JP2007322366A - Ultrasonic flaw detector and ultrasonic flaw detecting method - Google Patents

Ultrasonic flaw detector and ultrasonic flaw detecting method Download PDF

Info

Publication number
JP2007322366A
JP2007322366A JP2006156051A JP2006156051A JP2007322366A JP 2007322366 A JP2007322366 A JP 2007322366A JP 2006156051 A JP2006156051 A JP 2006156051A JP 2006156051 A JP2006156051 A JP 2006156051A JP 2007322366 A JP2007322366 A JP 2007322366A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
test body
wave
mode conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006156051A
Other languages
Japanese (ja)
Inventor
Tomonori Kimura
友則 木村
Koichiro Misu
幸一郎 三須
Yukiro Sugimoto
幸郎 杉元
Minoru Okamoto
実 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006156051A priority Critical patent/JP2007322366A/en
Publication of JP2007322366A publication Critical patent/JP2007322366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detector and a flaw detecting method capable of detecting the flaw on the testing surface of the testing body, where the probe of the detector cannot be placed, or the length of the flaw is equivalent or smaller than the wavelength of longitudinal wave or the position of the test body is difficult for oblique flaw detection. <P>SOLUTION: The ultrasonic flaw detector comprises: the probe for converting electrical signal into ultrasonic wave, and transmitting the ultrasonic wave from an end face that is different from both the side faces opposing each other of the inspection object of the test body; and the transducer for driving the ultrasonic probe and receiving the ultrasonic wave that has propagated though the testing object. By utilizing the ultrasonic wave generated by the mode conversion caused when ultrasonic wave which has propagated through the test body becomes incident on the side surface or its opposite side surface, the states of both the side faces themselves are inspected. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明は、固体の内部を非破壊で検査する超音波探傷装置および超音波探傷方法に関するものである。特に、例えば鉄道車両の車軸やボルトの探傷のように、試験体の表面傷が存在する面とは異なる面に超音波探触子を設置する超音波探傷装置および超音波探傷方法に関するものである。   The present invention relates to an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method for inspecting a solid interior in a nondestructive manner. In particular, the present invention relates to an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method in which an ultrasonic probe is installed on a surface different from a surface where a surface flaw exists on a specimen, such as a flaw detection on an axle or a bolt of a railway vehicle. .

従来の超音波探傷法として、鋼管の外面に斜角探触子を設置し、外面の他の部分で縦波がモード変換されて横波が発生し、鋼管の内面から発生している表面傷で反射して戻る横波が再度モード変換されて縦波が発生し、斜角探触子で受信する(例えば、特許文献1参照)。
しかし、鉄道車両の車軸では、探傷する表面に超音波探触子を設置することができないので、特許文献1に記載の超音波探傷法を適用することができない。
As a conventional ultrasonic flaw detection method, an oblique probe is installed on the outer surface of the steel pipe, and longitudinal waves are mode-converted in other parts of the outer surface to generate transverse waves. The transverse wave that is reflected and returned is mode-converted again to generate a longitudinal wave, which is received by an oblique probe (see, for example, Patent Document 1).
However, since the ultrasonic probe cannot be installed on the surface to be flawed on the axle of a railway vehicle, the ultrasonic flaw detection method described in Patent Document 1 cannot be applied.

そこで、試験体としての車軸の軸端部および軸表面に超音波探触子を設置し、超音波探触子から試験体内に超音波を入射し、超音波探触子が設置されていない試験体表面から発生している表面傷で反射して戻る超音波を超音波探触子で受信する。そして、軸端部および軸表面に対して垂直に超音波を入射する垂直探傷または軸端部および軸表面に対して傾いて超音波を入射する斜角探傷を探傷箇所に従って適宜選択している(例えば、非特許文献1参照)。   Therefore, an ultrasonic probe is installed on the shaft end and the shaft surface of the axle as a test body, ultrasonic waves are incident from the ultrasonic probe into the test body, and the ultrasonic probe is not installed. The ultrasonic probe receives the ultrasonic waves that are reflected back from the surface scratches generated from the body surface. Then, vertical flaw detection in which ultrasonic waves are incident perpendicularly to the shaft end portion and the shaft surface or oblique flaw detection in which ultrasonic waves are inclined with respect to the shaft end portion and the shaft surface are appropriately selected according to the flaw detection location ( For example, refer nonpatent literature 1).

