the same material and having the same outer diameter, the thicker the vibrator, the lower the frequency it vibrates. Therefore, the two oscillators 26 and 27 were excited (
The frequency f2 of the combination condition 2) is approximately 1/2 of the frequency f1 of the combination condition (1) in which only one vibrator 28 is excited.

【0034】よって、同期回路32でもって信号切換回
路23の切換スイッチ23aを一定周期で切換制御する
ことによって、被測定体4の取付面4aの同一位置にお
ける厚み方向の浅い表層部分を高い周波数f1 で探傷
することによって、表層部の微細な疵を検出でき、かつ
、厚み方向の深い比較的集中応力の起こりにくい内質部
を低い周波数f2 で探傷することによって、大きな疵
を検出する。
Therefore, by controlling the changeover switch 23a of the signal changeover circuit 23 at a constant cycle using the synchronization circuit 32, the shallow surface portion in the thickness direction at the same position on the mounting surface 4a of the object to be measured 4 can be changed to a high frequency f1. By performing flaw detection at f2, fine flaws in the surface layer can be detected, and large flaws can be detected by flaw detection at a low frequency f2 in the deep inner part where concentrated stress is less likely to occur.

【0035】また、低い周波数f2 の超音波は厚み方
向の深い位置においても検出感度低下が少ないので、高
い周波数f1 の超音波を用いて検出感度を電気的に増
幅する必要がないので、受信信号のS/Nを厚み方向の
広い距離範囲に亘って高く維持できる。すなわち、被測
定体4の表面近傍の微細な疵から内質部の大きな疵まで
最良の検出感度で精度よく検出できる。
Furthermore, since the ultrasonic wave with a low frequency f2 has little decrease in detection sensitivity even at a deep position in the thickness direction, there is no need to electrically amplify the detection sensitivity using an ultrasonic wave with a high frequency f1. The S/N ratio can be maintained high over a wide distance range in the thickness direction. That is, it is possible to accurately detect everything from minute flaws near the surface of the object to be measured 4 to large flaws in the endoplasmic part with the best detection sensitivity.

【0036】さらに、超音波の周波数が異なる複数の超
音波探触子を用いて取付面4a上の同一位置を探傷する
場合に比較して、取付け位置合わせ作業は1回で済むの
で、超音波探触子相互間の位置合わせ誤差を排除でき、
かつ探傷作業能率を大幅に向上できる。
Furthermore, compared to the case where a plurality of ultrasonic probes with different ultrasonic frequencies are used to detect flaws at the same position on the mounting surface 4a, only one installation positioning operation is required. Eliminates alignment errors between probes,
In addition, flaw detection work efficiency can be greatly improved.

【0037】なお、振動子の厚みtと振動周波数fとの
関係は、周知のように、λを波長とし、Cを音速とし、
Kを定数とすれば、λ=C/f,t=λ/2であるので
、下式となる。 f=2K/t したがって、必要な周波数fから振動子の厚みtを設計
制作することが可能である。次に、実際の超音波探触子
を用いた実験結果を説明する。
As is well known, the relationship between the thickness t of the vibrator and the vibration frequency f is as follows, where λ is the wavelength, C is the speed of sound,
If K is a constant, λ=C/f and t=λ/2, so the following equation is obtained. f=2K/t Therefore, it is possible to design and manufacture the thickness t of the vibrator from the required frequency f. Next, experimental results using an actual ultrasound probe will be explained.

【0038】図1の振動子26,27として、外径D=
10mm,厚さt=0.4mm ,規格周波数f=5.
2MHz,材質=チタン酸鉛の振動子を用いる。また、
実験は水浸法を採用し、水距離は約30mmである。
As the vibrators 26 and 27 in FIG. 1, the outer diameter D=
10mm, thickness t=0.4mm, standard frequency f=5.
2MHz, a resonator made of lead titanate material is used. Also,
The experiment adopted the water immersion method, and the water distance was about 30 mm.

