JP4143527B2 - Thin plate ultrasonic flaw detector - Google Patents

Thin plate ultrasonic flaw detector Download PDF

Info

Publication number
JP4143527B2
JP4143527B2 JP2003411191A JP2003411191A JP4143527B2 JP 4143527 B2 JP4143527 B2 JP 4143527B2 JP 2003411191 A JP2003411191 A JP 2003411191A JP 2003411191 A JP2003411191 A JP 2003411191A JP 4143527 B2 JP4143527 B2 JP 4143527B2
Authority
JP
Japan
Prior art keywords
thin plate
signal
ultrasonic
plate
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003411191A
Other languages
Japanese (ja)
Other versions
JP2005172535A (en
Inventor
宏 市川
博 内藤
直樹 山下
直樹 遠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Ryoden Shonan Electronics Corp
Original Assignee
Ryoden Shonan Electronics Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoden Shonan Electronics Corp, Nisshin Steel Co Ltd filed Critical Ryoden Shonan Electronics Corp
Priority to JP2003411191A priority Critical patent/JP4143527B2/en
Publication of JP2005172535A publication Critical patent/JP2005172535A/en
Application granted granted Critical
Publication of JP4143527B2 publication Critical patent/JP4143527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、板厚に応じた入射角で超音波を薄板に入射することによって薄板内に板波を発生させ、薄板内の音響インピーダンスの不連続部位により生じる反射波を受信して薄板内のきずを検出する薄板探傷装置に関する。   The present invention generates a plate wave in a thin plate by making an ultrasonic wave incident on the thin plate at an incident angle corresponding to the plate thickness, receives a reflected wave generated by a discontinuous portion of acoustic impedance in the thin plate, and receives the reflected wave in the thin plate. The present invention relates to a thin plate flaw detection apparatus that detects flaws.

熱延鋼板、冷延鋼板、リードフレーム等の比較的厚みの薄い板状の金属材料(薄板)の表面又は内部に生じた欠陥をオンラインで非破壊検査するために、板波探触子の一例としてのタイヤ型探触子を用いて被検査材に板波超音波を伝搬させ、その反射波を受信して欠陥の有無を検知する板波超音波探傷が行われている。   An example of a plate wave probe for on-line nondestructive inspection of defects on the surface or inside of a relatively thin plate-like metal material (thin plate) such as a hot-rolled steel plate, cold-rolled steel plate, lead frame, etc. The plate-type ultrasonic flaw detection is performed to detect the presence or absence of a defect by propagating a plate-wave ultrasonic wave to a material to be inspected using a tire-type probe.

言い換えれば、板波超音波探傷法として、板厚に応じた入射角で超音波を薄板に入射することによって薄板内に板波を発生させ、薄板内の音響インピーダンスの不連続部位により生じる反射波を受信して薄板内のきずを検出する薄板探傷方法は古くから用いられている。しかし、近年対象試験体の組成の多様化に伴い、従来用いていた超音波の中心周波数では試験体内の超音波減衰が大きく、きずからの反射信号が十分得られない場合が生じている。これに対して超音波の中心周波数を低くすることにより、超音波減衰が低減して、きずからの反射信号が増加することが知られているが、一方では超音波の減衰が少ないことにより、薄板の両端面間を往復する端面多重エコーが次の送信繰り返し時まで十分に減衰せず、欠陥信号と誤判定される場合がある。これを避けるためには端面多重エコーが十分減衰する時間待ってから次の送信を行う必要があるため、探傷速度の低下を招く。   In other words, as a plate wave ultrasonic flaw detection method, a plate wave is generated in a thin plate by making an ultrasonic wave incident on the thin plate at an incident angle according to the plate thickness, and a reflected wave generated by a discontinuous portion of acoustic impedance in the thin plate. A thin plate flaw detection method for detecting flaws in a thin plate by receiving the above has been used for a long time. However, with the diversification of the composition of target specimens in recent years, there is a case where the ultrasonic attenuation in the specimen is large at the center frequency of the ultrasonic wave used conventionally and a reflected signal from a flaw cannot be obtained sufficiently. On the other hand, it is known that by reducing the center frequency of the ultrasonic wave, the attenuation of the ultrasonic wave is reduced and the reflected signal from the flaw is increased, but on the other hand, the attenuation of the ultrasonic wave is small, The end surface multiple echo that reciprocates between both end surfaces of the thin plate may not be sufficiently attenuated until the next transmission repetition, and may be erroneously determined as a defect signal. In order to avoid this, it is necessary to wait for a time during which the end-face multiple echoes are sufficiently attenuated before the next transmission is performed, resulting in a decrease in the flaw detection speed.

図3は、従来の薄板超音波探傷装置の一実施例であり、2は同期信号生成器、3は送信器、4は板波探触子、5は受信増幅器、6はゲート信号生成器、7はピーク検出器、8は判定器、9は薄板、10a、10bは薄板の端面、11は振動子、12は接触媒質である。   FIG. 3 shows an example of a conventional thin plate ultrasonic flaw detector, in which 2 is a synchronization signal generator, 3 is a transmitter, 4 is a plate wave probe, 5 is a reception amplifier, 6 is a gate signal generator, 7 is a peak detector, 8 is a determination unit, 9 is a thin plate, 10a and 10b are end faces of the thin plate, 11 is a vibrator, and 12 is a contact medium.

