JPH01142486A - Subsoil through-vision method - Google Patents

Subsoil through-vision method

Info

Publication number
JPH01142486A
JPH01142486A JP62299719A JP29971987A JPH01142486A JP H01142486 A JPH01142486 A JP H01142486A JP 62299719 A JP62299719 A JP 62299719A JP 29971987 A JP29971987 A JP 29971987A JP H01142486 A JPH01142486 A JP H01142486A
Authority
JP
Japan
Prior art keywords
waves
elastic
ground
wave
subsoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299719A
Other languages
Japanese (ja)
Inventor
Koichi Shin
新 孝一
Koichi Kitano
北野 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP62299719A priority Critical patent/JPH01142486A/en
Publication of JPH01142486A publication Critical patent/JPH01142486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To enable quick and accurate inspection of structure of a subsoil, by concentrating a plurality of elastic waves or electromagnetic waves varied in the phase at a desired point of the subsoil to perform a image display of the reflected waves thereof. CONSTITUTION:A plurality of elastic wave oscillators or electromagnetic wave transmitters 1 are set on the surface of a subsoil 2 or a bore hole and elastic waves or electromagnetic waves 8 shifted in the phase from one another are transmitted to a desired point P in the subsoil from the oscillators or transmitters 1. Then, the reflected waves thereof are received with a receiving transducer 7 to be transmitted to a computer 4, which 4 analyzes an input data to be shown on a CRT display 5. With such an arrangement, the phase of the electromagnetic waves or elastic waves outputted from the oscillators or the transmitters 1 is controlled thereby enabling inspection of the structure at the desired point in the subsoil by direct view through an image.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は弾性波または電磁波を用いて地盤の構造調査を
行う方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of investigating the structure of the ground using elastic waves or electromagnetic waves.

(従来の技術) 従来、弾性波を用いて地盤の構造を知る方法としては、
反射法や屈折法、弾性波CT法等が知られている(土木
における実用岩盤力学:昭和60年5月25日株式会社
オーム社発行:第30頁)。
(Conventional technology) Conventionally, methods for understanding the structure of the ground using elastic waves include:
Reflection methods, refraction methods, elastic wave CT methods, etc. are known (Practical Rock Mechanics in Civil Engineering: May 25, 1985, published by Ohmsha Co., Ltd.: p. 30).

反射法や屈折法は、反射波あるいは屈折波を主に用いて
比較的規模の大きい地質構造を調査するもので、比較的
古くからある物理探査手法である。
The reflection method and refraction method are relatively old geophysical exploration methods that mainly use reflected waves or refracted waves to investigate relatively large geological structures.

この探査方法は、測定が容易であり、探査の対象深度が
一般に浅く狭い範囲を精密に調査する必要がある土木分
野における岩盤調査では好適なものである。しかしなが
ら、屈折波は、下層が上層より低速度の場合、下層と表
面とのなす角と弾性波の臨界角との和が90°より大き
い場合には地表に戻らないので測定不可能であり、こう
した場合には他の方法により調査を行なわなければなら
ない。
This exploration method is easy to measure and is suitable for rock surveys in the civil engineering field, where the depth of exploration is generally shallow and it is necessary to precisely survey a narrow range. However, if the lower layer has a lower velocity than the upper layer, and the sum of the angle between the lower layer and the surface and the critical angle of the elastic wave is greater than 90°, the refracted waves will not return to the surface and cannot be measured. In such cases, investigation must be conducted using other methods.

また、弾性波CT法は、比較的新しい技術であり、横坑
やポーリング孔を用いて数多くの経路に沿って弾性波を
伝播させて、コンピュータで解析して断面映像を得るも
のである。しかしながら、弾性波CT法では、材料中の
速度構造を知ることができるが、仮に材料中に弾性波の
伝搬を遮るもの、例えば開口節理や減衰の大きい破砕帯
などがあると、その近辺の構造は不明となるばかりでな
く、まわりごみの波によって誤った情報が得られること
になる。
Furthermore, the elastic wave CT method is a relatively new technology in which elastic waves are propagated along a number of paths using a shaft or a poling hole, and a cross-sectional image is obtained by analyzing the waves using a computer. However, with elastic wave CT, it is possible to know the velocity structure in the material, but if there is something in the material that blocks the propagation of elastic waves, such as an opening joint or a fracture zone with large attenuation, the structure in the vicinity Not only will this become unclear, but the waves of surrounding garbage will also lead to incorrect information being obtained.