【0039】そして、信号線30aと信号線30bとの
間にパルス信号を印加した前述した(1)の組合せ条件
では、受信回路9に入力する受信信号は図3(a)とな
り、周波数はf1 =5.17MHzである。また、そ
のときの検出感度は64dBであった。
Under the above-mentioned combination condition (1) in which a pulse signal is applied between the signal line 30a and the signal line 30b, the received signal input to the receiving circuit 9 is as shown in FIG. 3(a), and the frequency is f1. =5.17MHz. Further, the detection sensitivity at that time was 64 dB.

【0040】また、信号線30aと信号線30cとの間
にパルス信号を印加した(2)の組合せ条件では、受信
信号は図3(b)となり、周波数はf2 =2.14M
Hzである。また、そのときの検出感度は51dBであ
った。
Furthermore, under the combination condition (2) in which a pulse signal is applied between the signal line 30a and the signal line 30c, the received signal becomes as shown in FIG. 3(b), and the frequency is f2 = 2.14M.
It is Hz. Further, the detection sensitivity at that time was 51 dB.

【0041】このように、信号切換回路23でもってパ
ルス信号を印加する振動子26,27の組合せを変更す
ることによって、同一超音波探触子22でもって2種類
の周波数f1 ,f2 を有する超音波21でもって探
傷できる。
In this way, by changing the combination of the transducers 26 and 27 to which pulse signals are applied using the signal switching circuit 23, ultrasonic waves having two types of frequencies f1 and f2 can be obtained using the same ultrasonic probe 22. Flaws can be detected using sound waves 21.

【0042】図4は本発明の他の実施例の超音波探触子
および超音波診断方法を適用した超音波探傷装置を示す
概略構成図である。図1の実施例と同一部分には同一符
号を付してある。したがって、重複する部分の詳細説明
を省略する。
FIG. 4 is a schematic diagram showing an ultrasonic flaw detection apparatus to which an ultrasonic probe and an ultrasonic diagnostic method according to another embodiment of the present invention are applied. The same parts as in the embodiment of FIG. 1 are given the same reference numerals. Therefore, detailed explanation of the overlapping parts will be omitted.

【0043】この実施例においては、同一外径を有した
、厚さtが互いに異なる2種類の振動子41,42を中
間に絶縁材43を介して積層している。そして、各振動
子41,42のそれぞれの下面,上面に取付けられた各
電極41a,41b,42a,42bから各信号線44
a,44b,44c,44dが容器25に取付けられた
端子31を介して信号切換回路45へ入力されている。
In this embodiment, two types of vibrators 41 and 42 having the same outer diameter and different thicknesses t are stacked with an insulating material 43 interposed between them. Then, each signal line 44 is connected to each electrode 41a, 41b, 42a, 42b attached to the lower surface and upper surface of each vibrator 41, 42, respectively.
a, 44b, 44c, and 44d are input to a signal switching circuit 45 via a terminal 31 attached to the container 25.

【0044】図5は信号切換回路45の回路図である。 この信号切換回路45は2個の切換スイッチ45a,4
5bと1個のスイッチ45cとで構成されている。そし
て、この信号切換回路45においては、探傷器24内の
同期回路32の切換指令にて、各振動子41,42に対
して次に示す(3)(4)(5)の3つ組合せ条件を設
定できる。
FIG. 5 is a circuit diagram of the signal switching circuit 45. This signal switching circuit 45 has two changeover switches 45a and 4.
5b and one switch 45c. Then, in this signal switching circuit 45, the following three combination conditions (3), (4), and (5) are set for each vibrator 41, 42 by a switching command from the synchronous circuit 32 in the flaw detector 24. can be set.

【0045】(3)の組合せ条件は、スイッチ45cを
解放して、切換スイッチ45a,45bを信号線44a
,44b側に投入して、パルス信号を下側の振動子41
のみに印加する。
The combination condition (3) is to release the switch 45c and connect the changeover switches 45a and 45b to the signal line 44a.
, 44b side, and the pulse signal is sent to the lower vibrator 41.
Apply only to

【0046】(4)の組合せ条件は、スイッチ45cを
閉成して、切換スイッチ45aを信号線44a側に投入
して、切換スイッチ45bを信号線44d側に投入する
。そして、パルス信号を積層された振動子41,42の
両端に印加する。
The combination condition (4) is to close the switch 45c, turn on the changeover switch 45a to the signal line 44a side, and turn on the changeover switch 45b to the signal line 44d side. Then, a pulse signal is applied to both ends of the stacked vibrators 41 and 42.