図4は従来の薄板超音波探傷装置の生成する、同期信号、エコー信号、時間ゲート信号の一例であり、16は同期信号、17はエコー信号、18は時間ゲート信号、13は送信信号、14aは一回目の端面エコー信号、14b〜14dは薄板の端面10a,10b間を板波超音波が複数回往復することによって生じる端面多重エコー信号、15はきずエコー信号である。   FIG. 4 shows an example of a synchronization signal, an echo signal, and a time gate signal generated by a conventional thin-film ultrasonic flaw detector, 16 is a synchronization signal, 17 is an echo signal, 18 is a time gate signal, 13 is a transmission signal, and 14a. Is an end face echo signal for the first time, 14b to 14d are end face multiple echo signals generated by a plate wave ultrasonic wave reciprocating a plurality of times between the end faces 10a and 10b of the thin plate, and 15 is a flaw echo signal.

次に動作について説明する。同期信号生成器2が一定の繰り返し周期で出力する同期信号16により、送信器3が電気パルス信号を振動子11に供給する。振動子11は送信器3の出力する電気パルス信号を超音波信号に変換し、接触媒質12中に縦波として発射する。発射された縦波超音波信号は接触媒質12中を伝播した後、薄板9へ入射することにより、板波超音波信号に変換され、薄板中を薄板の片方の端面10a方向に伝播する。そして、薄板の片方の端面10aで反射され、再度薄板中を板波探触子4の方向に伝播し、薄板9と接触媒質12の界面で板波超音波の一部が縦波超音波に変換され、接触媒質12を伝播した後に、振動子11に戻ってきて受信される。受信された縦波超音波信号は、振動子11により再び電気信号に変換され、受信増幅器5で増幅された後に、端面エコー信号14aが得られる。また薄板の片方の端面10aで反射され、再度薄板中を板波探触子4の方向に伝播した板波超音波の一部は、薄板9と接触媒質12の界面で縦波に変換されずに、そのまま薄板のもう片方の端面10bまで伝播し、端面10bで反射されて薄板の片方の端面10a方向に伝播する。そして、薄板の片方の端面10aで再び反射して板波探触子4の方向に伝播し、薄板9と接触媒質12の界面で板波超音波の一部が縦波超音波に変換され、接触媒質12を伝播した後に、振動子11に戻ってきて受信され、エコー信号に重畳されて端面多重エコー信号14bが得られる。さらに上記の薄板の両端面10a、10b間を板波超音波が往復し、それぞれ振動子に戻ってきた時点で、エコー信号に重畳されて端面多重エコー信号14c、14dが得られる。端面多重エコーは、薄板の両端面10a、10b間の板波超音波の往復伝播時間の間隔で、薄板中の板波超音波の減衰、薄板の両端面10a、10bでの反射効率等により、多重反射を繰り返す毎に振幅が小さくなりながら、繰り返して生じる。   Next, the operation will be described. The transmitter 3 supplies an electric pulse signal to the vibrator 11 by the synchronization signal 16 output from the synchronization signal generator 2 at a constant repetition period. The vibrator 11 converts the electric pulse signal output from the transmitter 3 into an ultrasonic signal and emits it into the contact medium 12 as a longitudinal wave. The emitted longitudinal wave ultrasonic signal propagates through the contact medium 12 and then enters the thin plate 9 to be converted into a plate wave ultrasonic signal, and propagates through the thin plate in the direction of one end face 10a of the thin plate. Then, it is reflected by one end face 10a of the thin plate, propagates again in the thin plate in the direction of the plate wave probe 4, and a part of the plate wave ultrasonic wave becomes a longitudinal wave ultrasonic wave at the interface between the thin plate 9 and the contact medium 12. After being converted and propagated through the contact medium 12, it returns to the vibrator 11 and is received. The received longitudinal wave ultrasonic signal is again converted into an electric signal by the vibrator 11 and amplified by the receiving amplifier 5, and then an end face echo signal 14 a is obtained. Further, a part of the plate wave ultrasonic wave reflected by one end face 10a of the thin plate and again propagating in the thin plate toward the plate wave probe 4 is not converted into a longitudinal wave at the interface between the thin plate 9 and the contact medium 12. Then, it propagates as it is to the other end surface 10b of the thin plate, is reflected by the end surface 10b, and propagates toward the one end surface 10a of the thin plate. Then, it is reflected again at one end face 10a of the thin plate and propagates in the direction of the plate wave probe 4, and a part of the plate wave ultrasonic wave is converted into a longitudinal wave ultrasonic wave at the interface between the thin plate 9 and the contact medium 12, After propagating through the contact medium 12, it returns to the transducer 11 and is received and superimposed on the echo signal to obtain an end face multiple echo signal 14b. Further, when the plate wave ultrasonic waves reciprocate between the both end faces 10a and 10b of the thin plate and return to the vibrator, the end face multiple echo signals 14c and 14d are obtained by being superimposed on the echo signal. The end face multiple echo is an interval of the reciprocating propagation time of the plate wave ultrasonic wave between the both end faces 10a and 10b of the thin plate, the attenuation of the plate wave ultrasonic wave in the thin plate, the reflection efficiency at the both end faces 10a and 10b of the thin plate, Each time the multiple reflection is repeated, the amplitude is reduced and is repeatedly generated.

