JPH0212609Y2 - - Google Patents

Info

Publication number
JPH0212609Y2
JPH0212609Y2 JP14627983U JP14627983U JPH0212609Y2 JP H0212609 Y2 JPH0212609 Y2 JP H0212609Y2 JP 14627983 U JP14627983 U JP 14627983U JP 14627983 U JP14627983 U JP 14627983U JP H0212609 Y2 JPH0212609 Y2 JP H0212609Y2
Authority
JP
Japan
Prior art keywords
center frequency
frequency
transducer
receiving
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14627983U
Other languages
Japanese (ja)
Other versions
JPS6053054U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14627983U priority Critical patent/JPS6053054U/en
Publication of JPS6053054U publication Critical patent/JPS6053054U/en
Application granted granted Critical
Publication of JPH0212609Y2 publication Critical patent/JPH0212609Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 本考案は、パルス反射型超音波探傷器の超音波
探触子に係り、とくに受信用と送信用の各振動子
を備えた分割型の超音波探触子に関する。超音波
を用いてその反射波から被測定物の厚さや内部の
傷、欠陥等の情報を得る方法は、被測定物の種類
およびその測定箇所を任意に設定できる点や、被
破壊にてなし得るという特殊性より、工業界はも
とより医学その他広い分野にわたり応用、利用さ
れている。
[Detailed Description of the Invention] The present invention relates to an ultrasonic probe for a pulse reflection type ultrasonic flaw detector, and more particularly to a split-type ultrasonic probe equipped with receiving and transmitting transducers. The method of using ultrasonic waves to obtain information about the thickness of the object, internal scratches, defects, etc. from the reflected waves has the advantage that the type of object to be measured and the measurement location can be set arbitrarily, and it is easy to use depending on the damage. Due to its unique properties, it is applied and utilized not only in industry but also in medicine and a wide range of other fields.

分割型の超音波探触子は、被測定物の厚さや材
料内部の欠陥をその表面近くから広範囲にわたつ
て探傷し得るものとして考案されたもので、送信
用振動子と受信用振動子とを各々備えた構造とな
つている。
The split-type ultrasonic probe was devised to be able to detect defects in the thickness of the object to be measured and in the interior of the material over a wide range from close to the surface. The structure is equipped with each.

しかしながら、従来の分割型音波探触子は、前
述した送信用および受信用の各振動子の中心周波
数(共振周波数)が同一となつており、これがた
め、減衰の大きい材質の超音波探傷に際しては、
他の探触子の場合と同様に特に高い周波数の場合
の感度低下がはげしく、従つて、結果的には厚さ
の測定や細かい欠陥に対する超音波探傷が困難な
状態となつていた。
However, in conventional split-type sonic probes, the center frequency (resonance frequency) of each transducer for transmitting and receiving is the same, which makes it difficult to perform ultrasonic flaw detection on materials with large attenuation. ,
As in the case of other probes, the sensitivity decreases particularly at high frequencies, and as a result, it has become difficult to measure thickness or detect fine defects using ultrasonic waves.

本考案の目的は、かかる従来技術の有する不都
合を改善し、超音波の減衰の比較的大きい測定物
に対し従来のものよりも良好に厚さ測定や欠陥探
傷をなし得る分割型の超音波探触子を提供するこ
とにある。
The purpose of the present invention is to improve the disadvantages of the prior art and to provide a split-type ultrasonic detector that can perform thickness measurement and defect detection better than conventional methods for objects to be measured with relatively large ultrasonic attenuation. The purpose is to provide tentacles.

そこで、本考案は送信用振動子と受信用振動子
とを各々備えた分割型の超音波探触子において、
前記受信用振動子の中心周波数を、送信用振動子
の中心周波数より低く設定するという構成を採用
し、これによつて前述した目的を達成しようとす
るものである。
Therefore, the present invention provides a split-type ultrasonic probe each equipped with a transmitting transducer and a receiving transducer.
The present invention employs a configuration in which the center frequency of the receiving vibrator is set lower than the center frequency of the transmitting vibrator, thereby attempting to achieve the above-mentioned object.

ところで、パルス反射型超音波探傷において
は、高い周波数のものほど高分解能であるため細
かい欠陥を検知し易いことから、特に重要な部材
の欠陥探傷には2〔MHz〕〜10〔MHz〕、ときには
数10〔MHz〕という高い周波数の接触子の使用が
望まれている。一方、超音波の減衰は高い周波数
のものほど激しい。このことから、減衰の大きい
材質等における欠陥からの反射エコー波形は伝搬
損失の影響を強く受け、その強度が弱められると
同時に高い周波数成分ほどより多くの減衰を受け
るため、エコーの周波数のスペクトラムは例えば
第1図2のようになり、反射エコーの中心周波数
は、減衰が大きいほど低くなる。この現象は、連
続波を利用した超音波厚さ計による厚さに応じた
共振周波数の偏位とは本質的に異なる点に注意し
なければならない。
By the way, in pulse reflection type ultrasonic flaw detection, the higher the frequency, the higher the resolution and the easier it is to detect small defects. It is desired to use a contact with a high frequency of several tens of MHz. On the other hand, the higher the frequency, the more severe the attenuation of ultrasonic waves. From this, the reflected echo waveform from a defect in a material with high attenuation is strongly affected by propagation loss, and at the same time its intensity is weakened, and at the same time, the higher the frequency component, the more it is attenuated, so the echo frequency spectrum is For example, as shown in FIG. 1, the center frequency of the reflected echo becomes lower as the attenuation increases. It must be noted that this phenomenon is essentially different from the deviation of the resonant frequency depending on the thickness by an ultrasonic thickness gauge using continuous waves.

