JP2001124746A - Ultrasonic inspection method - Google Patents

Ultrasonic inspection method

Info

Publication number
JP2001124746A
JP2001124746A JP30302499A JP30302499A JP2001124746A JP 2001124746 A JP2001124746 A JP 2001124746A JP 30302499 A JP30302499 A JP 30302499A JP 30302499 A JP30302499 A JP 30302499A JP 2001124746 A JP2001124746 A JP 2001124746A
Authority
JP
Japan
Prior art keywords
wave
subject
ultrasonic
vertical
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30302499A
Other languages
Japanese (ja)
Inventor
Yoshihiko Takishita
芳彦 瀧下
Hiroshi Yamamoto
弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP30302499A priority Critical patent/JP2001124746A/en
Publication of JP2001124746A publication Critical patent/JP2001124746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic inspection method in which a defect existing in the surface layer part of an object to be inspected and a defect existing at the inside of the object to be inspected can be detected simultaneously. SOLUTION: An ultrasonic probe 1A which is used is provided with an acoustic lens 3 in which a through hole 4 is opened and formed in the central part. The ultrasonic probe is provided with a vibrator 2 which is set in the plane part 3a of the acoustic lens 3 and whose planar shape is circular. In a state that the focus P of the acoustic lens 3 is situated in a part a little lower than the surface of an object 100 to be inspected, the vibrator 2 is started. A focused beam 11 which is focused by the acoustic lens 3 and vertical waves 12 which are not focused by the acoustic lens 3 are transmitted from the ultrasonic probe 1A. The echo of leaked waves generated at a time when the focused beam 11 is incident on the object 100 to be inspected is received by the vibrator 2. On the basis of the level of the echo, a defect in the surface layer part of the object to be inspected is flaw-detected. In addition, a defect echo or a bottom echo which is obtained at a time when the vertical waves 12 are incident on the object to be inspected is received by the vibrator 2. On the basis of the level of the echo, a defect at the inside of the object to be inspected is flaw- detected. In addition, on the basis of the time difference between the surface echo and the bottom echo, the thickness of the object to be inspected is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料よりなる
構造物の非破壊検査に適用される超音波検査方法に係
り、特に、被検体表層部の健全性と被検体内部の欠陥検
査とを同時に実行可能な超音波検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic inspection method applied to a nondestructive inspection of a structure made of a metal material, and more particularly to an inspection method for inspecting the soundness of a surface layer of an object and a defect inspection inside the object. The present invention relates to an ultrasonic inspection method that can be performed simultaneously.

【0002】[0002]

【従来の技術】従来より、超音波を用いた被検体の欠陥
検査方法としては、被検体に対して無焦点ビームを垂直
に入射する方法と、被検体の表面又は表面直下に焦点を
設定して集束ビームを入射する方法とが知られている。
2. Description of the Related Art Conventionally, as a defect inspection method of an object using an ultrasonic wave, a method of vertically incident an unfocused beam on the object and a method of setting a focus on or just below the surface of the object. A method of inputting a focused beam is known.

【0003】図8は、前者の一例である水浸式垂直超音
波探傷法の説明図である。この図から明らかなように、
本例の超音波検査方法は、被検体100に対して超音波
プローブ200から超音波媒質としての水Wを介して無
焦点の超音波ビーム201を垂直に入射し、図8の右側
に示すように、表面エコーS1と底面エコーB1とを得
る方法である。この図から明らかなように、被検体10
0の内部に欠陥101が存在すると、表面エコーS1と
底面エコーB1との間に欠陥エコーF1が現れるので、
これを検出することによって、当該欠陥101の発生位
置、大きさ及び形状等を求めることができる。
FIG. 8 is an explanatory view of a water immersion type vertical ultrasonic flaw detection method which is an example of the former. As is clear from this figure,
In the ultrasonic inspection method of this example, an unfocused ultrasonic beam 201 is perpendicularly incident on the subject 100 from an ultrasonic probe 200 via water W as an ultrasonic medium, as shown on the right side of FIG. First, a method for obtaining a surface echo S1 and a bottom surface echo B1. As is apparent from FIG.
If the defect 101 exists inside the area 0, a defect echo F1 appears between the surface echo S1 and the bottom surface echo B1.
By detecting this, the occurrence position, size, shape, and the like of the defect 101 can be obtained.

【0004】図9は、後者に係る超音波検査方法の一例
を示す図であって、特開平4−259853号公報に記
載されている。本例の超音波検査方法は、周波数が15
〜50MHzで焦点距離が12.7〜38.1mmの超
音波プローブ300を用い、当該超音波プローブ300
から送信される集束ビームの焦点位置を被検体100の
表面又はその直下に設定して、超音波検査を実行する。
この方法によると、高周波を用いたことから表面エコー
S1の幅が短くなると共に、集束ビームを用いたことか
ら超音波ビーム301を表面近傍部に存在する微小欠陥
102の周辺に集中させることができるので、図9の右
側に示すように、表面エコーS1に続いて微小欠陥10
2からの多重エコー群Frが観察される。送信エコーS
1は短いとはいっても幅を持つため、微小欠陥102か
らの第1欠陥エコーを表面エコーS1から分離すること
はできないが、その多重エコー群Frを捕捉することに
より、被検体の表面近傍部に存在する微小欠陥の有無を
把握することができる。
FIG. 9 is a diagram showing an example of the latter ultrasonic inspection method, which is described in Japanese Patent Application Laid-Open No. 4-259853. The ultrasonic inspection method of this example has a frequency of 15
Using an ultrasonic probe 300 having a focal length of 12.7 to 38.1 mm at a frequency of 5050 MHz, the ultrasonic probe 300
Is set on the surface of the subject 100 or directly below it, and the ultrasonic inspection is performed.
According to this method, the width of the surface echo S1 is shortened due to the use of the high frequency, and the ultrasonic beam 301 can be concentrated around the minute defect 102 existing near the surface because the focused beam is used. Therefore, as shown on the right side of FIG. 9, the minute defect 10 follows the surface echo S1.
Multiple echo groups Fr from 2 are observed. Transmission echo S
1 is short but has a width, so that the first defect echo from the minute defect 102 cannot be separated from the surface echo S1, but by capturing the multiple echo group Fr, a portion near the surface of the subject can be obtained. It is possible to grasp the presence or absence of a minute defect existing in the image.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
た従来の超音波検査方法のうちの前者は、被検体100
に対して無焦点の超音波ビーム201を入射することか
ら表面エコーS1のレベルが非常に大きくなり、そのた
め、被検体100の表面から1〜2mm程度の範囲に、
微小欠陥102の検出を行うことができない不感帯NB
を生じるという不都合がある。
However, the former of the above-mentioned conventional ultrasonic examination methods is the subject 100
Since the unfocused ultrasonic beam 201 is incident on the object 100, the level of the surface echo S1 becomes very large, so that the level of the surface echo S1 is about 1 to 2 mm from the surface of the subject 100.
Dead zone NB where detection of minute defect 102 cannot be performed
Is disadvantageous.

【0006】これに対して、前記した従来の超音波検査
方法のうちの後者は、超音波ビーム301の焦点を被検
体100の表面又はその直下に設定するため、被検体1
00の表面近傍部からの欠陥検出は可能になるが、その
反面、焦点域以外の位置に存在する欠陥、特に、被検体
100の底面に近い位置にある欠陥101の検出能が低
くなるという不都合がある。また、この方法は、例えば
鉄鋼材料中に存在する非金属介在物や溶射皮膜の剥離な
ど、被検体100の表面に対して平行な方向に延びる比
較的大面積の欠陥については、多重エコー群Frの検出
が可能であるが、被検体100の表面に対して垂直方向
に延びる微小欠陥については、多重エコー群Frを検出
することが難しいという不都合がある。実験によると、
前記公報に記載の方法では、厚さ0.1mmのWC系溶
射皮膜内に存在する幅2〜5μmの縦方向のクラックを
検出することができなかった。
On the other hand, the latter of the above-mentioned conventional ultrasonic inspection methods sets the focus of the ultrasonic beam 301 on the surface of the object 100 or directly below the object 100, so that the object 1
Although the defect detection from the vicinity of the surface of the specimen 100 becomes possible, the defect that the defect existing at a position other than the focal region, in particular, the defect 101 located at a position near the bottom surface of the subject 100 is deteriorated is disadvantageous. There is. This method is also applicable to a relatively large area defect extending in a direction parallel to the surface of the test object 100, such as nonmetallic inclusions existing in a steel material or peeling of a thermal spray coating, for example. Can be detected, but it is difficult to detect the multiple echo group Fr with respect to a minute defect extending in a direction perpendicular to the surface of the subject 100. According to experiments,
The method described in the above publication could not detect a vertical crack having a width of 2 to 5 μm existing in the WC-based thermal spray coating having a thickness of 0.1 mm.