ここで薄板9中の板波超音波の伝播経路上にきずが有ると、板波超音波信号はきずでも反射され、薄板の片方の端面10aで反射された板波超音波信号に重畳し、かつ薄板の片方の端面10aで反射された板波超音波信号より短い伝播時間で振動子11に戻ってきて受信され、エコー信号に重畳されてきずエコー信号15が得られる。一方、ゲート信号生成器6は、同期信号を起点として、超音波が薄板に入射する時刻より一定時間遅延した時刻を起点として、薄板の片方の端面10aでのエコー信号が生じる時刻より一定時間手前の時刻を終点とする時間ゲート信号18を生成し、ピーク検出器7が時間ゲート信号内のエコー信号のピーク電圧を検出する。そして、判定器8が、前記ピーク電圧が規定のレベル以上であるかどうかを判定し、規定のレベル以上の場合にきずと判定する。   Here, if there is a flaw on the propagation path of the plate wave ultrasonic wave in the thin plate 9, the plate wave ultrasonic signal is reflected even by the flaw, and is superimposed on the plate wave ultrasonic signal reflected by one end face 10a of the thin plate, And it returns to the vibrator | oscillator 11 and is received by the propagation time shorter than the plate wave ultrasonic signal reflected by the one end surface 10a of the thin plate, and the echo signal 15 is obtained without being superimposed on the echo signal. On the other hand, the gate signal generator 6 starts at a certain time before the time at which an echo signal is generated at one end face 10a of the thin plate, starting from the time delayed by a certain time from the time when the ultrasonic wave enters the thin plate. The time gate signal 18 whose end point is the time is generated, and the peak detector 7 detects the peak voltage of the echo signal in the time gate signal. Then, the determiner 8 determines whether or not the peak voltage is equal to or higher than a specified level, and determines that there is no flaw when the peak voltage is equal to or higher than the specified level.

板波探触子の一例としてのタイヤ型探触子について、この種のタイヤ探触子に装着された超音波振動子の取付角度を変更可能にして、被検査材(薄板)に対する超音波の入射角を変化させる先行技術が記載されている(例えば、実用新案文献1、実用新案文献2参照)。
実公昭45−10471号公報 実公平2−13973号公報
For a tire-type probe as an example of a plate-wave probe, the mounting angle of the ultrasonic transducer attached to this type of tire probe can be changed, and the ultrasonic wave on the material to be inspected (thin plate) can be changed. Prior arts for changing the incident angle are described (for example, see Utility Model Document 1 and Utility Model Document 2).
Japanese Utility Model Publication No. 45-10471 No. 2-13973

従来の薄板超音波探傷装置は以上のように構成されるので、図4に示すように、端面多重エコー14dの超音波減衰量が大きく、その次の同期信号を起点として生成された時間ゲート信号区間内で、きずエコー信号に対して十分に小さい場合には問題ないが、図5に示すように、板波超音波の減衰が小さく、端面多重エコー14dがその次の同期信号を起点として生成された時間ゲート信号区間内で、きずエコーに比して同等またはより大きい電圧で生じる場合に、判定器8によってきずと誤判定されるという問題が有った。また端面多重エコーを避けるためには、端面多重エコーが十分に減衰してから、次の超音波送受信を行うよう、同期信号の周期Tを大きくする必要があるが、板波超音波の伝播方向と垂直方向に薄板を走行させて、薄板の全面の探傷を行うような場合には、同期信号の周期期間で走行する薄板の距離が板波超音波のビーム幅以上となると、板波超音波が伝播しない部分が薄板上に生じ、きずを見逃すという事象が発生するために、薄板の走行速度を落とす必要があり、検査速度が低下するという問題があった。   Since the conventional thin-plate ultrasonic flaw detector is configured as described above, as shown in FIG. 4, a time gate signal generated with the ultrasonic attenuation amount of the end face multiple echo 14d being large and the next synchronization signal as a starting point. In the section, there is no problem if the flaw echo signal is sufficiently small with respect to the flaw echo signal. However, as shown in FIG. 5, the attenuation of the plate wave ultrasonic wave is small, and the end face multiple echo 14d is generated from the next synchronization signal as a starting point. There is a problem that the determination unit 8 erroneously determines that there is a flaw when it occurs at a voltage equal to or larger than the flaw echo within the time gate signal interval. In order to avoid end face multiple echo, it is necessary to increase the period T of the synchronization signal so that the next ultrasonic transmission / reception is performed after the end face multiple echo is sufficiently attenuated. When the thin plate travels vertically and the entire surface of the thin plate is inspected, if the distance of the thin plate traveling in the period of the synchronization signal is equal to or greater than the beam width of the plate wave ultrasonic wave, the plate wave ultrasonic wave There is a problem in that a portion where no propagation occurs occurs on the thin plate and an event that a flaw is overlooked occurs, so that the traveling speed of the thin plate needs to be lowered and the inspection speed is lowered.

本発明は、超音波周波数を下げた場合にも、送信繰り返し周期Tを大きくすることなく、高速に探傷することが可能な薄板超音波探傷装置を提供することを目的とする。   An object of the present invention is to provide a thin plate ultrasonic flaw detector capable of flaw detection at high speed without increasing the transmission repetition period T even when the ultrasonic frequency is lowered.