【0047】(5)の組合せ条件は、スイッチ45cを
解放して、切換スイッチ45a,45bを信号線44c
,44d側に投入して、パルス信号を上側の振動子42
のみに印加する。
The combination condition (5) is to release the switch 45c and connect the changeover switches 45a and 45b to the signal line 44c.
, 44d side, and the pulse signal is sent to the upper vibrator 42.
Apply only to

【0048】このように絶縁材43を介して厚さtの異
なる2種類の振動子41,42を積層することによって
、各振動子41,42をそれぞれ単独で励振する場合と
、合成して励振する場合とで、前述した(3)〜(5)
に示す3種類の等価的な厚みを確保できる。その結果、
各等価的な厚みtに対応して、3種類の周波数f3 ,
f4 ,f5 を実現できる。
By stacking the two types of vibrators 41 and 42 with different thicknesses t through the insulating material 43 in this way, it is possible to excite each vibrator 41 and 42 individually and to excite them in combination. (3) to (5) mentioned above
Three types of equivalent thickness shown in can be secured. the result,
Corresponding to each equivalent thickness t, three types of frequencies f3,
f4 and f5 can be realized.

【0049】したがって、図1に示した2種類の周波数
f1 ,f2 が得られる装置に比較して、周波数fの
選択の自由度が増し、被測定体4の厚み方向の距離を3
つの領域に分割して、各領域に最良の周波数fを割当て
ることが可能である。よって、より細かく検出感度調整
を実行できる。次に、実際の超音波探触子を用いた実験
結果を説明する。
Therefore, compared to the device that can obtain two types of frequencies f1 and f2 shown in FIG.
It is possible to divide it into two regions and assign the best frequency f to each region. Therefore, detection sensitivity adjustment can be performed more finely. Next, experimental results using an actual ultrasound probe will be explained.

【0050】図4の振動子41として、外径D=10m
m,厚さt=0.25mm,規格周波数f=10MHz
,材質=チタン酸鉛の振動子を用いる。また、振動子4
2として、外径D=10mm,厚さt=1.0mm ,
規格周波数f=2MHz,材質=チタン酸鉛の振動子を
用いる。
As the vibrator 41 in FIG. 4, the outer diameter D=10 m
m, thickness t=0.25mm, standard frequency f=10MHz
, a resonator made of lead titanate material is used. In addition, the vibrator 4
2, outer diameter D = 10 mm, thickness t = 1.0 mm,
A standard frequency f=2 MHz and a vibrator made of lead titanate material are used.

【0051】なお、一方の振動子のみを励振した場合に
は、励振された振動子による正規の振動に対して、背面
に存在する他方の振動子が振動して、図8に示すように
、その振動子による干渉現象が生じる。したがって、得
られた受信信号のS/Nが低下する懸念が生じる。
Note that when only one vibrator is excited, the other vibrator on the back side vibrates in response to the normal vibration of the excited vibrator, as shown in FIG. An interference phenomenon occurs due to the vibrator. Therefore, there is a concern that the S/N of the obtained received signal will decrease.

【0052】そこで、このような干渉現象を未然に防止
するために、図6に示すように、信号線44a,44b
に0.1 μHのインピーダンス整合コイル46aを介
挿し、さらに信号線44dに20μHのインピーダンス
整合コイル46dを介挿している。
Therefore, in order to prevent such interference phenomenon, as shown in FIG.
A 0.1 μH impedance matching coil 46a is inserted in the signal line 44d, and a 20 μH impedance matching coil 46d is inserted in the signal line 44d.