【0007】本発明は、かかる従来技術の不備を解消す
るためになされたものであって、その目的は、被検体の
表層部に存在する微小欠陥と被検体の内部に存在する欠
陥を同時に検出可能で、しかも被検体の表層部に存在す
る微小欠陥については欠陥の大きさや向きに関わりなく
高精度に検出することができる超音波検査方法を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned deficiencies of the prior art, and an object of the present invention is to simultaneously detect a microdefect present on the surface layer of a subject and a defect present inside the subject. It is an object of the present invention to provide an ultrasonic inspection method capable of detecting a small defect existing on the surface layer of an object with high accuracy regardless of the size and orientation of the defect.

【0008】[0008]

【課題を解決するための手段】本発明は、前記の目的を
達成するため、振動子と、被検体への垂直入射波及び斜
角入射波の伝搬経路並びに前記被検体からの垂直反射波
及び漏洩波の伝搬経路を有し、かつ前記垂直入射波及び
垂直反射波の伝搬経路における超音波の伝搬速度が前記
斜角入射波及び漏洩波の伝搬経路における超音波の伝搬
速度よりも遅い音響レンズとを備えた超音波プローブを
用い、前記漏洩波の受信信号を基に前記被検体表層部の
健全性を評価すると共に、前記垂直反射波の受信信号を
基に前記被検体表層部以外の欠陥検査及び/又は前記被
検体の厚さ計測を行うという構成にした。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a vibrator, a propagation path of a normal incident wave and an oblique incident wave to a subject, and a vertical reflection wave and a reflected wave from the subject. An acoustic lens having a propagation path of a leaky wave, wherein the propagation speed of the ultrasonic wave in the propagation path of the vertically incident wave and the vertically reflected wave is lower than the propagation speed of the ultrasonic wave in the propagation path of the obliquely incident wave and the leaky wave Using an ultrasonic probe having: and evaluating the soundness of the subject surface layer based on the received signal of the leaky wave, and defects other than the subject surface layer based on the received signal of the vertical reflected wave The inspection and / or the thickness measurement of the subject is performed.

【0009】前記構成の超音波プローブを用いると、垂
直入射波及び垂直反射波の伝搬経路における超音波の伝
搬速度が前記斜角入射波及び漏洩波の伝搬経路における
超音波の伝搬速度よりも遅いので、図2(b)に示すよ
うに、垂直入射波による表面エコーS1と漏洩波のエコ
ーL1とが時間軸上で分離し、かつ漏洩波のエコーL1
の方が表面エコーS1よりも先行した受信信号が得られ
る。したがって、漏洩波のエコーレベルから被検体10
0の表層部に存在する微小欠陥102を検出できると共
に、被検体100の内部に欠陥101が存在する場合に
は、表面エコーS1と底面エコーB1との間に欠陥エコ
ーF1が現れるので、これを検出することによって、当
該欠陥101の発生位置、大きさ及び形状等を求めるこ
とができる。さらに、表面エコーS1と底面エコーB1
の時間差から、被検体100の厚さを計測することがで
きる。
When the ultrasonic probe having the above configuration is used, the propagation speed of the ultrasonic wave in the propagation path of the vertically incident wave and the vertically reflected wave is lower than the propagation velocity of the ultrasonic wave in the propagation path of the obliquely incident wave and the leaky wave. Therefore, as shown in FIG. 2 (b), the surface echo S1 due to the normal incident wave and the echo L1 of the leaky wave are separated on the time axis, and the echo L1 of the leaky wave.
Can obtain a received signal that precedes the surface echo S1. Therefore, from the echo level of the leaked wave,
0 can be detected at the surface layer portion of the specimen 100, and when the defect 101 exists inside the subject 100, the defect echo F1 appears between the surface echo S1 and the bottom echo B1. By detecting, the position, size, shape, and the like of the defect 101 can be obtained. Further, the surface echo S1 and the bottom echo B1
The thickness of the subject 100 can be measured from the time difference.

【0010】前記被検体100の表層部に存在する微小
欠陥102の検出は、以下のようにして行われる。即
ち、図1に示すように、超音波プローブ1Aから送信さ
れた超音波のうち、斜角経路A→B→Cを通って被検体
100の表面にレーリー臨界角θL で入射した斜角入射
波は、漏洩弾性表面波に変換され、被検体100の表面
に沿って進行する。この漏洩弾性表面波は、入射点Cか
ら被検体100の表面を伝搬する間にレーリー臨界角θ
L で漏洩し、被検体100表面のD点で漏洩した漏洩波
は、経路D→E→Fを通って振動子2に受信される。
The detection of the minute defect 102 existing on the surface layer of the object 100 is performed as follows. That is, as shown in FIG. 1, among the ultrasonic waves transmitted from the ultrasonic probe 1A, the oblique incident wave incident on the surface of the subject 100 at the Rayleigh critical angle θL through the oblique path A → B → C. Is converted into a leaky surface acoustic wave and travels along the surface of the subject 100. This leaky surface acoustic wave propagates through the surface of the subject 100 from the point of incidence C and has a Rayleigh critical angle θ.
The leaked wave leaked at L and leaked at point D on the surface of the subject 100 is received by the vibrator 2 through the route D → E → F.

【0011】ここで、被検体100の表層にクラック等
の欠陥が存在すると、被検体100の表層における漏洩
弾性表面波の伝搬がクラック等によって妨げられるため
に、振動子2にて受信される漏洩波のレベルが低くな
る。これに対して、被検体100の表層にクラック等の
欠陥が存在しない場合には、被検体100の表層におけ
る漏洩弾性表面波の伝搬がクラック等によって妨げられ
ないため、振動子2にて受信される漏洩波のレベルが高
くなる。したがって、超音波プローブ1Aにおける漏洩
波の受信レベルより被検体100の表層に生じたクラッ
クの有無を判定することができる。
Here, if a defect such as a crack exists on the surface layer of the subject 100, the propagation of the leaky surface acoustic wave on the surface layer of the subject 100 is hindered by the crack or the like. The wave level will be lower. On the other hand, when there is no defect such as a crack in the surface layer of the subject 100, the propagation of the leaky surface acoustic wave in the surface layer of the subject 100 is not hindered by the crack or the like. The level of leaked waves increases. Therefore, the presence or absence of a crack generated on the surface layer of the subject 100 can be determined from the reception level of the leaked wave in the ultrasonic probe 1A.

【0012】また、漏洩弾性表面波は、被検体100の
表面から1波長程度、被検体100の内部に浸透すると
されている。このため、母材の表面に設けられた溶射皮
膜等の被膜に剥離を生じた場合には、母材と被膜との間
に空気層ができるため、漏洩弾性表面波が母材の内部に
浸透せず、その減衰が小さくなるために、振動子2にて
受信される漏洩波のレベルが高くなる。これに対して、
被膜に剥離が生じていない場合には、漏洩弾性表面波が
母材の内部に1波長程度浸透し、その減衰が大きくなる
ため、振動子2にて受信される漏洩波のレベルが低くな
る。したがって、超音波プローブ1Aにおける漏洩波の
受信レベルより被膜に生じた剥離の有無を判定すること
ができる。
The leaky surface acoustic wave is said to penetrate into the subject 100 by about one wavelength from the surface of the subject 100. For this reason, if a coating such as a thermal spray coating provided on the surface of the base material is peeled off, an air layer is formed between the base material and the coating, so that leaked surface acoustic waves penetrate into the base material. However, since the attenuation is reduced, the level of the leaky wave received by the vibrator 2 increases. On the contrary,
If no peeling occurs in the coating, the leaky surface acoustic wave penetrates into the base material by about one wavelength and the attenuation increases, so that the level of the leaky wave received by the vibrator 2 decreases. Therefore, it is possible to determine the presence or absence of peeling that has occurred in the coating from the reception level of the leaky wave in the ultrasonic probe 1A.

【0013】かように、本発明によれば、欠陥の形状や
向きに関係なく、被検体の表層部に発生した欠陥を高精
度に検出することができる。
As described above, according to the present invention, it is possible to detect a defect occurring on a surface layer of a subject with high accuracy regardless of the shape and orientation of the defect.

【0014】[0014]

【発明の実施の形態】まず、本発明に係る超音波検査方
法に適用される超音波プローブの一例を、図1に基づい
て説明する。図1は本例に係る超音波プローブの要部断
面図及び平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an example of an ultrasonic probe applied to an ultrasonic inspection method according to the present invention will be described with reference to FIG. FIG. 1 is a sectional view and a plan view of a main part of an ultrasonic probe according to the present embodiment.