これらの方法はそれぞれに特徴のあるものであるが、ど
の方法も万能ではないので、調査範囲や調査地点の地質
に応じて使い分けられているが満足行くものではない。
Each of these methods has its own characteristics, but none of them are perfect, so they are used differently depending on the survey area and the geology of the survey location, but they are not satisfactory.

また、近年では、地盤の構造や埋設物の位置を調査する
ために、電磁波を用いる技術も開発されてきている。電
磁波を用いる調査法も解析原理は弾性波の場合と同じで
あり、反射法や電磁波CT法などが実施されている。し
かしながら、調査範囲や調査地点に制限を受けるという
点では弾性波を利用する場合と同様である。
Furthermore, in recent years, techniques using electromagnetic waves have been developed to investigate the structure of the ground and the location of buried objects. The analysis principle for investigation methods using electromagnetic waves is the same as that for elastic waves, and reflection methods, electromagnetic CT methods, etc. are used. However, it is similar to the case where elastic waves are used in that there are restrictions on the survey range and survey points.

一方、金属材料等の分野では、弾性波のうちの超音波を
用いて、材料の表面下の欠陥等を映像化する超音波類m
鏡と呼ばれるものが実用化されている〈昭和61年12
月発行 材料 35巻 399号;P1341〜135
1 二超音波顕微鏡とその材料評価への応用)、これは
、第3図に示すように発振チ受振兼用の圧電l・ランス
デューサー101などから発振された平面波をなす弾性
波を音波レンズ102で屈折、集中させながら水などの
媒体103を通して、被験材料104に伝達し、その表
面下で焦点を結ばせる一方、被験材料104内の欠陥等
からの反射波、散乱波、屈折波を圧電トランスデユーサ
−101で検知するものである。尚、図中、符号105
は高周波パルス発生器、106は信号処理系である。
On the other hand, in the field of metal materials, etc., ultrasonic waves are used to visualize defects under the surface of materials using ultrasonic waves of elastic waves.
Something called a mirror was put into practical use (December 1986)
Monthly issue Materials Volume 35 No. 399; P1341-135
1. Ultrasonic microscope and its application to material evaluation), as shown in Figure 3, uses a sonic lens 102 to capture elastic waves in the form of plane waves oscillated from a piezoelectric transducer 101 that also serves as an oscillating and receiving device. It is transmitted to the test material 104 through a medium 103 such as water while being refracted and concentrated, and is focused below the surface of the test material 104. On the other hand, reflected waves, scattered waves, and refracted waves from defects in the test material 104 are transmitted to the test material 104 by a piezoelectric transducer. This is detected by the user 101. In addition, in the figure, the reference numeral 105
106 is a high frequency pulse generator, and 106 is a signal processing system.

該装置は、焦点位置を走査して、材料104内の音響特
性に応じて反射、散乱、屈折した超音波を電気信号に変
換してCRTデイスプレィ(陰極管)などの上に濃淡で
表示して映像を得る。
This device scans the focal position and converts the reflected, scattered, and refracted ultrasound waves into electrical signals according to the acoustic characteristics within the material 104, and displays the electrical signals in shading on a CRT display (cathode tube) or the like. Get the footage.

このような超音波顕微鏡の原理を用いて地盤の構造を映
像化できれば、前述した反射法、屈折法、弾性波CT法
などとともに、有力な探査法になると期待される。
If it is possible to image the structure of the ground using the principles of such an ultrasonic microscope, it is expected to become a powerful exploration method along with the reflection method, refraction method, elastic wave CT method, etc. mentioned above.