本発明に係る薄板超音波探傷装置は、超音波を送受信する振動子を有する板波探触子を用いて、端面を有する薄板の欠陥を探傷する薄板超音波探傷装置において、
所定の繰り返し周期で複数の同期信号を生成する同期信号生成器と、
上記同期信号生成器により生成された複数の同期信号に基づいて複数の送信パルス信号を生成し、生成された複数の送信パルス信号の各送信パルス信号を該当する上記複数の同期信号の各同期信号と同期させて上記板波探触子に送信して上記振動子から超音波を送信させる送信器と、
上記振動子により送信された超音波が薄板に入射する時刻から所定の期間遅延した時刻を起点として、上記薄板が有する端面で反射された反射超音波信号が上記振動子に到達するまでの時刻より所定の期間手前の時刻を終点とする時間ゲート信号を生成するゲート信号生成器と、
上記板波探触子を介して上記薄板で反射する反射超音波信号に基づく電気信号を入力し、入力された電気信号における上記ゲート信号生成器により生成された時間ゲート信号の区間に位置するピーク電圧が、所定の判定レベル以上である場合に、欠陥と判定する判定器と、
上記薄板が有する端面で以前に反射された反射超音波信号に基づく電気信号のピーク電圧が、上記振動子により送信される次回の超音波が上記振動子により送信されてから上記薄板に入射するまでの期間に位置するように、上記所定の繰り返し周期を演算する同期信号周期演算器と
を備えたことを特徴とする。
A thin plate ultrasonic flaw detector according to the present invention is a thin plate flaw detector that uses a plate wave probe having a transducer for transmitting and receiving ultrasonic waves to detect defects in a thin plate having an end face.
A synchronization signal generator that generates a plurality of synchronization signals at a predetermined repetition period;
A plurality of transmission pulse signals are generated based on the plurality of synchronization signals generated by the synchronization signal generator, and each transmission pulse signal of the generated plurality of transmission pulse signals is associated with each synchronization signal of the plurality of synchronization signals. A transmitter that transmits the ultrasonic wave from the transducer by transmitting to the plate wave probe in synchronization with,
Starting from the time until the ultrasonic wave transmitted by the transducer is delayed for a predetermined period from the time when the ultrasonic wave is incident on the thin plate, the reflected ultrasonic signal reflected by the end face of the thin plate reaches the transducer A gate signal generator for generating a time gate signal whose end point is a time before a predetermined period;
An electric signal based on a reflected ultrasonic signal reflected by the thin plate through the plate wave probe is input, and a peak located in a section of a time gate signal generated by the gate signal generator in the input electric signal. A determiner that determines a defect when the voltage is equal to or higher than a predetermined determination level; and
The peak voltage of the electrical signal based on the reflected ultrasonic signal previously reflected by the end face of the thin plate is transmitted from the next ultrasonic wave transmitted by the transducer until it enters the thin plate. And a synchronization signal period calculator for calculating the predetermined repetition period so as to be located in the period of (2).

以上のように、この発明によれば、後述する(1)式により同期信号周期を決定することにより、端面多重エコーは板波超音波が薄板に入射した時刻から薄板の端面での反射による最初のエコー信号が生じる時刻の間には発生せず、従って同期信号を起点として、超音波が薄板に入射する時刻より一定時間遅延した時刻を起点とし、最初に端面で反射された端面エコー信号が生じる時刻より一定時間手前の時刻を終点とする時間ゲート信号区間内にも端面多重エコー信号が発生しないように構成することができる。   As described above, according to the present invention, by determining the synchronization signal period according to the following equation (1), the end face multiple echo is first reflected by the reflection on the end face of the thin plate from the time when the plate wave ultrasonic wave is incident on the thin plate. Therefore, the end-face echo signal first reflected from the end face is the time that is delayed for a certain time from the time when the ultrasonic wave is incident on the thin plate. It can be configured such that no end face multiple echo signal is generated even in a time gate signal section whose end point is a time before a certain time.

よって、薄板内の超音波減衰が小さい場合にも同期信号周期を低下させること無く、薄板内の超音波減衰が大きい場合と同等の検査速度で探傷が可能な薄板超音波探傷装置を得られる効果が有る。   Therefore, even when the ultrasonic attenuation in the thin plate is small, the thin plate ultrasonic flaw detector capable of performing the inspection at the same inspection speed as that in the case where the ultrasonic attenuation in the thin plate is large without reducing the synchronization signal period can be obtained. There is.

実施の形態1.
本実施の形態1における薄板超音波探傷装置は、例えば、熱延鋼板、冷延鋼板、リードフレーム等の比較的厚みの薄い板状の金属材料(薄板)の表面又は内部に生じた欠陥をオンラインで非破壊検査するために、板波探触子の一例としてのタイヤ型探触子を用いて被検査材に板波超音波を伝搬させ、その反射波を受信して欠陥の有無を検知する板波超音波探傷をおこなう。
Embodiment 1 FIG.
The thin-plate ultrasonic flaw detector according to the first embodiment can detect defects generated on the surface or inside of a relatively thin plate-shaped metal material (thin plate) such as a hot-rolled steel plate, a cold-rolled steel plate, and a lead frame. In order to perform non-destructive inspection, a tire-type probe as an example of a plate wave probe is used to propagate plate wave ultrasonic waves to the material to be inspected, and the reflected waves are received to detect the presence or absence of defects. Perform plate wave ultrasonic testing.

以下図1に示すこの発明の一実施例について説明する。   An embodiment of the present invention shown in FIG. 1 will be described below.

図1において、1は同期信号周期演算器である。なお2〜12は図3と同様である。薄板超音波探傷装置は、同期信号周期演算器1、同期信号生成器2、送信器3、受信増幅器5、ゲート信号生成器6、ピーク検出器7、判定器8を備えている。薄板超音波探傷装置は、板波探触子4に接続される。   In FIG. 1, reference numeral 1 denotes a synchronization signal period calculator. 2 to 12 are the same as those in FIG. The thin-plate ultrasonic flaw detector includes a synchronization signal period calculator 1, a synchronization signal generator 2, a transmitter 3, a receiving amplifier 5, a gate signal generator 6, a peak detector 7, and a determiner 8. The thin plate ultrasonic flaw detector is connected to the plate wave probe 4.