【0015】図1(a),(b)から明らかなように、
本例の超音波プローブ1Aは、平面形状が円形に形成さ
れた単一型の振動子2と、当該振動子2から送信された
超音波を収束して被検体100に入射する凹レンズ型の
音響レンズ3とを備えた構成になっており、音響レンズ
3の中央部には、振動子2が設定される平面部3aから
レンズ曲率面3bまで貫通する透孔4が開設されてい
る。振動子2は、上下面にそれぞれ上部電極2Uと下部
電極2Lが設けられた圧電薄膜をもって構成される。一
方、音響レンズ3は、アルミニウム等の超音波伝搬速度
が大きな物質をもって構成され、振動子対向面が平面状
に、レンズ曲率面が球面状に形成されている。なお、前
記超音波プローブ1Aの上部電極2U側には、必要以上
の振動の発生を抑制するためのダンパ材が取り付けられ
ることがあり、また下部電極2L側には、振動子2の保
護板が取り付けられることもある。また、透孔4の直径
は、経路G→(H)→Iで示される垂直入射波を用いて
被検体100内部の探傷を行うことから、経路A→B→
Cで示される斜角入射波及び経路D→E→Fで示される
漏洩波の伝搬を阻害しない範囲内で可能な限り大きくす
る方が好ましい。
As is clear from FIGS. 1 (a) and 1 (b),
The ultrasonic probe 1A of this example includes a single-type vibrator 2 having a circular planar shape, and a concave lens-type acoustic wave that converges an ultrasonic wave transmitted from the vibrator 2 and enters the object 100. A lens 3 is provided, and a through hole 4 is formed in the center of the acoustic lens 3 so as to penetrate from the plane portion 3a where the vibrator 2 is set to the lens curvature surface 3b. The vibrator 2 is configured by a piezoelectric thin film having upper and lower electrodes 2U and 2L provided on upper and lower surfaces, respectively. On the other hand, the acoustic lens 3 is made of a material having a high ultrasonic wave propagation velocity such as aluminum, and has a plane facing the transducer and a spherical surface having a lens curvature. In addition, a damper material for suppressing the generation of unnecessary vibration may be attached to the upper electrode 2U side of the ultrasonic probe 1A, and a protective plate of the vibrator 2 may be attached to the lower electrode 2L side. Sometimes attached. In addition, the diameter of the through hole 4 is determined by the path G → (H) → I because the flaw detection inside the subject 100 is performed using the normal incident wave indicated by the path I → B →
It is preferable that the angle is made as large as possible within a range that does not hinder the propagation of the oblique incident wave shown by C and the leaky wave shown by routes D → E → F.

【0016】次に、本構成の超音波プローブ1Aを用い
た超音波検査方法を、図1及び図2に基づいて説明す
る。
Next, an ultrasonic inspection method using the ultrasonic probe 1A of the present configuration will be described with reference to FIGS.

【0017】まず、図1(a)に示すように、超音波プ
ローブ1Aと被検体100とを水中Wにおいて対向に配
置し、超音波プローブ1Aより送信される斜角入射波の
焦点Pを、被検体100の表面からΔZだけ下げた位置
に設定する。ΔZは、被検体100の表面に漏洩弾性表
面波を生じさせるに必要な集束ビームのデフォーカス量
であって、最も好ましくは、超音波プローブ1Aにおい
て受信される漏洩波が最大になる量に設定されるが、必
ずしもこれに限定されるものではなく、超音波プローブ
1Aで漏洩波が受信される量に設定すれば足りる。
First, as shown in FIG. 1A, an ultrasonic probe 1A and a subject 100 are arranged to face each other in water W, and a focal point P of an oblique incident wave transmitted from the ultrasonic probe 1A is It is set at a position lowered by ΔZ from the surface of the subject 100. ΔZ is the amount of defocus of the focused beam required to generate a leaky surface acoustic wave on the surface of the subject 100, and is most preferably set to an amount that maximizes the leaky wave received by the ultrasonic probe 1A. However, the present invention is not necessarily limited to this, and it suffices to set the amount so that the leaked wave is received by the ultrasonic probe 1A.

【0018】なお、デフォーカス量ΔZの調整は、超音
波プローブ1Aを被検体100に接近する方向又は被検
体100から離隔する方向に移動しつつ超音波プローブ
1Aより超音波を送信し、被検体100からの表面反射
波のレベル変化を監視することによって超音波ビームの
焦点Pが被検体100の表面に合致する位置を割り出
し、次いで、所望のデフォーカス量ΔZだけ超音波プロ
ーブ1Aを被検体100に接近させることにより行うこ
とができる。即ち、振動子2を起動すると、超音波プロ
ーブ1Aからは、図1(a)及び図2に示すように、音
響レンズ3によって集束された集束ビーム11と、音響
レンズ3によって集束されない無焦点ビーム(垂直波)
12とが送信される。そして、集束ビーム11の焦点P
が被検体100の表面に合致した場合に、被検体100
からの表面反射波が最も大きくなるので、これを監視す
ることによって、集束ビーム11の焦点Pが被検体10
0の表面に合致した位置を把握することができ、この位
置から所望のデフォーカス量ΔZだけ超音波プローブ1
Aを被検体100に接近させることによって、超音波プ
ローブ1Aのデフォーカス量ΔZを所定の値に設定する
ことができる。
The defocus amount ΔZ is adjusted by transmitting an ultrasonic wave from the ultrasonic probe 1A while moving the ultrasonic probe 1A in a direction approaching the subject 100 or in a direction away from the subject 100, and The position where the focal point P of the ultrasonic beam coincides with the surface of the object 100 is determined by monitoring the level change of the surface reflected wave from the object 100, and then the ultrasonic probe 1A is moved by a desired defocus amount ΔZ to the object 100. Can be performed by approaching. That is, when the vibrator 2 is activated, as shown in FIGS. 1A and 2, a focused beam 11 focused by the acoustic lens 3 and a non-focused beam not focused by the acoustic lens 3 are output from the ultrasonic probe 1A. (Vertical wave)
12 is transmitted. Then, the focal point P of the focused beam 11
Is matched to the surface of the subject 100,
Since the surface reflected wave from the object becomes the largest, by monitoring this, the focal point P of the focused beam 11 becomes
The position corresponding to the surface of the ultrasonic probe 1 can be grasped from this position by a desired defocus amount ΔZ.
By bringing A closer to the subject 100, the defocus amount ΔZ of the ultrasonic probe 1A can be set to a predetermined value.

【0019】このようにして超音波プローブ1Aと被検
体100とが水中において対向に配置され、かつデフォ
ーカス量ΔZの設定が終了した状態においては、図1
(a)に示すように、振動子2の斜角経路A→B→C及
びD→E→Fと被検体100との間には、超音波の伝搬
速度が高い音響レンズ3(アルミニウム製の場合、音速
=約6400m/s)と超音波の伝搬速度が低い水(音
速=約1500m/s)とが介在するのに対して、振動
子2の垂直経路G→(H)→I及びI→(H)→Gと被
検体100との間には、超音波の伝搬速度が低い水のみ
が介在することになるので、経路A→B→C→D→E→
Fを通る斜角入射波、漏洩弾性表面波及び漏洩波の伝搬
時間よりも経路G→(H)→I→(H)→Gを通る垂直
入射波及び垂直表面反射波の伝搬時間の方が長くなり、
図2(b)に示すように、垂直波12による表面エコー
S1と漏洩波のエコーL1とが時間軸上で分離し、かつ
漏洩波のエコーL1の方が表面エコーS1よりも先行し
た受信信号が得られる。
In the state in which the ultrasonic probe 1A and the subject 100 are opposed to each other in the water and the setting of the defocus amount ΔZ has been completed as shown in FIG.
As shown in (a), between the oblique path A → B → C and D → E → F of the transducer 2 and the subject 100, the acoustic lens 3 (aluminum made of aluminum) having a high ultrasonic wave propagation speed is provided. In this case, sound velocity = about 6400 m / s) and water having a low ultrasonic propagation velocity (sound velocity = about 1500 m / s) are present, whereas the vertical path G → (H) → I and I of the vibrator 2 are present. → (H) → Between G and the subject 100, only water having a low ultrasonic wave propagation speed is interposed, so that the route A → B → C → D → E →
The propagation time of the normal incident wave and the vertical surface reflected wave passing through the route G → (H) → I → (H) → G is longer than the propagation time of the oblique incident wave, leaky surface acoustic wave and leaky wave passing through F. Become longer,
As shown in FIG. 2B, the surface echo S1 due to the vertical wave 12 and the echo L1 of the leaky wave are separated on the time axis, and the echo L1 of the leaky wave is ahead of the surface echo S1. Is obtained.