(発明が解決しようとする問題点) しかしながら、超音波顕微鏡は検査できる範囲が狭く、
浅い(通常数Ion〜数100μj)ので、そのままで
は土木分野における地盤探査には利用できない。
(Problems to be solved by the invention) However, the range that can be inspected by an ultrasound microscope is narrow;
Since it is shallow (usually a few ions to several 100 μj), it cannot be used as it is for ground exploration in the civil engineering field.

また、超音波顕微鏡を大型にすれば、それだけ広く、深
いとるこまで検査できると考えられるが、トランスデユ
ーサ−から発振される弾性波を音波レンズ102で屈折
、集中させながら、水103を媒介として、材料内に伝
達し、材料内に焦点を結ばせる原理を用いる限り、実質
的には地盤の構造調査に対応できる大きさの装置をつく
ることは不可能である。尚、この超音波顕微鏡と同じよ
うな原理を電磁波に用い、電磁波の焦点を材料中に結ば
せて反射波を観察する調査方法は従来性なわれていない
In addition, if the ultrasonic microscope is made larger, it is thought that it will be possible to inspect a wider and deeper area. As long as the principle of transmitting information into a material and focusing it within the material is used, it is practically impossible to create a device large enough to handle the investigation of the structure of the ground. Note that there is no conventional investigation method that uses the same principle as this ultrasonic microscope for electromagnetic waves, focuses the electromagnetic waves into a material, and observes the reflected waves.

そこで、本発明は、従来にない新たな地盤探査法特に非
破壊的に地盤透視を可能とする方法を提供することを目
的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a new ground exploration method, particularly a method that enables non-destructive ground inspection.

(問題点を解決するための手段) かかる目的を達成するため、本発明の地盤透視法は、地
盤表面又はポーリング孔内に設置した複数個の弾性波発
振器又は電磁波発信器から、おのおの位相を制御して相
互に位相がずれた弾性波又は電磁波を出力することによ
って、地盤内の任意点に焦点を結ばせ、その反射波を地
盤表面又はポーリング孔内の弾性波受振器あるいは電磁
波受信器で測定して反射波の波形情報から地盤中の構造
を画像化するようにしている。
(Means for Solving the Problems) In order to achieve the above object, the ground perspective method of the present invention controls the phase of each of a plurality of elastic wave oscillators or electromagnetic wave oscillators installed on the ground surface or in the polling hole. By outputting elastic waves or electromagnetic waves that are out of phase with each other, the reflected waves are focused on an arbitrary point in the ground and the reflected waves are measured with an elastic wave geophone or electromagnetic wave receiver on the ground surface or in a polling hole. The structure of the ground is visualized from the waveform information of the reflected waves.

(作用) したがって、各弾性波発振器又は電磁波発信器から出力
される弾性波又は電磁波の位相を制御することによって
地盤内の任意点に焦点を定めて弾性波又は電磁波を出力
することができ、焦点を上下、水平に走査させる一方で
、地表又はポーリング孔内に設置した弾性波受振器ある
いは電磁波受信器で、地盤内の構造(断層面、地層面等
)に応じて反射、屈折、散乱してきた弾性波又は電磁波
の強度や波形を電気信号に変換して、CRTデイスプレ
ィなどの上に電気信号の強度に対応する濃淡あるいは色
彩で表示することにより、地盤構造の画像化を図ること
ができる。
(Function) Therefore, by controlling the phase of the elastic wave or electromagnetic wave output from each elastic wave oscillator or electromagnetic wave oscillator, it is possible to focus on any point in the ground and output the elastic wave or electromagnetic wave. While scanning vertically and horizontally, an elastic wave geophone or electromagnetic wave receiver installed on the ground surface or inside a polling hole reflects, refracts, and scatters depending on the structure within the ground (fault plane, strata surface, etc.). By converting the intensity and waveform of elastic waves or electromagnetic waves into electrical signals and displaying them on a CRT display or the like in shades or colors corresponding to the intensity of the electrical signals, it is possible to visualize the ground structure.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。尚、本実施例は、弾性波を用いる場合につ
いて説明する。因に電磁波を用いる場合も同じ原理であ
る。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings. In this embodiment, a case will be described in which elastic waves are used. Incidentally, the same principle applies when using electromagnetic waves.