第1図はその実験結果の一例を示す。いづれも
5〔MHz〕の送信超音波に対し、同図1では鋼材
の場合(但し、厚さ4.8〔mm〕)、同図2では鋳物
(FC30)の場合(但し、厚さ50〔mm〕)における反
射超音波の周波数およびその相対的受信感度を測
定したものである。この内、超音波の減衰が比較
的少ない鋼材では、同図1に示す如くピークが
4.8〔MHz〕の所にあり、僅かに中心周波数のずれ
がみられるに留められている。
FIG. 1 shows an example of the experimental results. In both cases, for transmitted ultrasonic waves of 5 [MHz], Fig. 1 shows the case of steel material (however, the thickness is 4.8 [mm]), and Fig. 2 shows the case of the case of the cast material (FC30) (however, the thickness is 50 [mm]). ) The frequency of the reflected ultrasound and its relative reception sensitivity were measured. Among these, steel materials with relatively low attenuation of ultrasonic waves have a peak as shown in Figure 1.
It is located at 4.8 [MHz], and there is only a slight deviation in the center frequency.

一方、同図2の場合、すなわち超音波の減衰が
比較的多い鋳物の場合では、反射波のピークが
1.1〔MHz〕の所にあり、即ち、反射波の中心周波
数は1.1〔MHz〕となり、また該ピークを基準とし
た−6〔dB〕帯域幅でも0.8〜2.2〔MHz〕となつ
て、送信周波数の5〔MHz〕には遠く及ばない低
い周波数の反射超音波が検知されている。
On the other hand, in the case of Figure 2, that is, in the case of a casting where the ultrasonic wave is relatively highly attenuated, the peak of the reflected wave is
1.1 [MHz], that is, the center frequency of the reflected wave is 1.1 [MHz], and even the -6 [dB] bandwidth based on this peak is 0.8 to 2.2 [MHz], so the transmission frequency is Reflected ultrasonic waves with frequencies as low as 5 MHz have been detected.

このため、送信振動子の周波数と同一の5〔M
Hz〕に共振点を有する受信振動子は第1図2には
使用できないことが明らかとなり、一方、当該第
1図2の如き場合には1〔MHz〕の受信振動子を
使用することにより、従来より困難な場合が多か
つた鋳物等の非破壊検査をごく容易になし得るこ
とが、ここに具体的に明らかとなつた。
Therefore, 5 [M
It has become clear that a receiving transducer having a resonance point at 1 [MHz] cannot be used in Fig. 1 and 2. On the other hand, in the case shown in Fig. 1 and 2, by using a receiving transducer of 1 [MHz], It has now become concretely clear that nondestructive testing of castings, etc., which has often been difficult in the past, can be carried out very easily.

第2図に本考案の一実施例を示す。この図にお
いて、符号10は送信振動子を示し、符号11は
受信振動子を示す。これらの各振動子10,11
は、各々アクリル酸樹脂等にて形成されたシユー
12,13の上端面に所定の傾きをもつて固着さ
れている。そして、送信振動子の中心周波数T
受信振動子の中心周波数Rとは、TRの関係に
設定され、その具体的値は被測定物の材質の減衰
量の大小によつて特定されるようになつている。
シユー12,13は、角柱状のものでもよいし或
いは円柱状のものを軸方向に中央部で半割した形
状のものであつてもよい。この各シユー12,1
3の相互間には、第2図にも示した如く音響アイ
ソレータ14が挟持され、この部分を通して一方
から他方への超音波の伝播が阻止されている。
FIG. 2 shows an embodiment of the present invention. In this figure, numeral 10 indicates a transmitting transducer, and numeral 11 indicates a receiving transducer. Each of these vibrators 10, 11
are fixed at a predetermined inclination to the upper end surfaces of shoes 12 and 13, each made of acrylic acid resin or the like. The center frequency T of the transmitting transducer and the center frequency R of the receiving transducer are set in the relationship T > R , and the specific value is determined by the magnitude of the attenuation of the material of the object to be measured. It's becoming like that.
The shoes 12 and 13 may be prismatic, or may be cylindrical and halved at the center in the axial direction. Each show 12,1
As shown in FIG. 2, an acoustic isolator 14 is sandwiched between the two parts, and ultrasonic waves are prevented from propagating from one side to the other through this part.