【0053】そして、信号線44aと信号線44bとの
間にパルス信号を印加した前述した(3)の組合せ条件
では、受信回路9に入力する受信信号は図7(a)とな
り、周波数はf3 =10.17 MHzである。また
、信号線44aと信号線44dとの間にパルス信号を印
加した(4)の組合せ条件では、受信信号は図7(b)
となり、周波数はf4 =1.54MHzである。
Under the above-mentioned combination condition (3) in which a pulse signal is applied between the signal line 44a and the signal line 44b, the received signal input to the receiving circuit 9 is as shown in FIG. 7(a), and the frequency is f3. =10.17 MHz. Furthermore, under the combination condition (4) in which a pulse signal is applied between the signal line 44a and the signal line 44d, the received signal is as shown in FIG. 7(b).
Therefore, the frequency is f4 = 1.54 MHz.

【0054】さらに、信号線44cと信号線44dとの
間にパルス信号を印加した(5)の組合せ条件では、受
信信号は図7(c)となり、周波数はf5 =2.0 
MHzである。
Furthermore, under the combination condition (5) in which a pulse signal is applied between the signal line 44c and the signal line 44d, the received signal becomes as shown in FIG. 7(c), and the frequency is f5 = 2.0.
It is MHz.

【0055】このように、信号切換回路45でもってパ
ルス信号を印加する振動子41,42の組合せを変更す
ることによって、同一超音波探触子21でもって3種類
の周波数f3,f4,f5 を有する超音波21でもっ
て探傷できる。なお、本発明は上述した実施例に限定さ
れるものではない。
In this way, by changing the combination of the transducers 41 and 42 to which pulse signals are applied using the signal switching circuit 45, three types of frequencies f3, f4, and f5 can be generated using the same ultrasonic probe 21. Flaw detection can be performed using the ultrasonic waves 21. Note that the present invention is not limited to the embodiments described above.

【0056】信号切換回路23,45における前述した
振動子の組合せ条件(1)〜(5)の切換タイミングは
同期回路32によって一定周期で切換る交互励振の方式
を採用したが、例えば、信号切換回路23,45の回路
構成を変更して、前述した複数の組合せ条件による励磁
を同時に実施する同時励振の方式を採用してもよい。す
なわち、種々の組合せおよび励振条件のうちから最適な
条件を選択して、信号処理を実施することによって、探
傷処理における最良のS/Nを実現できる。また、容器
内に積層する各振動子の仕様は同一である必要はなく、
外径,材質等を所望の周波数を得るために任意に組合せ
ることが可能である。
For the switching timing of the above-mentioned combination conditions (1) to (5) of the vibrators in the signal switching circuits 23 and 45, an alternate excitation method in which the synchronization circuit 32 switches at a constant cycle is adopted. The circuit configurations of the circuits 23 and 45 may be changed to adopt a simultaneous excitation method in which excitation is simultaneously performed under the plurality of combination conditions described above. That is, by selecting the optimal conditions from among various combinations and excitation conditions and performing signal processing, the best S/N in flaw detection processing can be achieved. Also, the specifications of each vibrator stacked inside the container do not need to be the same;
It is possible to arbitrarily combine the outer diameter, material, etc. to obtain the desired frequency.

【0057】さらに、各振動子の材質もチタン酸鉛どう
しに限定されるものではなく、亜鉛酸鉛どうしであって
もよい。さらに、チタン酸鉛と亜鉛酸鉛との組合わせで
あってもよい。
Furthermore, the material of each vibrator is not limited to lead titanate, but may also be lead zincate. Furthermore, a combination of lead titanate and lead zincate may be used.

【0058】さらに、実施例においては、超音波診断方
法を超音波探傷装置に適用した場合について説明したが
、例えば、超音波を用いた医療診断や材質検査や複合材
の構造検査にも適用することは勿論可能である。
Further, in the embodiment, the case where the ultrasonic diagnostic method is applied to an ultrasonic flaw detection device has been described, but it can also be applied to medical diagnosis, material inspection, and structural inspection of composite materials using ultrasonic waves, for example. Of course it is possible.