埋を説明する。第1図(*)は1個のトランスデユーサ
−(圧電センサ)1から発振される波面を1を複数個な
らべて位相をすべて同じにして発振した場合の波面を示
す、この場合、各トランスデユーサー1から発振された
弾性波8は合成され、はぼ平面波となって下方へ伝播す
る。第1図(I)はトランスデユーサ−1を複数個なら
べ、各トランスデユーサ1の位相を相互にずらして発振
した場合の波面を示す、この場合、各トランスデユーサ
−1から発振された弾性波8は第1図(#)のものとは
逆の円弧状波となって下方へ伝播する。
Explain burying. Figure 1 (*) shows the wavefront when a plurality of wavefronts oscillated from one transducer (piezoelectric sensor) 1 are lined up and oscillated with the same phase.In this case, each transducer (piezoelectric sensor) The elastic waves 8 oscillated from the deducer 1 are combined, become a substantially plane wave, and propagate downward. Figure 1 (I) shows the wavefront when a plurality of transducers 1 are arranged and the phases of each transducer 1 are shifted from each other. The elastic wave 8 becomes an arcuate wave opposite to that shown in FIG. 1 (#) and propagates downward.

そして、P点に同時に到達する。Then, they reach point P at the same time.

第1図(会)の如く弾性波8をP点に集中させるために
は、次のような位相の制御を行う。
In order to concentrate the elastic waves 8 at point P as shown in FIG. 1, the following phase control is performed.

今、トランスデユーサ−1を1番からX′#までX個な
らべたとして、任意のi番目のトランスデユーサ−11
について考えると、トランスデユーサと1〕点との距離
を11、弾性波8の周波数をh(Hz)、弾性波8の伝
播速度をVとすれば、トランスデユーサ−から発生した
弾性波8がP点に到達する時間は tl =j!l /vである。
Now, if X transducers 1 are arranged from number 1 to X'#, any i-th transducer 11
Considering, if the distance between the transducer and point 1 is 11, the frequency of the elastic wave 8 is h (Hz), and the propagation speed of the elastic wave 8 is V, then the elastic wave 8 generated from the transducer is The time it takes to reach point P is tl = j! l/v.

同様にi+1番目のI・ランスデューサーでは、P点に
到達する時間は t、  =1..1/Vとなる。
Similarly, for the i+1th I transducer, the time to reach point P is t, =1. .. It becomes 1/V.

1+1 そこで、i番目のトランスデユーサ−では、成る基準時
刻toよりもtlだけ早いto−tlの時刻に、i+1
番目についてはt’o −t 、、の時刻に、というよ
うに各トランスデユーサ−の発振時刻を制御するにれに
よって、すべてのトランスデユーサ−1から発振された
弾性波8は、時刻toに同時にP点に到達する0位相で
表現すれば、各トランスデユーサ−をある基準位相φ0
よりもφl=2π・Ll ・hだけ早く発振してやれば
よい。
1+1 Therefore, in the i-th transducer, at the time to-tl earlier than the reference time to, i+1
By controlling the oscillation time of each transducer, the elastic waves 8 oscillated from all the transducers 1 are transmitted at the time t'o -t, , for the th transducer 1. If we represent each transducer as a 0 phase that reaches point P at the same time as
It is sufficient to oscillate faster by φl=2π·Ll·h.