以上のように、本考案によると送信用振動子と
受信用振動子とを各々備えた分割型の超音波探触
子において、前記受信用振動子の中心周波数を、
送信用振動子の中心周波数より低く設定したの
で、特に減衰の比較的大きい被測定物に対しては
従来のものより受信感度が著しく増大し、これが
ため超音波の減衰が比較的大きい被測定物に対し
ても内部からの欠陥エコーを効果的に検知するこ
とができ、セラミツク等に対しても従来のものよ
りも比較的高い周波数による超音波を使用するこ
とができるため厚さの測定や細かい欠陥の検出が
容易となり、とくに深部からの欠陥エコーの検出
が可能となるなど、従来にない実用的な超音波探
触子を得ることができる。
As described above, according to the present invention, in a split-type ultrasonic probe each equipped with a transmitting transducer and a receiving transducer, the center frequency of the receiving transducer is
Since the center frequency is set lower than the center frequency of the transmitting transducer, the receiving sensitivity is significantly increased compared to the conventional method, especially for objects under test with relatively high attenuation. It is also possible to effectively detect defective echoes from inside objects, and it is also possible to use ultrasonic waves at a relatively higher frequency than conventional methods for ceramics, etc., so it is possible to measure thickness and fine details. Defects can be easily detected, and defect echoes can be detected from deep parts, making it possible to obtain an unprecedentedly practical ultrasonic probe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1,2は各々超音波の減衰に関する一実
験結果を示す線図、第2図は本考案の一実施例を
示す断面図である。 10……送信油振動子、11……受信用振動
子。
1 and 2 are diagrams each showing the results of an experiment regarding the attenuation of ultrasonic waves, and FIG. 2 is a sectional view showing an embodiment of the present invention. 10... Transmission oil oscillator, 11... Receiving oscillator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 送信用振動子と受信用振動子とを各々備えた分
割型の超音波探触子において、前記受信用振動子
の信号検出用中心周波数を、送信用振動子の励振
用中心周波数より低く設定したことを特徴とする
超音波探触子。
In a split-type ultrasonic probe each equipped with a transmitting transducer and a receiving transducer, the signal detection center frequency of the receiving transducer is set lower than the excitation center frequency of the transmitting transducer. An ultrasonic probe characterized by:
JP14627983U 1983-09-21 1983-09-21 ultrasonic probe Granted JPS6053054U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14627983U JPS6053054U (en) 1983-09-21 1983-09-21 ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14627983U JPS6053054U (en) 1983-09-21 1983-09-21 ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS6053054U JPS6053054U (en) 1985-04-13
JPH0212609Y2 true JPH0212609Y2 (en) 1990-04-09

Family

ID=30325649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14627983U Granted JPS6053054U (en) 1983-09-21 1983-09-21 ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS6053054U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327759B2 (en) * 2019-11-27 2023-08-16 独立行政法人エネルギー・金属鉱物資源機構 Probe and plate thickness measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
JPWO2007004303A1 (en) * 2005-07-06 2009-01-22 財団法人電力中央研究所 Scratch height measuring method and apparatus in ultrasonic flaw detection test
JP4747172B2 (en) * 2005-07-06 2011-08-17 財団法人電力中央研究所 Scratch height measuring method and apparatus in ultrasonic flaw detection test
US8051717B2 (en) 2005-07-06 2011-11-08 Central Research Institute Of Electric Power Industry Method and apparatus for measuring flaw height in ultrasonic tests

Also Published As

Publication number Publication date
JPS6053054U (en) 1985-04-13

Similar Documents

Publication Publication Date Title
Pei et al. Lamb wave tomography and its application in pipe erosion/corrosion monitoring
US5708191A (en) Ultrasonic fluid densitometry and densitometer
JPH0525045B2 (en)
US4614115A (en) Ultrasonic process and apparatus for monitoring and measuring the evolution with time of physico-chemical, biological or bacteriological phenomena
US5383365A (en) Crack orientation determination and detection using horizontally polarized shear waves
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
JPH0212609Y2 (en)
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
EP0555298A1 (en) Detecting defects in concrete
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JP2659236B2 (en) Ultrasonic probe
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
JPS6326344B2 (en)
Drinkwater et al. An ultrasonic wheel probe alternative to liquid coupling
Gericke Dual‐Frequency Ultrasonic Pulse‐Echo Testing
RU1797043C (en) Method of ultrasonic defectoscopy of products with simultaneous acoustic contact quality control
JPS6142126Y2 (en)
RU2214590C2 (en) Procedure establishing physical and mechanical characteristics of polymer composite materials and device for its implementation
RU2141652C1 (en) Method for ultrasonic check-up of mean grain size of materials
SU1185220A1 (en) Method of ultrasound structural analysis of material
JPH0328757A (en) High-damping probe
JPS61251768A (en) Measuring method for size of defect in surface layer of solid body by ultrasonic wave
JPS6144349A (en) Method and apparatus for ultrasonic flaw detection