また、図2は、図1の実施例によって得られる、同期信号、エコー信号、時間ゲート信号の一例で13〜18は図4と同様である。   2 is an example of a synchronization signal, an echo signal, and a time gate signal obtained by the embodiment of FIG. 1, and 13 to 18 are the same as FIG.

次に動作について説明する。まず薄板9の両端面10a、10b間の距離をW、薄板9内の板波の群速度をC、薄板9の片方の端面10bから板波探触子4の超音波入射点までの距離をWc、接触媒質12内の往復伝播時間をTr、任意の整数n、接触媒質12内の往復伝播時間以下の任意の時間t0とし、同期信号周期演算器1により、同期信号周期Tを Next, the operation will be described. First, the distance between both end faces 10a and 10b of the thin plate 9 is W, the group velocity of the plate wave in the thin plate 9 is C, and the distance from one end surface 10b of the thin plate 9 to the ultrasonic wave incident point of the plate wave probe 4 is the distance. Wc, the round-trip propagation time in the contact medium 12 is Tr, an arbitrary integer n, and an arbitrary time t 0 less than or equal to the round-trip propagation time in the contact medium 12, and the synchronization signal period calculator 1

Figure 0004143527
Figure 0004143527

により決定する。同期信号周期演算器1の決定したの同期信号周期で同期信号生成器2が生成する同期信号16により、送信器3が電気パルス信号を振動子11に供給する。振動子11は送信器3の出力する電気パルス信号を超音波信号に変換し、接触媒質12中に縦波として発射する。発射された縦波超音波信号は接触媒質12中を伝播した後、薄板9へ入射することにより、板波超音波信号に変換され、薄板中を薄板の片方の端面10a方向に伝播する。そして、板波超音波信号は、薄板の片方の端面10aで反射され、再度薄板中を板波探触子4の方向に伝播する。そして、薄板9と接触媒質12の界面で板波超音波の一部が縦波超音波に変換され、接触媒質12を伝播した後に、振動子11に戻ってきて受信される。受信された縦波超音波信号は、振動子11により再び電気信号に変換され、受信増幅器5で増幅された後に、端面エコー信号14aが得られる。また薄板の片方の端面10aで反射され、再度薄板中を板波探触子4の方向に伝播した板波超音波の一部は、薄板9と接触媒質12の界面で縦波に変換されずに、そのまま薄板のもう片方の端面10bまで伝播する。そして、端面10bで反射されて薄板の片方の端面10a方向に伝播し、薄板の片方の端面10aで再び反射して板波探触子4の方向に伝播し、薄板9と接触媒質12の界面で板波超音波の一部が縦波超音波に変換され、接触媒質12を伝播した後に、振動子11に戻ってきて受信され、エコー信号に重畳されて端面多重エコー信号14bが得られる。さらに上記の薄板の両端面10a、10b間を板波超音波が往復し、それぞれ振動子に戻ってきた時点で、エコー信号に重畳されて端面多重エコー信号14c、14dが得られる。端面多重エコーは、薄板の両端面10a、10b間の板波超音波の往復伝播時間の間隔で、薄板中の板波超音波の減衰、薄板の両端面10a、10bでの反射効率等により、多重反射を繰り返す毎に振幅が小さくなりながら、繰り返して生じるが、(1)式により同期信号周期Tを決定しているために、例えば図2においては端面多重エコー信号14cは次の同期信号周期における接触媒質12内の往復伝播時間内、即ち薄板に超音波が入射する以前の時刻に発生し、端面多重エコー信号14dは次の同期信号周期における薄板の片方の端面10aのエコー信号が生じる時刻以後に発生する。 Determined by The transmitter 3 supplies the electric pulse signal to the vibrator 11 by the synchronization signal 16 generated by the synchronization signal generator 2 in the synchronization signal period determined by the synchronization signal period calculator 1. The vibrator 11 converts the electric pulse signal output from the transmitter 3 into an ultrasonic signal and emits it into the contact medium 12 as a longitudinal wave. The emitted longitudinal wave ultrasonic signal propagates through the contact medium 12 and then enters the thin plate 9 to be converted into a plate wave ultrasonic signal, and propagates through the thin plate in the direction of one end face 10a of the thin plate. The plate wave ultrasonic signal is reflected by one end face 10a of the thin plate and propagates again in the direction of the plate wave probe 4 through the thin plate. Then, a part of the plate wave ultrasonic waves is converted into longitudinal wave ultrasonic waves at the interface between the thin plate 9 and the contact medium 12, propagates through the contact medium 12, returns to the transducer 11, and is received. The received longitudinal wave ultrasonic signal is again converted into an electric signal by the vibrator 11 and amplified by the receiving amplifier 5, and then an end face echo signal 14 a is obtained. Further, a part of the plate wave ultrasonic wave reflected by one end face 10a of the thin plate and again propagating in the thin plate toward the plate wave probe 4 is not converted into a longitudinal wave at the interface between the thin plate 9 and the contact medium 12. Then, it propagates as it is to the other end face 10b of the thin plate. Then, it is reflected by the end face 10 b and propagates in the direction of one end face 10 a of the thin plate, is reflected again by the one end face 10 a of the thin plate and propagates in the direction of the plate wave probe 4, and the interface between the thin plate 9 and the contact medium 12. Thus, a part of the plate wave ultrasonic wave is converted into a longitudinal wave ultrasonic wave, propagates through the contact medium 12, returns to the transducer 11, is received, and is superimposed on the echo signal to obtain the end face multiple echo signal 14 b. Further, when the plate wave ultrasonic waves reciprocate between the both end faces 10a and 10b of the thin plate and return to the vibrator, the end face multiple echo signals 14c and 14d are obtained by being superimposed on the echo signal. The end face multiple echo is an interval of the reciprocating propagation time of the plate wave ultrasonic wave between the both end faces 10a and 10b of the thin plate, the attenuation of the plate wave ultrasonic wave in the thin plate, the reflection efficiency at the both end faces 10a and 10b of the thin plate, Each time the multiple reflection is repeated, the amplitude is reduced and repeatedly generated. However, since the synchronization signal period T is determined by the equation (1), for example, in FIG. 2, the end face multiple echo signal 14c is the next synchronization signal period. Is generated within the reciprocating propagation time in the contact medium 12 at the time, i.e., before the ultrasonic wave is incident on the thin plate, and the end face multiple echo signal 14d is the time at which the echo signal of one end face 10a of the thin plate is generated in the next synchronization signal period. It occurs afterwards.