第2図に本発明方法を実施する具体的装置の実施例を示
す、この装置は、探査しようとする地盤2の表面に一定
ピッチあるいは不規則に弾性波発振器例えばトランスデ
ユーサ−1を多数設置すると共にこのトランスデユーサ
−1を多チヤンネル高周波パルス位相差発振器3の各端
子に各々接続して各トランスデユーサ−1から位相を制
御した弾性波を発振させるようにする一方、地盤2の表
面に弾性波受振器例えば受振トランスデユーサ−7を設
置し、測定点Pからの反射波を受振し、その反射波の波
形情報を信号処理装置6において電気信号に変換してか
らコンピュータ4に入力し、所定の画像処理を施して濃
淡画像で地盤の構造をCRTデイスプレィ5に表示する
ようにしている。
FIG. 2 shows an example of a specific device for carrying out the method of the present invention. This device includes a large number of elastic wave oscillators, such as transducers 1, installed at a constant pitch or irregularly on the surface of the ground 2 to be explored. At the same time, this transducer 1 is connected to each terminal of a multi-channel high frequency pulse phase difference oscillator 3 so that each transducer 1 oscillates an elastic wave with a controlled phase. An elastic wave geophone, such as a vibration receiving transducer 7, is installed at , receives the reflected wave from the measurement point P, and converts the waveform information of the reflected wave into an electrical signal in the signal processing device 6, and then inputs it to the computer 4. Then, predetermined image processing is performed to display the ground structure on the CRT display 5 as a grayscale image.

この装置における信号処理の一例を第3図に示す、該図
において、3aはタイミングコントローラ、3bは発振
器、3Cは電力増幅器、1は圧電センサ、7は受振用圧
電センサ、6aは信号増幅器、6bは時間による増幅器
、6Cはウィンドウ内振幅抽出器である。尚、本実施例
の場合、タイミングコントローラ3aと発振器3b及び
電力増幅器3cによって多チヤンネル高周波パルス位相
差発振器3が構成され、信号増幅器6aと時間による増
幅器6b及びウィンドウ内振幅抽出器6Cとによって信
号処理器6が構成されている。
An example of signal processing in this device is shown in FIG. 3. In the figure, 3a is a timing controller, 3b is an oscillator, 3C is a power amplifier, 1 is a piezoelectric sensor, 7 is a piezoelectric sensor for receiving vibrations, 6a is a signal amplifier, 6b is a time amplifier, and 6C is an in-window amplitude extractor. In the case of this embodiment, a multi-channel high frequency pulse phase difference oscillator 3 is configured by a timing controller 3a, an oscillator 3b, and a power amplifier 3c, and a signal processing is performed by a signal amplifier 6a, a time-based amplifier 6b, and an in-window amplitude extractor 6C. A container 6 is configured.

この信号処理は発振器3aの1つから発振される弾性波
を主トリガとして、他の弾性波の位相を相互にずらして
発振させる。このときの弾性波はモノパルスでも良い、
この弾性波の波形を第4図の(1)、(2)、(3)に
示すと、主トリガとなる弾性波(1)に対して池の弾性
波(2)9(3)は夫々位相がずれている。これらの弾
性波は第1図(c)で説明したようにして、地盤内の任
意のP点に集中する。任意の点Pに向けて発振された弾
性波は地盤2内において反射し、屈折し、散乱し、受振
用圧電センサ7によって受振される。
This signal processing uses an elastic wave oscillated from one of the oscillators 3a as a main trigger, and causes the other elastic waves to oscillate by shifting their phases from each other. The elastic wave at this time may be a monopulse,
When the waveforms of this elastic wave are shown in (1), (2), and (3) in Figure 4, the elastic waves (2), 9, and (3) of the pond are respectively different from the elastic wave (1) that is the main trigger. Out of phase. These elastic waves concentrate at an arbitrary point P in the ground as explained in FIG. 1(c). The elastic wave oscillated toward an arbitrary point P is reflected, refracted, and scattered within the ground 2, and is received by the piezoelectric sensor 7 for receiving vibration.