特開昭52−140392号公報JP-A-52-1040392 (社)日本非破壊検査協会編、「新非破壊検査便覧」、初版、日刊工業新聞社、1992年10月15日、p.1223−1224Japan Nondestructive Inspection Association, “New Nondestructive Inspection Handbook”, first edition, Nikkan Kogyo Shimbun, October 15, 1992, p. 1223-1224

しかし、表面傷が超音波の波長と同程度または波長以下の場合、表面傷からのエコーが小さいためS/N比が悪く、結果として表面傷の検出が困難となってしまうという問題がある。
そこで、横波の斜角探傷を適用すれば、縦波よりも波長が短いので小さな表面傷も検出可能となると考えられるが、軸端部から遠く離れた表面から発生する表面傷を軸端部に設置する斜角探触子で探傷しようとするとき、屈折角を小さくする必要がある。この場合には、横波だけでなく縦波も試験体中に放出されるので、縦波による形状エコーが受信されてしまう。すなわち、屈折角の小さな横波斜角探触子では、横波斜角探触子から遠く離れた場所にある表面傷を検出することは難しいという問題がある。
However, when the surface scratch is equal to or less than the wavelength of the ultrasonic wave, there is a problem that the S / N ratio is poor because the echo from the surface scratch is small, resulting in difficulty in detecting the surface scratch.
Therefore, if the oblique wave flaw detection of the transverse wave is applied, it is considered that small surface flaws can be detected because the wavelength is shorter than that of the longitudinal wave, but surface flaws generated from the surface far from the shaft end are installed at the shaft end. When a flaw detector is used to detect flaws, it is necessary to reduce the refraction angle. In this case, not only the transverse wave but also the longitudinal wave is emitted into the test body, so that the shape echo due to the longitudinal wave is received. That is, there is a problem that it is difficult for a transverse wave oblique angle probe having a small refraction angle to detect a surface flaw far away from the transverse wave oblique angle probe.

こ発明の目的は、表面傷が発生する試験体表面に探触子が設置できす、表面傷が縦波の波長と同程度または波長以下の大きさで、横波斜角探傷が困難な場所にある試験体を超音波探傷できる超音波探傷装置および超音波探傷方法を提供するものである。   The object of the present invention is to install a probe on the surface of a specimen where surface damage occurs, where the surface damage is the same as or less than the wavelength of the longitudinal wave, and where the transverse wave oblique angle inspection is difficult. An ultrasonic flaw detection apparatus and an ultrasonic flaw detection method capable of performing ultrasonic flaw detection on a certain test body are provided.

この発明に係わる超音波探傷装置は、電気信号を超音波に変換し、試験体の検査対象の側面および該側面と対向する側面と異なる端面から超音波を試験体中に送信し、且つ、上記試験体中を伝搬した超音波を受信し、超音波を電気信号に変換する超音波探触子と、上記超音波探触子を駆動し、且つ、上記超音波探触子からの電気信号を受信する送受信器と、を備え、上記試験体中を伝搬した超音波が上記試験体の検査対象の側面または該側面と対向する側面に入射したときに起こるモード変換により生じた超音波を利用して、上記モード変換が生じた試験体の側面と対向する側面、または、上記モード変換が生じた側面自体の性状を検査する。   The ultrasonic flaw detection apparatus according to the present invention converts an electrical signal into ultrasonic waves, transmits ultrasonic waves into the test body from an end surface different from the side surface to be inspected and the side surface facing the side surface, and the above-mentioned An ultrasonic probe that receives the ultrasonic wave propagated through the test body, converts the ultrasonic wave into an electric signal, drives the ultrasonic probe, and receives an electric signal from the ultrasonic probe. A transmitter / receiver, and using ultrasonic waves generated by mode conversion that occurs when ultrasonic waves propagated through the test body are incident on a side surface to be inspected of the test body or a side surface facing the side surface. Then, the property of the side surface opposite to the side surface of the test body in which the mode conversion has occurred or the side surface itself in which the mode conversion has occurred is inspected.

この発明に係わる超音波探傷装置の効果は、検査対象の側面または該側面と対向する側面と異なる端面から超音波が送信され、その超音波が検査対象の側面または該側面と対向する側面に入射したときに起こるモード変換により生じた超音波を利用して検査対象の側面に性状を検査するので、検査対象の表面と異なる箇所に超音波探触子を設置することができるし、超音波探触子で受信したエコーの大きさが大きくS/N比を大きくすることができる。   The effect of the ultrasonic flaw detector according to the present invention is that an ultrasonic wave is transmitted from an end surface different from a side surface to be inspected or a side surface facing the side surface, and the ultrasonic wave is incident on the side surface to be inspected or the side surface facing the side surface. Since the property is inspected on the side surface of the object to be inspected using the ultrasonic waves generated by the mode conversion that occurs at the time, the ultrasonic probe can be installed at a location different from the surface of the object to be inspected. The size of the echo received by the tentacle is large and the S / N ratio can be increased.