言い換えれば、振動子11から送信された超音波が薄板9に入射するまでの期間に、以前に超音波として薄板9に入射され端面10a或いは端面10bで反射され減衰しきれずに残留しているエコー信号を位置するように周期Tを設定すれば、測定したい薄板9に超音波が入射する位置から薄板の片方の端面10aまでに相当する期間に、以前に反射して減衰しきれていないエコー信号が現れることがなくなる。よって、減衰しきれていないエコー信号をきずとして(きずの位置として、)誤判断することがないようにすることができる。   In other words, in the period until the ultrasonic wave transmitted from the transducer 11 enters the thin plate 9, the echo that has been previously incident on the thin plate 9 as an ultrasonic wave and is reflected by the end face 10a or the end face 10b and remains without being attenuated. If the period T is set so that the signal is positioned, an echo signal that has not been reflected and attenuated before in a period corresponding to the position from which the ultrasonic wave enters the thin plate 9 to be measured to one end surface 10a of the thin plate. No longer appears. Therefore, it is possible to prevent erroneous determination by using an echo signal that has not been attenuated as a flaw (as a flaw position).

ここで薄板9中の板波超音波の伝播経路上にきずが有ると、板波超音波信号はきずでも反射され、薄板の片方の端面10aで反射された板波超音波信号に重畳し、かつ薄板の片方の端面10aで反射された板波超音波信号より短い伝播時間で振動子11に戻ってきて受信され、エコー信号に重畳されてきずエコー信号15が得られる。一方、ゲート信号生成器6は、同期信号を起点として、超音波が薄板に入射する時刻より一定時間遅延した時刻を起点とし、薄板の片方の端面10aでのエコー信号が生じる時刻より一定時間手前の時間を終点とする時間ゲート信号18を生成し、ピーク検出器7が時間ゲート信号内のエコー信号のピーク電圧を検出する。そして、判定器8が、前記ピーク電圧が規定のレベル以上であるかどうかを判定し、規定のレベル以上の場合にきずと判定する。   Here, if there is a flaw on the propagation path of the plate wave ultrasonic wave in the thin plate 9, the plate wave ultrasonic signal is reflected even by the flaw, and is superimposed on the plate wave ultrasonic signal reflected by one end face 10a of the thin plate, And it returns to the vibrator | oscillator 11 and is received by the propagation time shorter than the plate wave ultrasonic signal reflected by the one end surface 10a of the thin plate, and the echo signal 15 is obtained without being superimposed on the echo signal. On the other hand, the gate signal generator 6 starts at a time delayed by a certain time from the time when the ultrasonic wave enters the thin plate, starting from the synchronization signal, and is a certain time before the time when the echo signal is generated at one end face 10a of the thin plate. The time gate signal 18 whose end point is the time is generated, and the peak detector 7 detects the peak voltage of the echo signal in the time gate signal. Then, the determiner 8 determines whether or not the peak voltage is equal to or higher than a specified level, and determines that there is no flaw when the peak voltage is equal to or higher than the specified level.