【0059】[0059]

【発明の効果】以上説明したように本発明の超音波探触
子によれば、同一容器内に複数の振動子を積層し、かつ
各振動子の両側の電極からそれぞれ信号線を容器外へ導
出している。したがって、パルス信号を印加する信号線
を選択することによって、各振動子単独で又は各振動子
を連結して励振することができ、もって複数種類の周波
数の超音波を被測定体に入射できる。
Effects of the Invention As explained above, according to the ultrasonic probe of the present invention, a plurality of transducers are stacked in the same container, and signal lines are routed from the electrodes on both sides of each transducer to the outside of the container. It is derived. Therefore, by selecting the signal line to which the pulse signal is applied, each vibrator can be excited individually or in a connected manner, thereby allowing ultrasonic waves of a plurality of different frequencies to be incident on the object to be measured.

【0060】また、超音波診断方法においては、上述し
た超音波探傷探触子を用いることによって、超音波の周
波数を選択できるので、被測定体における取付面の近距
離から遠距離まで広い範囲に亘って目的とする検出感度
に設定でき、小さい対象から大きい対象まで精度よく診
断できる。
Furthermore, in the ultrasonic diagnostic method, by using the above-mentioned ultrasonic flaw detection probe, the frequency of the ultrasonic waves can be selected, so that it can be applied over a wide range from short distances to long distances on the mounting surface of the object to be measured. The desired detection sensitivity can be set across the range, allowing accurate diagnosis of both small and large objects.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例の超音波探触子および超
音波診断方法を用いた超音波探傷装置の概略構成図、
FIG. 1 is a schematic configuration diagram of an ultrasonic flaw detection apparatus using an ultrasonic probe and an ultrasonic diagnostic method according to an embodiment of the present invention;


図2】  同実施例装置の信号切換回路を示す回路図、
[
Figure 2: A circuit diagram showing the signal switching circuit of the same embodiment device.

【図3】  同実施例装置における受信信号波形図、[Figure 3] Received signal waveform diagram in the same embodiment device,


図4】  本発明の他の実施例の超音波探触子および超
音波診断方法を用いた超音波探傷装置の概略構成図、
[
FIG. 4 is a schematic configuration diagram of an ultrasonic flaw detection device using an ultrasonic probe and an ultrasonic diagnostic method according to another embodiment of the present invention,


図5】  同実施例装置の信号切換回路を示す回路図、
[
Figure 5: A circuit diagram showing the signal switching circuit of the same embodiment device.

【図6】  同信号切換回路にインピータンス整合コイ
ルを付加した回路図、
[Figure 6] Circuit diagram with an impedance matching coil added to the same signal switching circuit,

【図7】  同実施例装置における受信信号波形図、[Figure 7] Received signal waveform diagram in the same embodiment device,


図8】  同実施例装置におけるインピータンス整合コ
イルを除去した場合の受信信号波形図、
[
Figure 8: Received signal waveform diagram when the impedance matching coil is removed in the same embodiment device,

【図9】  従
来の超音波探傷装置の概略構成図、
[Figure 9] Schematic configuration diagram of a conventional ultrasonic flaw detection device,

【図10】  同従
来装置における検出感度特性図。
FIG. 10 is a detection sensitivity characteristic diagram of the conventional device.

【符号の説明】[Explanation of symbols]

4…被測定体、7…パルス発生回路、9…受信回路、1
0…ブラウン管、21…超音波、22…超音波探触子、
23,45…信号切換回路、24…探傷器、25…容器
、26,27,41,42…振動子、30a,30b,
30c,44a,44b,44c,44d…信号線、3
1…端子、32…同期回路。
4...Object to be measured, 7...Pulse generating circuit, 9...Receiving circuit, 1
0... Braun tube, 21... Ultrasonic wave, 22... Ultrasonic probe,
23, 45... Signal switching circuit, 24... Flaw detector, 25... Container, 26, 27, 41, 42... Vibrator, 30a, 30b,
30c, 44a, 44b, 44c, 44d...signal line, 3
1...terminal, 32...synchronous circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  同一容器内に組込まれ、被測定体の取
付面に直交する方向に積層された複数の振動子と、この
積層された各振動子の両端に取付けられた電極と、この
各電極に送受信する信号を容器外へ導く複数の信号線と
を備えた超音波探触子。
Claim 1: A plurality of transducers built into the same container and stacked in a direction perpendicular to the mounting surface of the object to be measured, electrodes attached to both ends of each of the stacked transducers, and each of the stacked transducers. An ultrasonic probe equipped with multiple signal lines that guide signals sent and received from the electrodes to the outside of the container.
【請求項2】  被測定体の取付面に直交する方向に積
層された複数の振動子を同一容器内に組込み、各振動子
の両端に取付けられた電極から容器外にそれぞれ信号線
を導出し、この導出された複数の信号線のうちから一対
の信号線の組合せを同時または交互に選択していき、選
択された一対の信号線間にパルス信号を印加することに
よって、前記被測定体内に複数の異なる周波数を有する
超音波を入射させて超音波診断する超音波診断方法。
[Claim 2] A plurality of vibrators stacked in a direction perpendicular to the mounting surface of the object to be measured are assembled in the same container, and signal lines are led out from the container from electrodes attached to both ends of each vibrator. , by simultaneously or alternately selecting a pair of signal wire combinations from among the derived signal wires, and applying a pulse signal between the selected pair of signal wires. An ultrasound diagnostic method that performs ultrasound diagnosis by injecting ultrasound waves having multiple different frequencies.
JP3037533A 1991-03-04 1991-03-04 Ultrasonic probe and ultrasonic diagnosis method Pending JPH04276548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037533A JPH04276548A (en) 1991-03-04 1991-03-04 Ultrasonic probe and ultrasonic diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037533A JPH04276548A (en) 1991-03-04 1991-03-04 Ultrasonic probe and ultrasonic diagnosis method

Publications (1)

Publication Number Publication Date
JPH04276548A true JPH04276548A (en) 1992-10-01

Family

ID=12500166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037533A Pending JPH04276548A (en) 1991-03-04 1991-03-04 Ultrasonic probe and ultrasonic diagnosis method

Country Status (1)

Country Link
JP (1) JPH04276548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196042A1 (en) * 2013-06-05 2014-12-11 株式会社神戸製鋼所 Forged titanium alloy material and method for producing same, and ultrasonic testing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196042A1 (en) * 2013-06-05 2014-12-11 株式会社神戸製鋼所 Forged titanium alloy material and method for producing same, and ultrasonic testing method
US10604823B2 (en) 2013-06-05 2020-03-31 Kobe Steel, Ltd. Forged titanium alloy material and method for producing same, and ultrasonic inspection method

Similar Documents

Publication Publication Date Title
JPS5857706B2 (en) Hihakaishi Kenkyōsa-Chisouchi
KR101877769B1 (en) Apparatus for hybrid multi-frequency ultrasound phased array imaging
US3756070A (en) Ultrasonic inspection device
JPH04276548A (en) Ultrasonic probe and ultrasonic diagnosis method
JP4633268B2 (en) Ultrasonic flaw detector
JPH05188046A (en) Ultrasonic probe and ultrasonic diagnosis method
JP4052711B2 (en) Ultrasonic probe
JPS5821558A (en) Supersonic wave flaw detector for nonmetal
US3754435A (en) Material tester
RU2354932C2 (en) Resonance method of ultrasonic thickness measurement
US3624711A (en) Material tester
JP3341824B2 (en) Electronic scanning ultrasonic flaw detector
JP2978708B2 (en) Composite angle beam probe
Qiu et al. Design of a low profile array transducer in d15 mode for high angled shear wave generation
JP2943438B2 (en) Driving method of linear array ultrasonic probe
JPH04212055A (en) Compound supersonic probe
JPS59178379A (en) Ultrasonic probe
US3596505A (en) Ultrasonic search unit with radial mode motion transducer
SU1758541A1 (en) Method of ultrasonic testing of articles
JPS5991798A (en) Ultrasonic wave probe
RU1797043C (en) Method of ultrasonic defectoscopy of products with simultaneous acoustic contact quality control
JPH05209868A (en) Composite ultrasonic probe
JPS62156558A (en) Ultrasonic flaw detector
CN115754000A (en) Method and device for detecting bonding quality of dual-track composite material
SU1265601A1 (en) Method for checking quality of piezoelectric converter acoustic contact in flaw detection of articles and device for effecting same