実施の形態1.
図1は、この発明の実施の形態に係わる超音波探傷装置の構成を示す図である。
この発明の実施の形態に係わる超音波探傷装置は、図1に示すように、電気信号を超音波に変換し、その超音波を試験体1中に送信し、且つ、試験体1中を伝搬した超音波を受信してその超音波を電気信号に変換する超音波探触子5と、超音波探触子5を駆動する電気信号を出力し、且つ、超音波探触子5からの電気信号を入力する超音波探傷器6と、を備える。
Embodiment 1 FIG.
FIG. 1 is a diagram showing the configuration of an ultrasonic flaw detector according to an embodiment of the present invention.
As shown in FIG. 1, the ultrasonic flaw detector according to the embodiment of the present invention converts an electrical signal into an ultrasonic wave, transmits the ultrasonic wave into the test body 1, and propagates through the test body 1. The ultrasonic probe 5 that receives the ultrasonic wave and converts the ultrasonic wave into an electric signal, the electric signal that drives the ultrasonic probe 5, and the electric signal from the ultrasonic probe 5 are output. And an ultrasonic flaw detector 6 for inputting a signal.

そして、この実施の形態に係わる超音波探傷装置を用いて超音波探傷する試験体1として、車軸を想定して円柱棒を例にして以下説明する。また、円柱棒の軸を含む断面内を伝搬する超音波だけを取り出して説明する。この円柱棒の2つの側面の一方の側面7では、斜めから縦波が入射され、そこで縦波から横波にモード変換される。また、他方の側面8には、表面傷4が発生している。なお、「表面傷」という呼び方で検出対象物を表現しているが、超音波探傷装置の適用範囲は表面傷4の検出だけに限定するものではなく、試験体1の表面近傍の性状の検査全般を対象としている。   Then, as a test body 1 that performs ultrasonic flaw detection using the ultrasonic flaw detection apparatus according to this embodiment, a cylindrical rod will be described as an example assuming an axle. Further, only the ultrasonic wave propagating in the cross section including the axis of the cylindrical bar will be described. On one side surface 7 of the two side surfaces of the cylindrical bar, a longitudinal wave is incident from an oblique direction, and mode conversion is performed from the longitudinal wave to the transverse wave. Further, a surface scratch 4 is generated on the other side surface 8. In addition, although the detection target is expressed by the term “surface flaw”, the application range of the ultrasonic flaw detector is not limited to the detection of the surface flaw 4, but the property in the vicinity of the surface of the specimen 1. Covers all inspections.

この実施の形態に係わる超音波探触子5は、試験体1に縦波を送信する縦波超音波探触子であり、且つ、試験体1の一方の端面3に対して垂直から所定の角度傾いた屈折角で縦波を入射する斜角探触子である。すなわち、超音波探触子5は、縦波斜角探触子である。以下、超音波探触子5として縦波斜角探触子5とする。
また、超音波探傷器6は、超音波探触子5を励振し、また、超音波探触子5からの電気信号を受信する送受信器である。
The ultrasonic probe 5 according to this embodiment is a longitudinal wave ultrasonic probe that transmits a longitudinal wave to the test body 1 and is perpendicular to the one end surface 3 of the test body 1 from a predetermined position. It is a bevel probe that makes longitudinal waves incident at an angle of refraction. That is, the ultrasonic probe 5 is a longitudinal wave oblique angle probe. Hereinafter, the longitudinal wave oblique angle probe 5 is used as the ultrasonic probe 5.
The ultrasonic flaw detector 6 is a transmitter / receiver that excites the ultrasonic probe 5 and receives an electrical signal from the ultrasonic probe 5.

次に、この発明の実施の形態に係わる超音波探傷装置の動作について説明する。
超音波探傷器6から励振信号が発生され、縦波斜角探触子5を励振する。縦波斜角探触子5からは、試験体1中に縦波が励振される。なお、横波も励振されるが、その振幅は縦波に比べて小さいものであるので、ここでは無視できるものとする。
Next, the operation of the ultrasonic flaw detector according to the embodiment of the present invention will be described.
An excitation signal is generated from the ultrasonic flaw detector 6 to excite the longitudinal wave oblique angle probe 5. A longitudinal wave is excited in the test body 1 from the longitudinal wave oblique angle probe 5. Although the transverse wave is also excited, its amplitude is smaller than that of the longitudinal wave, and can be ignored here.

試験体1中を伝搬した縦波は、試験体1の側面7に到達する。そして、側面7で縦波がモード変換されて横波が発生する。側面7においてモード変換によって発生した横波は、音速が縦波とは異なるので伝搬方向も異なる方向に伝搬する。図1中では斜め下の方向に伝搬する。その後、試験体1の側面8方向へ伝搬し、表面傷4に入射する。   The longitudinal wave that has propagated through the test body 1 reaches the side surface 7 of the test body 1. Then, the longitudinal wave is mode-converted on the side surface 7 to generate a transverse wave. The transverse wave generated by the mode conversion in the side surface 7 propagates in a direction in which the propagation direction is different because the sound speed is different from the longitudinal wave. In FIG. 1, it propagates in a diagonally downward direction. Thereafter, it propagates in the direction of the side surface 8 of the specimen 1 and enters the surface scratch 4.

表面傷4に入射した横波は、反射され、入射と同じ経路を伝搬して縦波斜角探触子5の方向に戻り、エコーとして受信される。すなわち、側面7では、横波から縦波というモード変換が生じる。超音波探傷器6では、このエコーを表面傷4からのエコーとして受信する。このような動作により、表面傷4が存在する側面8とは異なる面、今の場合端面3にしか縦波斜角探触子5を設置できなくても、表面傷4を検出することができる。   The transverse wave incident on the surface scratch 4 is reflected, propagates along the same path as the incident, returns to the direction of the longitudinal wave oblique angle probe 5, and is received as an echo. That is, on the side surface 7, mode conversion from a transverse wave to a longitudinal wave occurs. The ultrasonic flaw detector 6 receives this echo as an echo from the surface flaw 4. By such an operation, the surface flaw 4 can be detected even if the longitudinal wave oblique angle probe 5 can be installed only on a surface different from the side surface 8 where the surface flaw 4 exists, in this case, the end surface 3. .

次に、側面7におけるモード変換によって生じた横波による探傷が可能かどうか調べるため、2次元弾性波FDTD法により音波シミュレーションを行った結果を説明する。図2には、音場シミュレーションを行ったときの、縦波斜角探触子5と試験体1との相対的な位置関係を示す。縦波斜角探触子5から表面傷4までの距離は、76.5mm、試験体1の厚さは、26.5mmとした。また、表面傷4の大きさは、1.5mmとした。探傷周波数は、5MHzとし、屈折角は、8度とした。   Next, in order to investigate whether or not flaw detection by a transverse wave generated by mode conversion on the side surface 7 is possible, the result of a sound wave simulation performed by the two-dimensional elastic wave FDTD method will be described. FIG. 2 shows a relative positional relationship between the longitudinal wave oblique angle probe 5 and the test body 1 when the sound field simulation is performed. The distance from the longitudinal wave oblique angle probe 5 to the surface scratch 4 was 76.5 mm, and the thickness of the test body 1 was 26.5 mm. Further, the size of the surface scratch 4 was 1.5 mm. The flaw detection frequency was 5 MHz, and the refraction angle was 8 degrees.

図3には、音場シミュレーションを行った結果を示す。図3では、縦波斜角探触子5を励振してから24μsまで、3μsごとの音場スナップショットを示している。図3中には、超音波のモード(縦波または横波)および伝搬方向も、合わせて示している。
図3から分かるように、縦波斜角探触子5から発せられた縦波は、試験体1の側面7に到達するとモード変換により横波が発生する。縦波が側面7に沿うように伝搬するので、横波は広範囲に渡って発生する。この横波は、側面8にある表面傷4に入射し、反射される。反射された横波は、逆の伝搬経路を辿って縦波斜角探触子5で受信される。音波シミュレーションにより得られたエコーを図4に示す。試験体1中には種々のモードや伝搬経路が存在するので、ノイズが混じったエコーとなるが、表面傷4からのエコーは明確に識別できる。したがって、この音場シミュレーション結果から、側面7におけるモード変換によって生じた横波で、側面8にある表面傷4の探傷が可能であることが分かった。なお、表面傷4には横波だけでなく、側面8でモード変換された縦波も入射しているように見えるが、ここでは説明を簡単にするため横波が入射するとした。
FIG. 3 shows the result of sound field simulation. FIG. 3 shows a sound field snapshot every 3 μs from the excitation of the longitudinal wave oblique angle probe 5 to 24 μs. FIG. 3 also shows the ultrasonic mode (longitudinal wave or transverse wave) and the propagation direction.
As can be seen from FIG. 3, when the longitudinal wave emitted from the longitudinal wave oblique angle probe 5 reaches the side surface 7 of the test body 1, a transverse wave is generated by mode conversion. Since the longitudinal wave propagates along the side surface 7, the transverse wave is generated over a wide range. This transverse wave enters the surface scratch 4 on the side surface 8 and is reflected. The reflected transverse wave follows the reverse propagation path and is received by the longitudinal wave oblique angle probe 5. FIG. 4 shows echoes obtained by sound wave simulation. Since various modes and propagation paths exist in the test body 1, the echo is mixed with noise, but the echo from the surface scratch 4 can be clearly identified. Therefore, from this sound field simulation result, it was found that the surface flaw 4 on the side surface 8 can be detected by the transverse wave generated by the mode conversion on the side surface 7. Although it seems that not only the transverse wave but also the longitudinal wave that has undergone mode conversion at the side surface 8 is incident on the surface scratch 4, the transverse wave is assumed to be incident here for the sake of simplicity.

音場シミュレーション結果の妥当性を確認するため、実験を行った。実験は、縦波斜角探触子5と試験体1との相対的な位置関係を図2と同じにして行った。図5に、実験で得られたエコーを示す。図5に示すように、44μs近傍でエコーが受信されている。図4に示したシミュレーション結果でも、表面傷4からのエコーの受信時間が44μsとなっており、実験結果とシミュレーション結果はほぼ一致している。したがって、音場シミュレーション結果の妥当性が確認できた。すなわち、試験体1の側面7におけるモード変換によって生じた横波によるエコーにより、試験体1の側面8にある表面傷4を探傷できることが、実験的にも明らかになった。なお、実験に用いた試験体1は、円筒形の鋼試験体である。   An experiment was conducted to confirm the validity of the sound field simulation results. The experiment was performed with the relative positional relationship between the longitudinal wave oblique angle probe 5 and the test body 1 being the same as that in FIG. FIG. 5 shows echoes obtained in the experiment. As shown in FIG. 5, an echo is received in the vicinity of 44 μs. Also in the simulation result shown in FIG. 4, the reception time of the echo from the surface flaw 4 is 44 μs, and the experimental result and the simulation result almost coincide. Therefore, the validity of the sound field simulation result was confirmed. That is, it was experimentally revealed that the surface flaw 4 on the side surface 8 of the test body 1 can be detected by echoes caused by transverse waves generated by mode conversion on the side surface 7 of the test body 1. Note that the test body 1 used in the experiment is a cylindrical steel test body.

次に、この実施の形態に係わる超音波探傷でのエコーの大きさを従来の超音波探傷でのエコーの大きさと比較した結果を説明する。従来の超音波探傷では、図6に示すように、縦波斜角探触子5から表面傷4までの間でモード変換を伴わずに縦波を伝搬させて表面傷4を探傷する。そして、この従来の超音波探傷での音場シミュレーションを行った。図7に、従来の超音波探傷での音場シミュレーションの結果を示す。図7には、図3と同様に、超音波のモード(縦波または横波)および伝搬方向も合わせて示している。図7に示すように、表面傷4に縦波が入射し、縦波が反射され、縦波斜角探触子5でエコーとして受信される。   Next, the result of comparing the magnitude of echoes in ultrasonic flaw detection according to this embodiment with the magnitude of echoes in conventional ultrasonic flaw detection will be described. In the conventional ultrasonic flaw detection, as shown in FIG. 6, the surface flaw 4 is detected by propagating the vertical wave between the longitudinal wave oblique angle probe 5 and the surface flaw 4 without mode conversion. And the sound field simulation by this conventional ultrasonic flaw detection was performed. FIG. 7 shows the result of a sound field simulation in the conventional ultrasonic flaw detection. FIG. 7 also shows the ultrasonic mode (longitudinal wave or transverse wave) and the propagation direction together with FIG. As shown in FIG. 7, the longitudinal wave is incident on the surface scratch 4, the longitudinal wave is reflected, and is received as an echo by the longitudinal wave oblique angle probe 5.

図8(a)は、実施の形態に係わる超音波探傷で縦波斜角探触子5が受信したエコーを示す。一方、図8(b)は、従来の超音波探傷で縦波斜角探触子が受信したエコーを示す。図8(a)は、図4と同じものである。図8(a)と図8(b)とでは、縦軸は規格化して示している。図8(a)と図8(b)とを比較すると、表面傷4からのエコーの大きさは、この発明の実施の形態に係わる超音波探傷で受信されたエコーの方が明らかに大きい。したがって、この発明の実施の形態に係わる超音波探傷装置を用いれば、大きなエコーが受信され、S/N比の大きな信号が得られることが確認できた。   FIG. 8A shows an echo received by the longitudinal wave oblique angle probe 5 by the ultrasonic flaw detection according to the embodiment. On the other hand, FIG. 8B shows an echo received by the longitudinal wave oblique angle probe in the conventional ultrasonic flaw detection. FIG. 8A is the same as FIG. In FIG. 8A and FIG. 8B, the vertical axis is normalized. Comparing FIG. 8 (a) and FIG. 8 (b), the magnitude of the echo from the surface flaw 4 is clearly larger in the echo received by the ultrasonic flaw detection according to the embodiment of the present invention. Therefore, it was confirmed that when the ultrasonic flaw detector according to the embodiment of the present invention was used, a large echo was received and a signal having a large S / N ratio was obtained.

このような超音波探傷装置は、検査対象の側面または該側面と対向する側面と異なる端面から超音波が送信され、その超音波が検査対象の側面または該側面と対向する側面に入射したときに起こるモード変換により生じた超音波を利用して検査対象の側面に性状を検査するので、検査対象の表面と異なる箇所に超音波探触子を設置することができるし、超音波探触子で受信したエコーの大きさが大きくS/N比を大きくすることができる。   In such an ultrasonic flaw detector, ultrasonic waves are transmitted from an end surface different from the side surface to be inspected or the side surface facing the side surface, and the ultrasonic wave is incident on the side surface to be inspected or the side surface facing the side surface. Since the property is inspected on the side surface of the inspection object using the ultrasonic wave generated by the mode conversion that occurs, the ultrasonic probe can be installed at a location different from the surface of the inspection object, and the ultrasonic probe The size of the received echo is large and the S / N ratio can be increased.

また、超音波探触子として縦波斜角探触子を用いているので、検査対象の側面またはその側面と対向する側面に斜めから超音波を入射してモード変換を起こすことができる。
また、モード変換により発生する超音波が横波であるので、波長が短く、長さの小さな表面傷4を検出することができる。
Further, since the longitudinal wave oblique angle probe is used as the ultrasonic probe, it is possible to cause mode conversion by injecting ultrasonic waves obliquely into the side surface to be inspected or the side surface facing the side surface.
Further, since the ultrasonic wave generated by the mode conversion is a transverse wave, it is possible to detect the surface scratch 4 having a short wavelength and a small length.

なお、実施の形態に係わる超音波探傷では、縦波斜角探触子5を送信用且つ受信用に用いる場合について説明したが、図9に示すように、送信用と受信用とにそれぞれ異なる探触子を用いても同様な効果が得られる。すなわち、送信用探触子5aとは別に受信用探触子5bを用いて、表面傷4を検出しても構わない。   In the ultrasonic flaw detection according to the embodiment, the case where the longitudinal wave oblique angle probe 5 is used for transmission and reception has been described. However, as shown in FIG. 9, the transmission and reception are different. A similar effect can be obtained by using a probe. That is, the surface flaw 4 may be detected by using the receiving probe 5b separately from the transmitting probe 5a.

また、実施の形態では、試験体1の側面7におけるモード変換によって生じた横波を用いて、対向する側面8にある表面傷4を探傷する場合について説明したが、側面8におけるさらなるモード変換によって生じた超音波を用い、側面7にある表面傷4を探傷しても構わない。すなわち、側面7または側面8におけるモード変換によって生じた超音波を用いて、側面7または側面8にある表面傷4を探傷しても、同様の効果が得られる。   In the embodiment, the case has been described in which the surface wave 4 on the opposite side surface 8 is detected using the transverse wave generated by the mode conversion on the side surface 7 of the test body 1. The surface scratch 4 on the side surface 7 may be detected using the ultrasonic wave. That is, the same effect can be obtained even if the surface scratch 4 on the side surface 7 or the side surface 8 is detected using ultrasonic waves generated by mode conversion on the side surface 7 or the side surface 8.

この発明の実施の形態に係わる超音波探傷装置の構成を示す図である。It is a figure which shows the structure of the ultrasonic flaw detector concerning embodiment of this invention. 音場シミュレーションにおける超音波探触子と試験体との相対的な位置関係を示す図である。It is a figure which shows the relative positional relationship of an ultrasonic probe and a test body in sound field simulation. 試験体中を伝搬する超音波の音場シミュレーション結果である。It is a sound field simulation result of the ultrasonic wave propagating through the test body. 図3の音場シミュレーションで得られたエコーである。It is the echo obtained by the sound field simulation of FIG. 実験で得られたエコーである。This is an echo obtained in the experiment. 従来の超音波探傷の音場シミュレーションにおける超音波探触子と試験体との相対的な位置関係を示す図である。It is a figure which shows the relative positional relationship of an ultrasonic probe and a test body in the sound field simulation of the conventional ultrasonic flaw detection. 従来の超音波探傷の音場シミュレーションでの音場シミュレーション結果である。It is a sound field simulation result in the sound field simulation of the conventional ultrasonic flaw detection. 図3および図6の音場シミュレーションで得られたエコーである。It is the echo obtained by the sound field simulation of FIG. 3 and FIG. 送信用と受信用の超音波探触子を別々に配置したときの超音波探傷の様子を示す図である。It is a figure which shows the mode of an ultrasonic flaw when the ultrasonic probe for transmission and reception are arrange | positioned separately.

符号の説明Explanation of symbols

1 試験体、3 (試験体の)端面、4 表面傷、5、5a、5b 超音波探触子、6 超音波探傷器、7、8 (試験体の)側面。   DESCRIPTION OF SYMBOLS 1 Test body, 3 (End surface of test body), 4 Surface flaw, 5, 5a, 5b Ultrasonic probe, 6 Ultrasonic flaw detector, 7, 8 Side surface (Test body).

Claims (7)

電気信号を超音波に変換し、試験体の検査対象の側面および該側面と対向する側面と異なる端面から超音波を試験体中に送信し、且つ、上記試験体中を伝搬した超音波を受信し、超音波を電気信号に変換する超音波探触子と、
上記超音波探触子を駆動し、且つ、上記超音波探触子からの電気信号を受信する送受信器と、
を備え、
上記試験体中を伝搬した超音波が上記試験体の検査対象の側面または該側面と対向する側面に入射したときに起こるモード変換により生じた超音波を利用して、上記モード変換が生じた試験体の側面と対向する側面、または、上記モード変換が生じた側面自体の性状を検査することを特徴とする超音波探傷装置。
The electrical signal is converted into ultrasonic waves, ultrasonic waves are transmitted into the test body from the side surface of the test object to be inspected and the end surface different from the side surface facing the side surface, and the ultrasonic waves propagated through the test body are received. An ultrasonic probe that converts ultrasonic waves into electrical signals;
A transceiver for driving the ultrasonic probe and receiving an electrical signal from the ultrasonic probe;
With
A test in which the mode conversion has occurred using the ultrasonic wave generated by the mode conversion that occurs when the ultrasonic wave propagated through the test body is incident on the side surface of the test body to be inspected or the side surface facing the side surface An ultrasonic flaw detector which inspects the properties of the side surface facing the side surface of the body or the side surface itself where the mode conversion has occurred.
電気信号を超音波に変換し、試験体の検査対象の側面および該側面と対向する側面と異なる端面から超音波を試験体中に送信する送信用の超音波探触子と、
上記試験体中を伝搬した超音波を受信し、超音波を電気信号に変換する受信用の超音波探触子と、
上記送信用の超音波探触子を駆動し、且つ、上記受信用の超音波探触子からの電気信号を受信する送受信器と、
を備え、
上記試験体中を伝搬した超音波が上記試験体の検査対象の側面または該側面と対向する側面に入射したときに起こるモード変換により生じた超音波を利用して、上記モード変換が生じた試験体の側面と対向する側面、または、上記モード変換が生じた側面自体の性状を検査することを特徴とする超音波探傷装置。
An ultrasonic probe for transmission that converts an electrical signal into ultrasonic waves, and transmits ultrasonic waves into the test body from the side surface to be inspected of the test body and an end surface different from the side surface facing the side surface;
An ultrasonic probe for reception that receives ultrasonic waves propagated through the specimen and converts the ultrasonic waves into electrical signals;
A transceiver for driving the ultrasonic probe for transmission and receiving an electrical signal from the ultrasonic probe for reception; and
With
A test in which the mode conversion has occurred using the ultrasonic wave generated by the mode conversion that occurs when the ultrasonic wave propagated through the test body is incident on the side surface of the test body to be inspected or the side surface facing the side surface An ultrasonic flaw detector which inspects the properties of the side surface facing the side surface of the body or the side surface itself where the mode conversion has occurred.
上記超音波探触子が、縦波斜角探触子であることを特徴とする請求項1または2に記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 1 or 2, wherein the ultrasonic probe is a longitudinal wave oblique angle probe. 上記モード変換によって生じた超音波が、横波であることを特徴とする請求項1または2に記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 1 or 2, wherein the ultrasonic wave generated by the mode conversion is a transverse wave. 超音波探触子によって試験体の検査対象の側面および該側面と対向する側面と異なる端面から超音波を試験体中に送信するステップと、
上記試験体中を伝搬した超音波が上記試験体の検査対象の側面または該側面と対向する側面に入射したときに起こるモード変換により生じた超音波を利用して、上記モード変換が生じた試験体の側面と対向する側面、または、上記モード変換が生じた側面自体の性状を検査するステップと、
を含むことを特徴とする超音波探傷方法。
Transmitting ultrasonic waves into the test body from the side surface different from the side surface of the test object to be inspected and the side surface facing the side surface by the ultrasonic probe;
A test in which the mode conversion has occurred using the ultrasonic wave generated by the mode conversion that occurs when the ultrasonic wave propagated through the test body is incident on the side surface of the test body to be inspected or the side surface facing the side surface Inspecting the properties of the side facing the side of the body or the side where the mode conversion has occurred;
An ultrasonic flaw detection method comprising:
上記超音波探触子が、縦波斜角探触子であることを特徴とする請求項5に記載の超音波探傷方法。   6. The ultrasonic flaw detection method according to claim 5, wherein the ultrasonic probe is a longitudinal wave oblique angle probe. 上記モード変換によって生じた超音波が、横波であることを特徴とする請求項5に記載の超音波探傷方法。   The ultrasonic flaw detection method according to claim 5, wherein the ultrasonic wave generated by the mode conversion is a transverse wave.
JP2006156051A 2006-06-05 2006-06-05 Ultrasonic flaw detector and ultrasonic flaw detecting method Pending JP2007322366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156051A JP2007322366A (en) 2006-06-05 2006-06-05 Ultrasonic flaw detector and ultrasonic flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156051A JP2007322366A (en) 2006-06-05 2006-06-05 Ultrasonic flaw detector and ultrasonic flaw detecting method

Publications (1)

Publication Number Publication Date
JP2007322366A true JP2007322366A (en) 2007-12-13

Family

ID=38855314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156051A Pending JP2007322366A (en) 2006-06-05 2006-06-05 Ultrasonic flaw detector and ultrasonic flaw detecting method

Country Status (1)

Country Link
JP (1) JP2007322366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237198A (en) * 2009-03-13 2010-10-21 Jfe Steel Corp Generating method of sh wave, detection method of sh wave, and ultrasonic measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140392A (en) * 1976-05-19 1977-11-22 Nippon Kokan Kk Ultrasonic angle beam inspection for extremely thick steel pipe
JPH04142456A (en) * 1990-10-02 1992-05-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detection for metal tube
JPH05288723A (en) * 1992-04-09 1993-11-02 Mitsubishi Heavy Ind Ltd Pitch-catch type ultrasonic flaw examination
JP2001305112A (en) * 2000-04-21 2001-10-31 Nikki Plantec Kk Ultrasonic flaw detection method
JP2002202116A (en) * 2000-12-28 2002-07-19 Non-Destructive Inspection Co Ltd Method of measuring thickness of locally thinned portion of plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140392A (en) * 1976-05-19 1977-11-22 Nippon Kokan Kk Ultrasonic angle beam inspection for extremely thick steel pipe
JPH04142456A (en) * 1990-10-02 1992-05-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detection for metal tube
JPH05288723A (en) * 1992-04-09 1993-11-02 Mitsubishi Heavy Ind Ltd Pitch-catch type ultrasonic flaw examination
JP2001305112A (en) * 2000-04-21 2001-10-31 Nikki Plantec Kk Ultrasonic flaw detection method
JP2002202116A (en) * 2000-12-28 2002-07-19 Non-Destructive Inspection Co Ltd Method of measuring thickness of locally thinned portion of plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237198A (en) * 2009-03-13 2010-10-21 Jfe Steel Corp Generating method of sh wave, detection method of sh wave, and ultrasonic measuring method

Similar Documents

Publication Publication Date Title
US8631705B2 (en) Pseudorandom binary sequence apparatus and method for in-line inspection tool
US20160299106A1 (en) Systems and methods for using flexural modes in non-destructive testing and inspection
JP5311766B2 (en) Interface inspection apparatus and interface inspection method
Peters et al. Non‐contact inspection of composites using air‐coupled ultrasound
WO2012176613A1 (en) Ultrasonic flaw detection method and ultrasonic array probe
US20210278373A1 (en) Ultrasonic probe
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
JP4144703B2 (en) Tube inspection method using SH waves
JP2002062281A (en) Flaw depth measuring method and its device
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
JP2009058238A (en) Method and device for defect inspection
JP5345096B2 (en) Array ultrasonic flaw detector
WO2019150952A1 (en) Defect detecting method
JP2007322366A (en) Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
WO2019150953A1 (en) Ultrasonic probe
JP2017161513A (en) Ultrasonic flaw detecting device, and ultrasonic flaw detecting method
WO2018135242A1 (en) Inspection method
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP4323293B2 (en) Ultrasonic flaw detector
JP2922508B1 (en) Automatic ultrasonic flaw detector
Imano et al. Detecting pipe wall reduction using air-coupled MHz range ultrasonic wave
周进节 et al. Time reversal guided waves for inspecting crack in pipeline by non-axisymmetric excitation
JP4143527B2 (en) Thin plate ultrasonic flaw detector
Kwak et al. Detection of small-flaw in carbon brake disc (CC) using air-coupled ultrasonic C-scan technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Effective date: 20110425

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110701

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120126

A131 Notification of reasons for refusal

Effective date: 20121002

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521