以上のように、本実施の形態に係わる薄板超音波探傷装置は、一定の繰り返し周期で同期信号を出力する同期信号生成器と、同期信号に基き送信パルス信号を生成する送信器と、送信パルス信号を超音波信号に変換し、二辺の平行端面を有する薄板の平行端面の一辺にほぼ垂直に板波超音波を入射せしめると共に、薄板内のきずまたは薄板端面からの反射超音波信号を受信し、電気信号に変換する板波探触子と、板波探触子の受信した電気信号を増幅する受信増幅器と、同期信号を起点として、超音波が薄板に入射する時刻から一定時間遅延した時刻を起点として、一回目の端面でのエコーが板波探触子に到達するより一定時間手前の時刻を終点とする時間ゲート信号を生成するゲート信号生成器と、受信増幅器の出力する受信信号の時間ゲート信号区間のピーク電圧を検出するピーク検出器と、前記ピーク電圧が、判定レベル以上であることを持って、きずと判定する判定器を具備する薄板超音波探傷装置において、一辺の端面方向に板波超音波を入射した後に、当該端面にて反射し、薄板内を伝播した後に、もう一方の端面に超音波が到達し、さらに当該端面にて反射した板波超音波が薄板内を伝播することを繰り返した後に、板波超音波入射方向の端面で反射し、板波探触子で受信されることにより、薄板の二辺の平行端面間の超音波往復伝播時間毎に繰り返し生じる複数の端面多重エコーの内の一つが生じる時刻より一定時間前に、次の送信トリガ信号を生成するように、薄板の二辺の平行端面間の距離、板波超音波の群速度及び板波探触子から板端までの距離により同期信号の周期を演算する同期信号周期演算器を具備したことを特徴とする薄板超音波探傷装置である。   As described above, the thin plate ultrasonic flaw detector according to the present embodiment includes a synchronization signal generator that outputs a synchronization signal at a constant repetition period, a transmitter that generates a transmission pulse signal based on the synchronization signal, and a transmission pulse. Converts the signal into an ultrasonic signal, makes the plate wave ultrasonic wave almost perpendicular to one side of the parallel end face of the thin plate with two parallel end faces, and receives the reflected ultrasonic signal from the flaw in the thin plate or the end face of the thin plate The plate wave probe for converting into an electric signal, the receiving amplifier for amplifying the electric signal received by the plate wave probe, and the synchronization signal as a starting point are delayed for a certain time from the time when the ultrasonic wave enters the thin plate. A gate signal generator that generates a time gate signal whose end point is a certain time before the echo at the first end surface reaches the plate wave probe, starting from the time, and a received signal output from the receiving amplifier Time In a thin-plate ultrasonic flaw detector comprising a peak detector that detects a peak voltage in a signal section and a determination device that determines that the peak voltage is equal to or higher than a determination level, After entering the plate wave ultrasonic wave, it is reflected at the end face and propagates through the thin plate, then the ultrasonic wave reaches the other end face, and the plate wave ultrasonic wave reflected at the end face propagates through the thin plate. Are repeatedly reflected at the end face in the direction of incidence of the plate wave ultrasonic wave and received by the plate wave probe. The distance between the parallel end faces of the two thin plates, the group velocity of the plate wave ultrasonic waves, and the plate wave search so that the next transmission trigger signal is generated a certain time before the time at which one of the end face multiple echoes occurs. Synchronized according to the distance from the toucher to the plate edge A thin ultrasonic flaw detection apparatus characterized by comprising a synchronizing signal period calculator for calculating a period of No..

言いかえれば、本実施の形態に係わる薄板超音波探傷装置は、端面多重エコーが、次の同期信号により生成される送信信号が生じる時刻から、薄板の入射点までの、接触媒質内の超音波の往復伝播時間内に重畳するように同期信号の周期Tを決定するようにしたものである。   In other words, the thin plate ultrasonic flaw detector according to the present embodiment is configured so that the end surface multiple echoes are ultrasonic waves in the contact medium from the time when the transmission signal generated by the next synchronization signal is generated to the incident point of the thin plate. The period T of the synchronization signal is determined so as to overlap within the round-trip propagation time.

そして、薄板超音波探傷装置における端面多重エコーが、次の同期信号により生成される送信信号が生じる時刻から、薄板の入射点までの、接触媒質内の超音波の往復伝播時間内に重畳するように同期信号の周期Tを決定することにより、同期信号の周期を大幅に長くすること無しに、端面多重エコーをきずと誤判定することを防止し、信頼性の高い探傷結果を提供することができる。   Then, the end face multiple echo in the thin plate ultrasonic flaw detector is superposed within the round-trip propagation time of the ultrasonic wave in the contact medium from the time when the transmission signal generated by the next synchronization signal is generated to the incident point of the thin plate. By determining the period T of the synchronization signal at the same time, it is possible to prevent the end face multiple echo from being erroneously determined without significantly increasing the period of the synchronization signal and to provide a highly reliable flaw detection result. it can.

この発明の実施例による薄板超音波探傷装置を示すブロック図を示す図である。It is a figure which shows the block diagram which shows the thin-plate ultrasonic flaw detector by the Example of this invention. この発明の実施例によって得られる同期信号、エコー信号、時間ゲート信号の一例を示す図である。It is a figure which shows an example of the synchronizing signal, echo signal, and time gate signal which are obtained by the Example of this invention. 従来の薄板超音波探傷装置を示すブロック図である。It is a block diagram which shows the conventional thin plate ultrasonic flaw detector. 従来の薄板超音波探傷装置によって得られる同期信号、エコー信号、時間ゲート信号の一例を示す図である。It is a figure which shows an example of the synchronizing signal, echo signal, and time gate signal which are obtained by the conventional thin plate ultrasonic flaw detector. 従来の薄板超音波探傷装置によって得られる同期信号、エコー信号、時間ゲート信号の一例を示す図である。It is a figure which shows an example of the synchronizing signal, echo signal, and time gate signal which are obtained by the conventional thin plate ultrasonic flaw detector.

符号の説明Explanation of symbols

1 同期信号周期演算器、2 同期信号生成器、3 送信器、4 板波探触子、5 受信増幅器、6 ゲート信号生成器、7 ピーク検出器、8 判定器、9 薄板、10a,10b 端面、11 振動子、12 接触媒質、16 同期信号、17 エコー信号、18 時間ゲート信号、13 送信信号、14a 端面エコー信号、14b,14c,14d 端面多重エコー信号、15 きずエコー信号。   DESCRIPTION OF SYMBOLS 1 Synchronous signal period calculator, 2 Synchronous signal generator, 3 Transmitter, 4 Plate wave probe, 5 Receiving amplifier, 6 Gate signal generator, 7 Peak detector, 8 Determinator, 9 Thin plate, 10a, 10b End face , 11 vibrator, 12 contact medium, 16 synchronization signal, 17 echo signal, 18 time gate signal, 13 transmission signal, 14a end face echo signal, 14b, 14c, 14d end face multiple echo signal, 15 flaw echo signal.