【0020】一例として、被検体の表面に厚さ0.1m
mのWC系溶射皮膜が施された鋼材被検体とレンズのど
厚(図1(a)のGH間)が5mmのアルミニウム製
(音速=6400m/s)の音響レンズとを用い、デフ
ォーカス量ΔZを0.2mm、使用周波数を10MH
z、WC系溶射皮膜を伝搬する漏洩弾性表面波の音速を
2300m/s(表面を研磨した同種の溶射皮膜を用い
て予め計測した値)、レーリー臨界角を41度として垂
直波による表面エコーS1と漏洩波のエコーL1の時間
差を求めると、経路A→B→C→D→E→Fを伝搬する
超音波の伝搬時間が約10μsであるのに対して、経路
G→(H)→I→(H)→Gを伝搬する超音波の伝搬時
間は約15μsであり、その差が5μs(使用周波数の
周期の50倍)となって、両エコー波形を時間軸上で明
確に分離できることが判る。なお、前例においては、使
用周波数を10MHzとしたが、5〜20MHzの範囲
で変更した場合にも同様の結果が得られた。
As an example, a thickness of 0.1 m
The defocus amount ΔZ is determined by using a steel object coated with a WC-based thermal sprayed coating of m and an acoustic lens made of aluminum (sound speed = 6400 m / s) having a throat thickness of 5 mm (between GH and FIG. 1A). 0.2mm, operating frequency 10MH
z, surface acoustic wave S1 due to vertical wave with sound velocity of leaky surface acoustic wave propagating in WC-based thermal spray coating at 2300 m / s (value measured in advance using the same thermal spray coating with polished surface) and Rayleigh critical angle of 41 degrees And the time difference between the echo L1 of the leaky wave and the propagation time of the ultrasonic wave propagating along the route A → B → C → D → E → F is about 10 μs, whereas the route G → (H) → I → (H) → The propagation time of the ultrasonic wave propagating through G is about 15 μs, and the difference is 5 μs (50 times the period of the used frequency), so that both echo waveforms can be clearly separated on the time axis. I understand. In addition, in the previous example, the used frequency was set to 10 MHz, but similar results were obtained when the frequency was changed in the range of 5 to 20 MHz.

【0021】これに対して、透孔4を有しない音響レン
ズ3を備えた超音波プローブを用いた場合には、振動子
2の斜角経路A→B→C及びD→E→Fと被検体100
との間にも、また振動子2の垂直経路G→H→I及びI
→H→Gと被検体100との間にも超音波の伝搬速度が
高いアルミニウム製の音響レンズ3と超音波の伝搬速度
が低い水とが介在するので、経路A→B→C→D→E→
Fを通る斜角入射波、漏洩弾性表面波及び漏洩波の伝搬
時間と経路G→H→I→H→Gを通る垂直入射波及び垂
直表面反射波の伝搬時間とがほぼ同じになって、垂直波
による表面エコーに漏洩波のエコーが埋没して両エコー
波形を分離できず、漏洩波のエコーレベルを求めること
ができない。
On the other hand, when an ultrasonic probe provided with the acoustic lens 3 having no through hole 4 is used, the oblique paths A → B → C and D → E → F of the vibrator 2 are covered. Sample 100
And the vertical path G → H → I and I of the vibrator 2
Since an aluminum acoustic lens 3 having a high ultrasonic wave propagation speed and water having a low ultrasonic wave propagation speed are interposed between H → G and the subject 100, the path A → B → C → D → E →
The propagation time of the oblique incident wave, the leaky surface acoustic wave and the leaky wave passing through F and the propagation time of the normal incident wave and the vertical surface reflected wave passing through the route G → H → I → H → G become almost the same, The echo of the leaked wave is buried in the surface echo due to the vertical wave, so that the two echo waveforms cannot be separated, and the echo level of the leaked wave cannot be obtained.

【0022】即ち、透孔4を有する音響レンズ3を備え
た超音波プローブ1Aを用いた場合と同一の条件下で、
両エコー波形の伝搬時間の差を求めると、経路G→H→
I→H→Gを伝搬する垂直表面反射波の伝搬時間が1
0.05μsであるのに対して、経路A→B→C→D→
E→F経路を伝搬する斜角入射波、漏洩弾性表面波及び
漏洩波の伝搬時間は10.1μsであり、その差が50
nsとなって使用周波数の周期(100ns)の半分し
かないので、漏洩波のエコーL1が受信されていても、
垂直波による表面エコーS1に漏洩波のエコーL1が埋
没してしまい、漏洩波のエコーレベルを求めることがで
きない。
That is, under the same conditions as when the ultrasonic probe 1A having the acoustic lens 3 having the through hole 4 is used,
When the difference between the propagation times of both echo waveforms is obtained, the route G → H →
The propagation time of the vertical surface reflected wave propagating in I → H → G is 1
While the time is 0.05 μs, the route A → B → C → D →
The propagation time of the oblique incident wave, leaky surface acoustic wave and leaky wave propagating in the E → F path is 10.1 μs, and the difference is 50
ns, which is only half the period of the used frequency (100 ns), so that even if the echo L1 of the leaky wave is received,
The echo L1 of the leaky wave is buried in the surface echo S1 due to the vertical wave, and the echo level of the leaky wave cannot be obtained.

【0023】したがって、図1の超音波プローブ1Aを
用いると、漏洩波の受信信号を基にした被検体100の
表層部の検査と、垂直反射波の受信信号を基にした被検
体100の内部の検査と、同じく垂直反射波の受信信号
を基にした被検体100の厚さ計測とが可能になる。
Therefore, when the ultrasonic probe 1A of FIG. 1 is used, the inspection of the surface layer of the subject 100 based on the received signal of the leaked wave and the inside of the subject 100 based on the received signal of the vertical reflected wave are performed. And the thickness measurement of the subject 100 based on the received signal of the vertically reflected wave.

【0024】まず、漏洩波の受信信号を基にした被検体
100の表層部の検査方法について説明すると、前記し
たように、超音波プローブ1Aから送信された超音波の
うち、斜角経路A→B→Cを通って被検体100の表面
にレーリー臨界角θL で入射した斜角入射波は、漏洩弾
性表面波に変換され、被検体100の表面に沿って進行
する。この漏洩弾性表面波は、入射点Cから被検体10
0の表面を伝搬する間にレーリー臨界角θL で漏洩し、
被検体100表面のD点で漏洩した漏洩波は、経路D→
E→Fを通って振動子2に受信される。
First, a description will be given of a method of inspecting the surface layer of the subject 100 based on the received signal of the leaked wave. As described above, among the ultrasonic waves transmitted from the ultrasonic probe 1A, the oblique path A → The oblique incident wave incident on the surface of the subject 100 at a Rayleigh critical angle θL through B → C is converted into a leaky surface acoustic wave, and travels along the surface of the subject 100. The leaked surface acoustic wave is transmitted from the incident point C to the subject 10
Leakage at the Rayleigh critical angle θL while propagating on the surface of 0,
The leaked wave leaked at the point D on the surface of the subject 100 has a path D →
It is received by the transducer 2 through E → F.

【0025】ここで、被検体100の表層にクラック等
の欠陥が存在すると、被検体100の表層における漏洩
弾性表面波の伝搬がクラック等によって妨げられるため
に、振動子2にて受信される漏洩波のレベルが低くな
る。これに対して、被検体100の表層にクラック等の
欠陥が存在しない場合には、被検体100の表層におけ
る漏洩弾性表面波の伝搬がクラック等によって妨げられ
ないため、振動子2にて受信される漏洩波のレベルが高
くなる。したがって、超音波プローブ1Aにおける漏洩
波の受信レベルより被検体100の表層に生じたクラッ
クの有無を判定することができる。
Here, if a defect such as a crack exists on the surface layer of the subject 100, the propagation of the leaky surface acoustic wave on the surface layer of the subject 100 is hindered by the crack or the like. The wave level will be lower. On the other hand, when there is no defect such as a crack in the surface layer of the subject 100, the propagation of the leaky surface acoustic wave in the surface layer of the subject 100 is not hindered by the crack or the like. The level of leaked waves increases. Therefore, the presence or absence of a crack generated on the surface layer of the subject 100 can be determined from the reception level of the leaked wave in the ultrasonic probe 1A.

【0026】図3に、前記超音波プローブ1Aを用いて
被検体上を走査し、得られた漏洩波のレベルを映像化し
たCスコープ画像の第1例を示す。被検体としては、鋼
材の表面にWC系サーメット材料を用いて厚さが0.1
mmの溶射皮膜を形成し、皮膜形成後に曲げ応力を負荷
したものを用いた。図3から明らかなように、画像の中
央部に漏洩波のエコーレベルが周囲の正常部分に比べて
明らかに低い縦縞像が現れた。この部位を走査型電子顕
微鏡(SEM)で拡大観察した結果の一部を図4に示
す。この観察結果から幅2〜5μmの縦方向のクラック
であることが判明し、従来法では検出が難しい方向の微
小欠陥が検出可能であることを確認した。
FIG. 3 shows a first example of a C scope image obtained by scanning the subject using the ultrasonic probe 1A and visualizing the level of the obtained leaky wave. As a test object, a WC-based cermet material was
A sprayed coating having a thickness of 2 mm was formed, and a film subjected to a bending stress after the formation of the coating was used. As is clear from FIG. 3, a vertical stripe image in which the echo level of the leaked wave is clearly lower than that of the surrounding normal part appears at the center of the image. FIG. 4 shows a part of the result of enlarged observation of this part by a scanning electron microscope (SEM). From this observation result, it was found that the crack was a vertical crack having a width of 2 to 5 μm, and it was confirmed that a minute defect in a direction difficult to be detected by the conventional method could be detected.

【0027】また、漏洩弾性表面波は、被検体100の
表面から1波長程度、被検体100の内部に浸透すると
されている。このため、母材の表面に設けられた溶射皮
膜等の被膜に剥離を生じた場合には、母材と被膜との間
に空気層ができるため、漏洩弾性表面波が母材の内部に
浸透せず、その減衰が小さくなるために、振動子2にて
受信される漏洩波のレベルが高くなる。これに対して、
被膜に剥離が生じていない場合には、漏洩弾性表面波が
母材の内部に1波長程度浸透し、その減衰が大きくなる
ため、振動子2にて受信される漏洩波のレベルが低くな
る。したがって、超音波プローブ1Aにおける漏洩波の
受信レベルより被膜に生じた剥離の有無をも判定するこ
とができる。
The leaky surface acoustic wave is said to penetrate into the subject 100 from the surface of the subject 100 by about one wavelength. For this reason, if a coating such as a thermal spray coating provided on the surface of the base material is peeled off, an air layer is formed between the base material and the coating, so that leaked surface acoustic waves penetrate into the base material. However, since the attenuation is reduced, the level of the leaky wave received by the vibrator 2 increases. On the contrary,
If no peeling occurs in the coating, the leaky surface acoustic wave penetrates into the base material by about one wavelength and the attenuation increases, so that the level of the leaky wave received by the vibrator 2 decreases. Therefore, the presence / absence of peeling generated in the coating can be determined from the reception level of the leaky wave in the ultrasonic probe 1A.

【0028】図5に、漏洩波のレベルを映像化したCス
コープ画像の第2例を示す。被検体としては、溶射皮膜
の形成前に母材に当然施されるべき前処理としてのブラ
スト処理を中央部にのみ施さないで、母材である鋼材の
表面にWC系サーメット材料からなる溶射皮膜が0.1
mmの厚さに形成されたものを用いた。図5から明らか
なように、ブラスト処理が施されなかった母材の中央部
における漏洩波のエコーレベルが周囲の正常部分に比べ
て明らかに高くなっており、本発明に係る超音波検査方
法にて溶射皮膜の剥離若しくは密着不足を鮮明に映像化
できることが判る。
FIG. 5 shows a second example of a C-scope image in which the level of a leaky wave is visualized. As a test object, a spray coating made of a WC-based cermet material is applied to the surface of a steel material as a base material without performing blast processing as a pre-treatment that should be naturally performed on a base material before forming a sprayed coating on a steel material as a base material. Is 0.1
What was formed in the thickness of mm was used. As is clear from FIG. 5, the echo level of the leaky wave in the central portion of the base material not subjected to the blast treatment is clearly higher than that in the surrounding normal portion, and the ultrasonic inspection method according to the present invention It can be seen that the peeling or insufficient adhesion of the thermal spray coating can be clearly imaged.

【0029】かように、本発明の超音波検査方法による
と、漏洩波のレベルを検出することによって、欠陥の種
類や形状それに被検体の表面に対する向きに関係なく、
欠陥の有無、形状及びサイズ等を特定することができる
ので、被検体表層部の健全性を幅広く判定することがで
きる。
As described above, according to the ultrasonic inspection method of the present invention, by detecting the level of the leaky wave, regardless of the type and shape of the defect and the orientation with respect to the surface of the specimen,
Since the presence / absence, shape, size, and the like of the defect can be specified, the soundness of the surface layer of the subject can be widely determined.

【0030】次に、垂直波による被検体内部の探傷法
を、図2を参照して説明する。前述のように、中央部に
透孔4が開設された音響レンズ3を備えた超音波プロー
ブ1Aを用いて被検体の超音波探傷を行うと、超音波プ
ローブ1Aからは被検体100の表面に漏洩弾性表面波
を励起させる集束ビーム11と被検体100に垂直に入
射される垂直波12とが送信され、しかも、図2(b)
に示すように、漏洩波のエコーL1と垂直波12による
表面エコーS1とを時間軸上で明確に分離することがで
きるので、超音波プローブ1Aから送信される垂直波1
2を利用することにより、図8に示した従来の垂直探傷
法と同様の方法で、被検体内部の探傷が可能となる。即
ち、内部欠陥101が存在する場合には、被検体100
の内部に進入した垂直波12が当該内部欠陥101にて
反射されることによって生じる欠陥エコーF1が、表面
エコーS1と底面エコーB1との間に現れるので、垂直
波12の受信信号を基に被検体100の内部の欠陥の有
無及び当該欠陥の大きさや種類等を検出することができ
る。
Next, a method for detecting a flaw in a subject using a vertical wave will be described with reference to FIG. As described above, when the ultrasonic inspection of the subject is performed using the ultrasonic probe 1A including the acoustic lens 3 having the through hole 4 formed in the center, the ultrasonic probe 1A A focused beam 11 that excites the leaky surface acoustic wave and a vertical wave 12 that is vertically incident on the subject 100 are transmitted, and FIG.
As shown in FIG. 7, since the echo L1 of the leaky wave and the surface echo S1 due to the vertical wave 12 can be clearly separated on the time axis, the vertical wave 1 transmitted from the ultrasonic probe 1A can be separated.
By using the method 2, flaw detection inside the subject can be performed in the same manner as the conventional vertical flaw detection method shown in FIG. That is, when the internal defect 101 exists,
The defect echo F1 generated by the reflection of the vertical wave 12 that has entered the inside of the inside of the internal defect 101 appears between the surface echo S1 and the bottom surface echo B1. The presence or absence of a defect inside the sample 100 and the size and type of the defect can be detected.

【0031】かように、本発明に係る超音波検査装置に
よれば、漏洩波のエコーL1を基に被検体表層部の健全
性を判定できるばかりでなく、垂直波12による欠陥エ
コーF1を基に被検体内部の探傷を行うことができる。
As described above, according to the ultrasonic inspection apparatus of the present invention, not only can the soundness of the surface layer of the subject be determined based on the echo L1 of the leaky wave, but also the defect echo F1 due to the vertical wave 12 can be determined. The flaw detection inside the subject can be performed at the same time.

【0032】なお、欠陥の有無を映像化する場合は、対
象となるエコーが現れる時間域にゲートを設ける必要が
ある。ゲートの設定方法としては、図2(c)に示すよ
うに、漏洩波のエコーL1の現れる時間域にゲートG1
を設けて漏洩波のエコーL1の最大エコー高さを抽出す
ると共に、欠陥エコーF1が現れる時間域、具体的には
表面エコーS1以降で底面エコーB1以前の範囲にゲー
トG2を設けて欠陥エコーF1の最大エコー高さを抽出
する方法と、図2(d)に示すように、漏洩波のエコー
L1の現れる時間域にゲートG1を設けて漏洩波のエコ
ーL1の最大エコー高さを抽出すると共に、底面エコー
B1が現れる時間域にゲートG3を設けて底面エコーB
1の最大エコー高さを抽出する方法とがある。図2
(d)の方法は、内部欠陥101が存在する場合には、
被検体100の底面にまで到達する超音波エネルギーが
減少するために底面エコーB1のレベルが低くなること
を利用して、内部欠陥101の有無を検出する。また、
底面部に欠陥が有る場合も、底面エコーB1のレベルが
低くなることから、底面エコーレベルを監視することに
より、内部と底面部の欠陥の有無を知ることができる。
When imaging the presence / absence of a defect, it is necessary to provide a gate in the time region where the target echo appears. As a method of setting the gate, as shown in FIG. 2C, the gate G1 is set in a time region where the echo L1 of the leaky wave appears.
Is provided to extract the maximum echo height of the echo L1 of the leaky wave, and a gate G2 is provided in a time region where the defect echo F1 appears, specifically, in a range after the surface echo S1 and before the bottom echo B1. 2D, a method of extracting the maximum echo height of the leaked wave echo L1 by providing a gate G1 in the time region where the leaked wave echo L1 appears, as shown in FIG. A gate G3 is provided in the time region where the bottom echo B1 appears, and the bottom echo B
There is a method of extracting the maximum echo height of 1. FIG.
In the method (d), when the internal defect 101 exists,
The presence or absence of the internal defect 101 is detected by utilizing the fact that the level of the bottom surface echo B1 becomes lower because the ultrasonic energy reaching the bottom surface of the subject 100 decreases. Also,
Even when there is a defect in the bottom surface portion, the level of the bottom surface echo B1 becomes low. Therefore, by monitoring the bottom surface echo level, it is possible to know whether or not there is a defect in the inside and the bottom portion.

【0033】ゲート回路の構成は、それぞれゲートG1
及びゲートG2(又はG3)に相当するゲートを形成す
る2つのゲート回路を備えてもよいし、1つのゲート回
路でゲートG1とゲートG2(又はG3)を時間的に交
互に形成してもよい。
The configuration of the gate circuit is as follows.
And two gate circuits that form gates corresponding to the gates G2 (or G3) may be provided, or the gates G1 and G2 (or G3) may be alternately formed temporally by one gate circuit. .

【0034】さらに、本発明の超音波検査方法による
と、垂直波を利用することにより、被検体の厚み計測を
行うこともできる。具体的には、表面エコーS1と底面
エコーB1との時間差をt、被検体の厚さをL、被検体
中を伝搬する超音波の音速をVとしたとき、被検体の厚
さLは、L=V・t/2で表すことができるので、超音
波プローブにて表面エコーS1と底面エコーB1との時
間差tを求め、上記の演算を行うことによって、被検体
の厚さLを算出することができる。
Further, according to the ultrasonic inspection method of the present invention, the thickness of the object can be measured by using the vertical wave. Specifically, assuming that the time difference between the surface echo S1 and the bottom surface echo B1 is t, the thickness of the subject is L, and the sound speed of the ultrasonic wave propagating in the subject is V, the thickness L of the subject is Since it can be expressed by L = V · t / 2, the time difference t between the surface echo S1 and the bottom surface echo B1 is obtained by the ultrasonic probe, and the above calculation is performed to calculate the thickness L of the subject. be able to.

【0035】以上説明したように、本発明によると、漏
洩波のエコーL1を基にした被検体表層域の欠陥探傷
と、欠陥エコーF1又は底面エコーB1を基にした被検
体内部及び底面部の欠陥探傷と、表面エコーS1と底面
エコーB1の時間差を基にした被検体の厚さ計測とを行
うことができる。実際の実施に際しては、必ずしもこれ
らの各欠陥探傷と厚さ計測の全てを同時に行う必要はな
く、超音波検査の目的に合わせて、被検体表層域の欠陥
探傷と被検体内部及び底面部の欠陥探傷のみを行うこと
もできるし、被検体表層域の欠陥探傷と被検体の厚さ計
測のみを行うこともできる。被検体の欠陥検査のみなら
ず、被検体の欠陥検査と被検体の厚さ計測とを同時に行
えるようにすると、例えば化学プラント等で使用される
パイプ類など、使用条件が厳しい部材の表面劣化状態と
減肉状態を同時に検査することができるので、信頼性の
高い検査を高能率に行うことができる。
As described above, according to the present invention, the flaw detection of the surface layer of the subject based on the echo L1 of the leaky wave and the inside and bottom of the subject based on the defect echo F1 or the bottom echo B1 are performed. Defect flaw detection and thickness measurement of the subject based on the time difference between the surface echo S1 and the bottom surface echo B1 can be performed. In actual implementation, it is not always necessary to perform all of these defect inspections and thickness measurement at the same time.Depending on the purpose of ultrasonic inspection, defect inspection in the surface area of the subject and defects in the inside and bottom of the subject are performed. It is possible to perform only the flaw detection, or it is also possible to perform only the flaw detection of the surface area of the object and the thickness measurement of the object. If not only defect inspection of the specimen but also defect inspection of the specimen and measurement of the thickness of the specimen can be performed at the same time, the surface deterioration state of members with severe usage conditions, such as pipes used in chemical plants, etc. And the thinned state can be inspected at the same time, so that highly reliable inspection can be performed with high efficiency.

【0036】なお、前記実施形態例においては、中央部
に透孔4が開設された音響レンズ3を備えた超音波プロ
ーブ1Aを用いたが、超音波プローブについては、被検
体への垂直入射波及び斜角入射波の伝搬経路並びに被検
体からの垂直反射波及び漏洩波の伝搬経路を有し、かつ
垂直入射波及び垂直反射波の伝搬経路における超音波の
伝搬速度が斜角入射波及び漏洩波の伝搬経路における超
音波の伝搬速度よりも遅い音響レンズとを備えていれば
足りるのであって、本発明の要旨が、前記構成の超音波
プローブ1Aに限定されるものではない。以下に、本発
明の超音波検査方法に適用可能な他の超音波プローブを
列挙する。
In the above embodiment, the ultrasonic probe 1A provided with the acoustic lens 3 having the through hole 4 in the center is used. However, the ultrasonic probe has a perpendicular incident wave to the subject. And the propagation path of the oblique incident wave and the propagation path of the vertical reflected wave and the leaked wave from the subject, and the propagation speed of the ultrasonic wave in the propagation path of the perpendicular incident wave and the vertically reflected wave is the oblique incident wave and the leaked wave. It suffices to have an acoustic lens that is slower than the propagation speed of the ultrasonic wave in the wave propagation path, and the gist of the present invention is not limited to the ultrasonic probe 1A having the above configuration. Hereinafter, other ultrasonic probes applicable to the ultrasonic inspection method of the present invention will be listed.

【0037】(1)図6に示す超音波プローブ1Bは、
音響レンズ3の中央部(垂直入射波及び垂直表面反射波
の伝搬経路)に透孔4を開設する構成に代えて、音響レ
ンズ3のレンズ曲率面3bの中央部にくぼみ5を形成し
たことを特徴とする。
(1) The ultrasonic probe 1B shown in FIG.
Instead of the configuration in which the through hole 4 is formed in the center of the acoustic lens 3 (propagation path of the vertical incident wave and the vertical surface reflected wave), a depression 5 is formed in the center of the lens curvature surface 3b of the acoustic lens 3. Features.

【0038】この超音波プローブ1Bを用いた場合に
も、図1の超音波プローブ1Aを用いた場合と同様に、
経路A→B→C→D→E→Fを通る超音波の伝搬時間よ
りも経路G→I→Gを伝搬する超音波の伝搬時間を相対
的に遅らせることができるので、垂直波による表面エコ
ーと漏洩波のエコーの分離が可能になる。その他、図6
の超音波プローブ1Bは、音響レンズ3の振動子設定面
3aが閉じているので、振動子2の設定を容易かつ確実
に行うことができるという効果もある。
When the ultrasonic probe 1B is used, similarly to the case of using the ultrasonic probe 1A shown in FIG.
Since the propagation time of the ultrasonic wave propagating through the route G → I → G can be relatively delayed from the propagation time of the ultrasonic wave passing through the route A → B → C → D → E → F, the surface echo due to the vertical wave And leakage wave echoes can be separated. In addition, FIG.
Since the transducer setting surface 3a of the acoustic lens 3 is closed, the ultrasonic probe 1B has an effect that the transducer 2 can be set easily and reliably.

【0039】(2)図7に示す超音波プローブ1Cは、
音響レンズ3の中央部に単に透孔4を開設するかくぼみ
5を形成する構成に代えて、開設された透孔4内又は形
成されたくぼみ5内に音響レンズ3を構成する素材より
も超音波の伝搬速度が遅い素材からなる充填物6を充填
したことを特徴とする。
(2) The ultrasonic probe 1C shown in FIG.
Instead of the configuration in which the hollow 5 is simply formed in the central portion of the acoustic lens 3 and the hollow 5 is formed, the material that forms the acoustic lens 3 in the opened through-hole 4 or the formed hollow 5 is superfluous. It is characterized by being filled with a filling material 6 made of a material having a low sound wave propagation speed.

【0040】図7(a)は音響レンズ3の中央部に開設
された透孔4内に充填物6を充填した場合、図7(b)
は音響レンズ3の平面部(振動子設定面)3aに形成さ
れたくぼみ5内に充填物6を充填した場合、図7(c)
は音響レンズ3のレンズ曲率面3bに形成されたくぼみ
5内に充填物6を充填した場合を示している。
FIG. 7A shows the case where the filler 6 is filled in the through hole 4 formed in the center of the acoustic lens 3.
FIG. 7C shows a case where the filler 6 is filled in the recess 5 formed in the flat portion (vibrator setting surface) 3 a of the acoustic lens 3.
Indicates a case where the filler 6 is filled in the recess 5 formed on the lens curvature surface 3b of the acoustic lens 3.

【0041】音響レンズ3を構成する素材と充填物6と
は、超音波の伝搬速度の差が大きいほど好ましく、音響
レンズ3がアルミニウム(音速=6400m/s)をも
って構成される場合には、充填物6としてはアクリル樹
脂等の樹脂材料(音速=2000〜2500m/s)が
好適に用いられる。充填物6として樹脂を用いる場合に
は、開設された透孔4又は形成されたくぼみ5内に充填
物である樹脂をポッティングすることによって音響レン
ズ3を製造することができる。また、充填物6として固
体を用いる場合には、開設された透孔4又は形成された
くぼみ5内に充填物である固体を圧入することによって
も、所要の音響レンズ3を製造することができる。
The material constituting the acoustic lens 3 and the filler 6 are preferably as large as the difference in the propagation speed of the ultrasonic wave. When the acoustic lens 3 is made of aluminum (sound speed = 6400 m / s), As the object 6, a resin material such as an acrylic resin (sound speed = 2000 to 2500 m / s) is suitably used. When a resin is used as the filler 6, the acoustic lens 3 can be manufactured by potting the resin as the filler into the opened through-hole 4 or the formed recess 5. When a solid is used as the filler 6, the required acoustic lens 3 can also be manufactured by press-fitting the solid as the filler into the opened through-hole 4 or the formed recess 5. .

【0042】本例の超音波プローブは、音響レンズ3に
おける垂直入射波及び垂直表面反射波の伝搬経路G→I
及びI→Gと斜角入射波及び漏洩波の伝搬経路A→B→
C及びD→E→Fとを音速が異なる素材で構成したの
で、各経路を通る超音波の伝搬時間の差が大きくなっ
て、垂直波による表面エコーと漏洩波のエコーの分離が
可能になると共に、音響レンズ3の振動子設定面が閉じ
た形になるので、振動子2の設定を容易かつ確実に行う
ことができる。
The ultrasonic probe of this embodiment has a propagation path G → I of a vertical incident wave and a vertical surface reflected wave in the acoustic lens 3.
And I → G and propagation path A → B → of oblique incident wave and leaky wave
Since C and D → E → F are made of materials having different sound velocities, the difference between the propagation times of the ultrasonic waves passing through the respective paths becomes large, and it becomes possible to separate the surface echo from the vertical wave and the echo of the leaky wave. At the same time, since the vibrator setting surface of the acoustic lens 3 is closed, the setting of the vibrator 2 can be performed easily and reliably.

【0043】[0043]

【発明の効果】以上説明したように、本発明によると、
漏洩波のエコーを基にした被検体表層域の欠陥探傷と、
欠陥エコー又は底面エコーを基にした被検体内部及び底
面部の欠陥探傷とを同時に行うことができるので、これ
らの各欠陥探傷を別個にしか実行できない従来方法に比
べて、被検体の検査精度及び検査能率を格段に向上する
ことができる。また、本発明によると、被検体の欠陥探
傷と被検体の厚さ計測とを同時に行うことができるの
で、これらを別個にしか実行できない従来方法に比べ
て、被検体の検査精度及び検査能率を格段に向上するこ
とができる。さらに、本発明によると、漏洩波のエコー
を基にした被検体表層域の欠陥探傷を行うので、被検体
の表層域に存在する欠陥の種類や大きさそれに被検体表
面に対する向き等に関係なく欠陥を高精度に検出するこ
とができ、信頼性の高い欠陥探傷を行うことができる。
As described above, according to the present invention,
Flaw detection of the surface area of the subject based on the echo of the leaky wave,
Since the defect inspection of the inside of the object and the bottom surface based on the defect echo or the bottom surface echo can be simultaneously performed, the inspection accuracy and the inspection accuracy of the object can be compared with the conventional method in which each of these defect inspections can be performed only separately. Inspection efficiency can be significantly improved. Further, according to the present invention, the defect detection of the object and the thickness measurement of the object can be simultaneously performed, so that the inspection accuracy and the inspection efficiency of the object can be reduced as compared with the conventional method which can only execute these separately. It can be significantly improved. Furthermore, according to the present invention, since the defect detection of the surface area of the subject based on the echo of the leaky wave is performed, regardless of the type and size of the defect existing in the surface area of the subject and the orientation with respect to the surface of the subject, etc. Defects can be detected with high accuracy, and highly reliable defect detection can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例に係る超音波探傷方法に適用される
超音波プローブの要部断面図及び平面図である。
FIG. 1 is a sectional view and a plan view of a main part of an ultrasonic probe applied to an ultrasonic flaw detection method according to an embodiment.

【図2】実施形態例に係る超音波探傷方法の説明図であ
る。
FIG. 2 is an explanatory diagram of an ultrasonic flaw detection method according to the embodiment.

【図3】実施形態例に係る超音波探傷方法で得られる漏
洩波のCスコープ画像データの一例を示す図である。
FIG. 3 is a diagram illustrating an example of C-scope image data of a leaky wave obtained by the ultrasonic flaw detection method according to the embodiment.

【図4】図3のデータから欠陥が発見された被検体の走
査型電子顕微鏡による表面写真である。
FIG. 4 is a surface photograph of a subject in which a defect is found from the data of FIG. 3 by a scanning electron microscope.

【図5】実施形態例に係る超音波探傷方法で得られる漏
洩波のCスコープ画像データの他の例を示す図である。
FIG. 5 is a diagram showing another example of C-scope image data of a leaky wave obtained by the ultrasonic flaw detection method according to the embodiment.

【図6】実施形態例に係る超音波探傷方法に適用される
超音波プローブの他の例を示す要部断面図である。
FIG. 6 is a fragmentary sectional view showing another example of the ultrasonic probe applied to the ultrasonic inspection method according to the embodiment.

【図7】実施形態例に係る超音波探傷方法に適用される
超音波プローブのさらに他の例を示す要部断面図であ
る。
FIG. 7 is a cross-sectional view of a main part showing still another example of the ultrasonic probe applied to the ultrasonic inspection method according to the embodiment.

【図8】従来より知られている超音波探傷方法の第1例
を示す説明図である。
FIG. 8 is an explanatory view showing a first example of a conventionally known ultrasonic flaw detection method.

【図9】従来より知られている超音波探傷方法の第2例
を示す説明図である。
FIG. 9 is an explanatory view showing a second example of a conventionally known ultrasonic flaw detection method.

【符号の説明】[Explanation of symbols]

1A,1B,1C 超音波プローブ 2 振動子 3 音響レンズ 3a 平面部(振動子設定面) 3b レンズ曲率面 4 透孔 5 くぼみ 6 充填物 100 被検体 101 内部欠陥 102 表層部欠陥 DESCRIPTION OF SYMBOLS 1A, 1B, 1C Ultrasonic probe 2 Transducer 3 Acoustic lens 3a Flat part (transducer setting surface) 3b Lens curvature surface 4 Through hole 5 Depression 6 Filling material 100 Subject 101 Internal defect 102 Surface defect

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G047 AA06 BB01 BB02 BC00 BC02 BC08 BC09 BC18 DA03 DB03 DB14 EA10 FA01 GB11 GB25 GG01 GG30  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G047 AA06 BB01 BB02 BC00 BC02 BC08 BC09 BC18 DA03 DB03 DB14 EA10 FA01 GB11 GB25 GG01 GG30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 振動子と音響レンズとを備えた超音波プ
ローブであって、前記音響レンズが、被検体への垂直入
射波及び斜角入射波の伝搬経路並びに前記被検体からの
垂直反射波及び漏洩波の伝搬経路を有し、かつ前記垂直
入射波及び垂直反射波の伝搬経路における超音波の伝搬
速度が前記斜角入射波及び漏洩波の伝搬経路における超
音波の伝搬速度よりも遅くなるように形成された超音波
プローブを用い、前記漏洩波の受信信号を基に前記被検
体表層部の健全性を評価すると共に、前記被検体からの
垂直反射波の受信信号を基に前記被検体表層部以外の健
全性を評価することを特徴とする超音波検査方法。
1. An ultrasonic probe comprising a vibrator and an acoustic lens, wherein the acoustic lens has a propagation path of a normal incident wave and an oblique incident wave to a subject, and a vertical reflected wave from the subject. And the propagation speed of the ultrasonic wave in the propagation path of the vertically incident wave and the vertically reflected wave is lower than the propagation speed of the ultrasonic wave in the propagation path of the obliquely incident wave and the leaky wave. Using the ultrasonic probe formed as described above, the soundness of the surface layer of the subject is evaluated based on the received signal of the leaky wave, and the subject is evaluated based on the received signal of the vertical reflected wave from the subject. An ultrasonic inspection method characterized by evaluating the soundness of parts other than the surface layer.
【請求項2】 請求項1に記載の超音波検査方法におい
て、前記垂直反射波のうち、前記被検体の表面にて反射
された垂直表面反射波を除く垂直反射波を選択的に検出
し、前記被検体表層部以外の欠陥検査を行うことを特徴
とする超音波検査方法。
2. The ultrasonic inspection method according to claim 1, wherein a vertical reflected wave other than a vertical surface reflected wave reflected on the surface of the subject is selectively detected from the vertical reflected waves, An ultrasonic inspection method, wherein a defect inspection is performed on a part other than the surface layer of the object.
【請求項3】 請求項2に記載の超音波検査方法におい
て、前記被検体の内部に存在する欠陥にて反射された垂
直反射波を選択的に検出し、当該垂直反射波の受信信号
を基に前記被検体表層部以外の欠陥検査を行うことを特
徴とする超音波検査方法。
3. The ultrasonic inspection method according to claim 2, wherein a vertically reflected wave reflected by a defect existing inside the subject is selectively detected, and a signal based on a received signal of the vertical reflected wave is detected. An ultrasonic inspection method, wherein a defect inspection is performed on a portion other than the surface layer of the subject.
【請求項4】 請求項2に記載の超音波検査方法におい
て、前記被検体の底面にて反射された垂直底面反射波を
選択的に検出し、当該垂直底面反射波の受信信号を基
に、前記被検体表層部以外の欠陥検査を行うことを特徴
とする超音波検査方法。
4. The ultrasonic inspection method according to claim 2, wherein a vertical bottom surface reflected wave reflected by the bottom surface of the subject is selectively detected, and based on a received signal of the vertical bottom surface reflected wave, An ultrasonic inspection method, wherein a defect inspection is performed on a part other than the surface layer of the object.
【請求項5】 請求項1に記載の超音波検査方法におい
て、前記被検体の表面にて反射された垂直表面反射波と
前記被検体の底面にて反射された垂直底面反射波との受
信タイミングの時間差から前記被検体の厚さを計測する
ことを特徴とする超音波検査方法。
5. The ultrasonic inspection method according to claim 1, wherein a reception timing of the vertical surface reflected wave reflected on the surface of the subject and a vertical bottom surface reflected wave reflected on the bottom surface of the subject. Measuring the thickness of the subject from the time difference of the ultrasonic inspection.
【請求項6】 請求項1に記載の超音波検査方法におい
て、前記音響レンズとして、前記垂直入射波及び垂直表
面反射波の伝搬経路に前記振動子の設定面からこれと対
向するレンズ曲率面まで貫通する透孔を開設するか、前
記レンズ曲率面の前記垂直入射波及び垂直表面反射波の
伝搬経路にくぼみを形成したものを用いることを特徴と
する超音波検査方法。
6. The ultrasonic inspection method according to claim 1, wherein, as the acoustic lens, a propagation path of the vertical incident wave and the vertical surface reflected wave from a setting surface of the vibrator to a lens curvature surface opposed thereto. An ultrasonic inspection method, characterized in that a through-hole is formed or a depression is formed in the propagation path of the normal incident wave and the vertical surface reflected wave of the lens curvature surface.
【請求項7】 請求項1に記載の超音波検査方法におい
て、前記音響レンズとして、前記垂直入射波及び垂直表
面反射波の伝搬経路に前記振動子の設定面からこれと対
向するレンズ曲率面まで貫通する透孔を開設するか、前
記振動子の設定面又はレンズ曲率面の前記垂直入射波及
び垂直表面反射波の伝搬経路にくぼみを形成し、これら
透孔内又はくぼみ内に前記斜角入射波及び漏洩波の伝搬
経路を構成する素材とは超音波の伝搬速度が異なる素材
からなる充填物を充填したものを用いることを特徴とす
る超音波検査方法。
7. The ultrasonic inspection method according to claim 1, wherein, as the acoustic lens, a propagation path of the vertical incident wave and the vertical surface reflected wave from a setting surface of the vibrator to a lens curvature surface opposed thereto. A through-hole is opened or a depression is formed in the propagation path of the normal incident wave and the vertical surface reflected wave on the setting surface of the vibrator or the lens curvature surface, and the oblique incidence is formed in the through-hole or the depression. An ultrasonic inspection method characterized by using a material filled with a filling material made of a material having a different propagation speed of an ultrasonic wave from a material constituting a propagation path of a wave and a leaky wave.
JP30302499A 1999-10-25 1999-10-25 Ultrasonic inspection method Pending JP2001124746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30302499A JP2001124746A (en) 1999-10-25 1999-10-25 Ultrasonic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30302499A JP2001124746A (en) 1999-10-25 1999-10-25 Ultrasonic inspection method

Publications (1)

Publication Number Publication Date
JP2001124746A true JP2001124746A (en) 2001-05-11

Family

ID=17916023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30302499A Pending JP2001124746A (en) 1999-10-25 1999-10-25 Ultrasonic inspection method

Country Status (1)

Country Link
JP (1) JP2001124746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2012122807A (en) * 2010-12-07 2012-06-28 Kawasaki Heavy Ind Ltd Ultrasonic test equipment of brazing joint section, and method
CN106501377A (en) * 2016-09-12 2017-03-15 中国航空工业集团公司北京航空材料研究院 A kind of method that employing ultrasonic phase array detects R corner structure flaw sizes
CN111650275A (en) * 2020-04-01 2020-09-11 中车青岛四方机车车辆股份有限公司 Defect detection device and detection method for large-thickness composite material structural part
JP2020159884A (en) * 2019-03-27 2020-10-01 日立金属株式会社 Ultrasonic flaw detector and ultrasonic flaw detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2012122807A (en) * 2010-12-07 2012-06-28 Kawasaki Heavy Ind Ltd Ultrasonic test equipment of brazing joint section, and method
CN106501377A (en) * 2016-09-12 2017-03-15 中国航空工业集团公司北京航空材料研究院 A kind of method that employing ultrasonic phase array detects R corner structure flaw sizes
CN106501377B (en) * 2016-09-12 2019-06-04 中国航空工业集团公司北京航空材料研究院 A method of R corner structure flaw size is detected using ultrasonic phase array
JP2020159884A (en) * 2019-03-27 2020-10-01 日立金属株式会社 Ultrasonic flaw detector and ultrasonic flaw detection method
JP7180494B2 (en) 2019-03-27 2022-11-30 日立金属株式会社 Ultrasonic flaw detector and ultrasonic flaw detection method
CN111650275A (en) * 2020-04-01 2020-09-11 中车青岛四方机车车辆股份有限公司 Defect detection device and detection method for large-thickness composite material structural part
CN111650275B (en) * 2020-04-01 2023-12-26 中车青岛四方机车车辆股份有限公司 Defect detection device and detection method for large-thickness composite structural member

Similar Documents

Publication Publication Date Title
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP6073389B2 (en) Ultrasonic immersion inspection of members with arbitrary surface contours
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
WO2008007460A1 (en) Ultrasonic scanning device and method
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
CN111751448B (en) Surface leakage wave ultrasonic synthetic aperture focusing imaging method
KR20220004184A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment heat, steel manufacturing method, and steel quality assurance method
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
KR100373416B1 (en) Ultrasonic inspection device and ultrasonic probe
JP5609540B2 (en) Defect detection method and defect detection apparatus using leaky surface acoustic wave
CN117191948A (en) Ultrasonic leaky surface wave full-focusing imaging method based on virtual source
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
JP2001124746A (en) Ultrasonic inspection method
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
US4787126A (en) Method of fabricating dark field coaxial ultrasonic transducer
JP3753567B2 (en) Ultrasonic probe
JP2012093246A (en) Ultrasonic probe and method for detecting defect
Long et al. Further development of a conformable phased array device for inspection over irregular surfaces
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP3777071B2 (en) Ultrasonic inspection equipment
JP2002323481A (en) Ultrasonic flaw detection method and device
JP2001124741A (en) Ultrasonic inspection method
De Villa et al. Defect Detection in thin plates using So Lamb wave scanning
Upendran et al. Identification of guided Lamb wave modes in thin metal plates using water path corrected frequency–wavenumber [fk] analysis