この受振波を第4図(4)に示す0弾性波は地盤中にお
いて減衰するため、これを時間との関係において増幅す
る。即ち、一定時間の間に受振する弾性波のみ増幅する
。そのときの増幅率は例えばα・eβ5で主トリガから
の時間で変る。その状態を第4図(5)に示す。受振波
のうちの一部がウィンドウ内振幅抽出器6cにおいて抽
出され、画像信号として利用される。ウィンドウ内振幅
抽出器6Cは、焦点Pからの反射波が受振センサ7に到
達する直前に開き(Wl)、到達してから閉じ(W2)
、その間の受振波のみを抽出してコン、 ピユータ4に
送出するものである。このとき抽出される信号は、第4
図(6)の波形図に示すようにウィンドウが開いている
間の弾性波の最大振幅値またはエネルギー量である。
Since the zero elastic wave shown in FIG. 4 (4) is attenuated in the ground, this received wave is amplified in relation to time. That is, only the elastic waves received during a certain period of time are amplified. The amplification factor at that time is, for example, α·eβ5, which changes depending on the time from the main trigger. The state is shown in FIG. 4 (5). A part of the received wave is extracted by the in-window amplitude extractor 6c and used as an image signal. The in-window amplitude extractor 6C opens (Wl) just before the reflected wave from the focal point P reaches the reception sensor 7, and closes after reaching it (W2).
, only the received waves between them are extracted and sent to the computer 4. The signal extracted at this time is the fourth
As shown in the waveform diagram in Figure (6), this is the maximum amplitude value or energy amount of the elastic wave while the window is open.

尚、この電気信号はコンピュータ・画像処理手段4にお
いて、所定の画像処理が施され、その強度に応じた濃度
レベルあるいはしきい値処理によって特定される色彩に
よってCRTデイスプレィ5などの画像表示手段に表示
される。焦点Pの位置と、CRT5の濃淡の表示位置を
走査することによって、焦点Pを走査した平面の断面が
CRTS上に得られる。
This electric signal is subjected to predetermined image processing in a computer/image processing means 4, and displayed on an image display means such as a CRT display 5 with a density level corresponding to its intensity or a color specified by threshold processing. be done. By scanning the position of the focal point P and the gray scale display position of the CRT 5, a cross section of the plane scanned by the focal point P is obtained on the CRTS.

尚、上述の実施例は好適な実施例の一つではあるがこれ
に限定されるものではなく、本発明の要旨を逸脱しない
範囲において種々変形実施可能である0例えば、トラン
スデユーサ1を地表に設置せずにポーリング孔内に設置
し、ポーリング孔から弾性波を発振させてその反射波を
ポーリング孔内で受振するようにしても良い、また、弾
性波発振・受振器に代えて電磁波発信・受信器を使用す
ることによって、弾性波に代えて電磁波を利用しても良
い。
Although the embodiment described above is one of the preferred embodiments, it is not limited thereto, and various modifications can be made without departing from the gist of the present invention. It is also possible to install it inside the polling hole instead of installing it in the polling hole, oscillating an elastic wave from the polling hole, and receiving the reflected wave inside the polling hole.・By using a receiver, electromagnetic waves may be used instead of elastic waves.

(発明の効果) 以上の説明より明らかなように、本発明の地磐透視法は
、地表又はポーリング孔内に設置した複数個の弾性波発
振器あるいは電磁波発信器から、おのおの位相を制御し
て弾性波又は電磁波をずらして出力することによって、
地盤内の任意点に焦点を結ばせ、その反射波を地盤表面
又はポーリング孔内の弾性波受振器あるいは電磁波受信
器で測定するようにしているので、各弾性波発振器又は
電磁波発信器の位相制御によって地盤内の任意の点に焦
点を定めて弾性波又は電磁波を出力することができる。
(Effects of the Invention) As is clear from the above explanation, the Jiwa perspective method of the present invention uses a plurality of elastic wave oscillators or electromagnetic wave oscillators installed on the ground surface or in a polling hole to generate elastic waves by controlling the phase of each one. By shifting and outputting waves or electromagnetic waves,
Since the focus is focused on an arbitrary point in the ground and the reflected wave is measured by an elastic wave geophone or electromagnetic wave receiver on the ground surface or in a poling hole, it is possible to control the phase of each elastic wave oscillator or electromagnetic wave oscillator. It is possible to output elastic waves or electromagnetic waves by focusing on any point in the ground.

そこで、焦点を上下及び水平に走査させる一方で、地表
又はポーリング孔内に設置した弾性波受振器あるいは電
磁波受信器で、地盤内の構造(I!lr層面、地層面等
)に応じて反射、屈折、散乱してきた弾性波又は電磁波
の強度や波形を電気信号に変換してCRTデイスプレィ
などの上に濃淡で表示すれば、地盤構造の画像を得るこ
とができる。
Therefore, while the focal point is scanned vertically and horizontally, an elastic wave geophone or electromagnetic wave receiver installed on the ground surface or in a polling hole is used to reflect and reflect according to the structure in the ground (I!lr layer surface, geological layer surface, etc.). An image of the ground structure can be obtained by converting the intensity and waveform of refracted and scattered elastic waves or electromagnetic waves into electrical signals and displaying them in shading on a CRT display or the like.

かくして超音波顕微鏡で被験体の表面下の構造を映像化
する基本原理が、地盤調査にも適用できるようになるの
で、従来の方法では得られない地盤構造の情報が得られ
ると期待される。特に、数個位から数mの範囲の地下情
報を非破壊的に精確に得る見込みが大きい、また、従来
法では、計測のデータを採取したあと、比較的複雑な演
算処理を要するので、大型コンピュータが必要となり、
かつ解析に長い時間がかかり、解析の費用も大きくなっ
たが、本方法では複雑な演算等は要しないので計測をし
ながら即座にわかり易い映像として、地盤の構造を解明
できることが期待できる。現場の地!1調査ではできる
だけ早く正確な地盤構造の=Fn報を必要とする場合が
多く、当手法はその様な場合にも適用性がある。
In this way, the basic principle of imaging the subsurface structure of an object using an ultrasound microscope can now be applied to ground investigation, and it is expected that information on the ground structure that cannot be obtained using conventional methods will be obtained. In particular, there is a high possibility of obtaining underground information non-destructively and accurately in the range of several meters to several meters.Also, with conventional methods, relatively complex calculation processing is required after collecting measurement data, so large-scale A computer is required,
Moreover, the analysis took a long time and the cost of the analysis increased, but since this method does not require complicated calculations, it is expected that the structure of the ground can be elucidated immediately while taking measurements as an easy-to-understand image. The place of the scene! In many cases, accurate =Fn information of the ground structure is required as soon as possible in a single survey, and this method is applicable to such cases as well.

原理を示す説明図、第2図は本発明方法の一実施例を示
すブロック図、第3図は信号処理の一例を示すブロック
図、第4図は信号処理の波形図、第5図は金属材料試験
分野において使用されている超音波顕微鏡の原理図であ
る。
An explanatory diagram showing the principle, Fig. 2 is a block diagram showing an example of the method of the present invention, Fig. 3 is a block diagram showing an example of signal processing, Fig. 4 is a waveform diagram of signal processing, and Fig. 5 is a block diagram showing an example of the method of the present invention. It is a principle diagram of an ultrasonic microscope used in the field of materials testing.

■・・・発振用トランスデユーサ−(弾性波発振器)、
2・・・地盤、 3・・・多チヤンネル高周波パルス位相差発振器、4・
・・コンピュータ、5・・・CRTデイスプレィ、6・
・・信号処理装置、 7・・・受振トランスデユーサ−(弾性波受振器)。
■...Oscillation transducer (acoustic wave oscillator),
2... Ground, 3... Multi-channel high frequency pulse phase difference oscillator, 4...
... Computer, 5... CRT display, 6.
...Signal processing device, 7...Resonance transducer (acoustic wave geophone).

第1図(A)    第1図(B) 第1図(C) 第5図Figure 1 (A) Figure 1 (B) Figure 1 (C) Figure 5

Claims (1)

【特許請求の範囲】[Claims]  地盤表面あるいはポーリング孔内に設置した複数個の
弾性波発振器あるいは電磁波発信器から位相を相互にず
らした弾性波あるいは電磁波を出力し、地盤中の任意点
に弾性波あるいは電磁波を集中させると共にその反射波
を地盤表面の弾性波受振器あるいは電磁波発信器で入力
し、その波形情報から地盤中の構造を画像化することを
特徴とする地盤透視法。
Outputs phase-shifted elastic waves or electromagnetic waves from multiple elastic wave oscillators or electromagnetic wave oscillators installed on the ground surface or inside a polling hole, concentrates the elastic waves or electromagnetic waves at any point in the ground, and reflects the waves. Ground perspective method is characterized by inputting waves using an elastic wave geophone or electromagnetic wave transmitter on the ground surface, and imaging the structure in the ground from the waveform information.
JP62299719A 1987-11-30 1987-11-30 Subsoil through-vision method Pending JPH01142486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299719A JPH01142486A (en) 1987-11-30 1987-11-30 Subsoil through-vision method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299719A JPH01142486A (en) 1987-11-30 1987-11-30 Subsoil through-vision method

Publications (1)

Publication Number Publication Date
JPH01142486A true JPH01142486A (en) 1989-06-05

Family

ID=17876140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299719A Pending JPH01142486A (en) 1987-11-30 1987-11-30 Subsoil through-vision method

Country Status (1)

Country Link
JP (1) JPH01142486A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792262A (en) * 1993-09-22 1995-04-07 Japan Radio Co Ltd Apparatus for detecting underground-buried object
JP2003321828A (en) * 2002-04-30 2003-11-14 Oyo Corp Ground investigation method making use of s wave amplitude accompanying percussive penetration
DE102006026048A1 (en) * 2006-06-01 2007-12-20 Gbm Wiebe Gleisbaumaschinen Gmbh GPS-based, continuous track detection system with multi-sensor technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792262A (en) * 1993-09-22 1995-04-07 Japan Radio Co Ltd Apparatus for detecting underground-buried object
JP2003321828A (en) * 2002-04-30 2003-11-14 Oyo Corp Ground investigation method making use of s wave amplitude accompanying percussive penetration
DE102006026048A1 (en) * 2006-06-01 2007-12-20 Gbm Wiebe Gleisbaumaschinen Gmbh GPS-based, continuous track detection system with multi-sensor technology

Similar Documents

Publication Publication Date Title
US20140056111A1 (en) Acoustic detector
US6069843A (en) Optical pulse induced acoustic mine detection
JP6700054B2 (en) Non-contact acoustic exploration system
Simpson et al. Laser ultrasonic measurements to estimate the elastic properties of rock samples under in situ conditions
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
US4702112A (en) Ultrasonic phase reflectoscope
Zhu Non-contact NDT of concrete structures using air coupled sensors
EP0053034B1 (en) Method of determining stress distribution in a solid body
US5948984A (en) Structural integrity recovery system
RU2282875C1 (en) Building structure exploration device
US2866512A (en) Method of subsurface exploration by sonic means
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
US4492117A (en) Ultrasonic nondestructive test apparatus
JPH01142486A (en) Subsoil through-vision method
Lee et al. Discontinuity detection ahead of a tunnel face utilizing ultrasonic reflection: Laboratory scale application
US4596142A (en) Ultrasonic resonance for detecting changes in elastic properties
EP2354808B1 (en) Object probing device, object probing program, and object probing method
JPH01156661A (en) Joint part survey instrument
US10859695B2 (en) Acoustic system and method for characterizing granular media
EP2577359B1 (en) Method and system for determining the rigidity of a geological layer
Leighton et al. Acoustic propagation in gassy intertidal marine sediments: An experimental study
Blum et al. Advances in laboratory modeling of wave propagation
JP2881702B2 (en) Ultrasound imaging device focusing method and ultrasonic imaging device using this method
Cannas et al. Numerical Simulations of Ultrasonic Non Destructive Techniques of Masonry Buildings.
Moustachi et al. P-wave attenuation in creeping rock and system identification