Claims (1)

超音波を送受信する振動子を有する板波探触子を用いて、端面を有する薄板の欠陥を探傷する薄板超音波探傷装置において、
所定の繰り返し周期で複数の同期信号を生成する同期信号生成器と、
上記同期信号生成器により生成された複数の同期信号に基づいて複数の送信パルス信号を生成し、生成された複数の送信パルス信号の各送信パルス信号を該当する上記複数の同期信号の各同期信号と同期させて上記板波探触子に送信して上記振動子から超音波を送信させる送信器と、
上記振動子により送信された超音波が薄板に入射する時刻から所定の期間遅延した時刻を起点として、上記薄板が有する端面で反射された反射超音波信号が上記振動子に到達するまでの時刻より所定の期間手前の時刻を終点とする時間ゲート信号を生成するゲート信号生成器と、
上記板波探触子を介して上記薄板で反射する反射超音波信号に基づく電気信号を入力し、入力された電気信号における上記ゲート信号生成器により生成された時間ゲート信号の区間に位置するピーク電圧が、所定の判定レベル以上である場合に、欠陥と判定する判定器と、
上記薄板が有する端面で以前に反射された反射超音波信号に基づく電気信号のピーク電圧が、上記振動子により送信される次回の超音波が上記振動子により送信されてから上記薄板に入射するまでの期間に位置するように、上記所定の繰り返し周期を演算する同期信号周期演算器と
を備えたことを特徴とする薄板超音波探傷装置。
In a thin plate ultrasonic flaw detector for detecting defects in a thin plate having an end surface using a plate wave probe having a transducer for transmitting and receiving ultrasonic waves,
A synchronization signal generator that generates a plurality of synchronization signals at a predetermined repetition period;
A plurality of transmission pulse signals are generated based on the plurality of synchronization signals generated by the synchronization signal generator, and each transmission pulse signal of the generated plurality of transmission pulse signals is associated with each synchronization signal of the plurality of synchronization signals. A transmitter that transmits the ultrasonic wave from the transducer by transmitting to the plate wave probe in synchronization with,
Starting from the time until the ultrasonic wave transmitted by the transducer is delayed for a predetermined period from the time when the ultrasonic wave is incident on the thin plate, the reflected ultrasonic signal reflected by the end face of the thin plate reaches the transducer A gate signal generator for generating a time gate signal whose end point is a time before a predetermined period;
An electric signal based on a reflected ultrasonic signal reflected by the thin plate through the plate wave probe is input, and a peak located in a section of a time gate signal generated by the gate signal generator in the input electric signal. A determiner that determines a defect when the voltage is equal to or higher than a predetermined determination level; and
The peak voltage of the electrical signal based on the reflected ultrasonic signal previously reflected by the end face of the thin plate is transmitted from the next ultrasonic wave transmitted by the transducer until it enters the thin plate. A thin-film ultrasonic flaw detector comprising: a synchronization signal period calculator for calculating the predetermined repetition period so as to be located in the period.
JP2003411191A 2003-12-10 2003-12-10 Thin plate ultrasonic flaw detector Expired - Fee Related JP4143527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411191A JP4143527B2 (en) 2003-12-10 2003-12-10 Thin plate ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411191A JP4143527B2 (en) 2003-12-10 2003-12-10 Thin plate ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JP2005172535A JP2005172535A (en) 2005-06-30
JP4143527B2 true JP4143527B2 (en) 2008-09-03

Family

ID=34732001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411191A Expired - Fee Related JP4143527B2 (en) 2003-12-10 2003-12-10 Thin plate ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP4143527B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641435B2 (en) * 2011-03-07 2014-12-17 新日鐵住金株式会社 Ultrasonic oblique angle flaw detection method and ultrasonic oblique angle flaw detector

Also Published As

Publication number Publication date
JP2005172535A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
JP2010266378A (en) Ultrasonic diagnosis/evaluation system
JP2008128965A (en) Airborne ultrasonic flaw detection system
US20150135836A1 (en) Guided wave mode sweep technique for optimal mode and frequency excitation
CA3110818A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JP4997636B2 (en) Non-destructive diagnostic method for structures
JP2011047763A (en) Ultrasonic diagnostic device
JP2009058238A (en) Method and device for defect inspection
JP4405821B2 (en) Ultrasonic signal detection method and apparatus
JP4143527B2 (en) Thin plate ultrasonic flaw detector
JPH1078416A (en) Method and device for multi-channel automatic ultrasonic flaw detection of metal plate
JP3036387B2 (en) Ultrasonic flaw detection method and device
RU2714868C1 (en) Method of detecting pitting corrosion
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
US11054399B2 (en) Inspection method
JP3603805B2 (en) Internal defect detection method
JP3603804B2 (en) Internal defect detection method
JP3562159B2 (en) Multi-channel automatic ultrasonic flaw detection method and apparatus for metal plate
JP2006275945A (en) Ultrasonic flaw detector
JP3653785B2 (en) C-scan ultrasonic flaw detection method and apparatus
US20240210358A1 (en) Method and Device for Checking the Wall of a Pipeline for Flaws
JPH1151909A (en) Ultrasonic wave flaw detecting method
JP4549512B2 (en) Ultrasonic flaw detection apparatus and method
EP4086620A1 (en) Method and device for checking the wall of a pipeline for flaws
Budenkov et al. Acoustic nondestructive testing of rods using multiple reflections

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4143527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees